Analysis of Rare Alleles of miRNA-146a (rs2910164) and miRNA-34b/c (rs4938723) as a Prognostic Marker in Thyroid Cancer in Pakistani Population
Abstract
:1. Introduction
2. Material and Methods
2.1. Collection of Blood Samples with Their Demographical Data
2.2. Inclusion Criteria/Exclusion Criteria
2.3. Genotyping
3. Results
3.1. Demographical and Clinical Data
3.2. Genotype Frequency Distribution of rs2910164 and rs4938723 with the Risk of Thyroid Cancer in Pakistani Population
3.2.1. Combined Genotype Frequency Effect in miRNA-146a rs2910164 and miRNA-34b/c (rs4938723)
3.2.2. Odds Ratios Calculations for Genotypes of miRNA-146a rs2910164 and miRNA-34b/c rs4938723
3.2.3. Allelic OR Correlation Frequencies of miRNA-146a rs2910164 and miRNA-34b/c rs4938723
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Heidari, Z.; Mohammadpour-Gharehbagh, A.; Eskandari, M.; Harati-Sadegh, M.; Salimi, S. Genetic polymorphisms of miRNA let7a-2 and pri-mir-34b/c are associated with an increased risk of papillary thyroid carcinoma and clinical/pathological features. J. Cell. Biochem. 2019, 120, 8640–8647. [Google Scholar] [CrossRef] [PubMed]
- Torre, L.A.; Siegel, R.L.; Ward, E.M.; Jemal, A. Global cancer incidence and mortality rates and trends—An update. Cancer Epidemiol. Prev. Biomark. 2016, 25, 16–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Abdel-Mageed, A.B.; Mondal, D.; Kandil, E. MicroRNA expression profiles in differentiated thyroid cancer, a review. Int. J. Clin. Exp. Med. 2013, 6, 74. [Google Scholar]
- Suresh, R.; Sethi, S.; Ali, S.; Giorgadze, T.; Sarkar, F.H. Differential expression of MicroRNAs in papillary thyroid carcinoma and their role in racial disparity. J. Cancer Sci. Ther. 2015, 7, 145. [Google Scholar] [PubMed] [Green Version]
- Labbaye, C.; Testa, U. The emerging role of MIR-146A in the control of hematopoiesis, immune function and cancer. J. Hematol. Oncol. 2012, 5, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Budhu, A.; Ji, J.; Wang, X.W. The clinical potential of microRNAs. J. Hematol. Oncol. 2010, 3, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Zhong, H.; Wang, H.-r.; Yang, S.; Zhong, J.-h.; Wang, T.; Wang, C.; Chen, F.-y. Targeting Smad4 links microRNA-146a to the TGF-β pathway during retinoid acid induction in acute promyelocytic leukemia cell line. Int. J. Hematology. 2010, 92, 129–135. [Google Scholar] [CrossRef]
- Jazdzewski, K.; Liyanarachchi, S.; Swierniak, M.; Pachucki, J.; Ringel, M.D.; Jarzab, B.; De la Chapelle, A. Polymorphic mature microRNAs from passenger strand of pre-miR-146a contribute to thyroid cancer. Proc. Natl. Acad. Sci. USA 2009, 106, 1502–1505. [Google Scholar] [CrossRef] [Green Version]
- Jazdzewski, K.; Murray, E.L.; Franssila, K.; Jarzab, B.; Schoenberg, D.R.; de la Chapelle, A. Common SNP in pre-miR-146a decreases mature miR expression and predisposes to papillary thyroid carcinoma. Proc. Natl. Acad. Sci. USA 2008, 105, 7269–7274. [Google Scholar] [CrossRef] [Green Version]
- Jeon, H.-S.; Lee, Y.H.; Lee, S.Y.; Jang, J.-A.; Choi, Y.-Y.; Yoo, S.S.; Lee, W.K.; Choi, J.E.; Son, J.W.; Kang, Y.M. A common polymorphism in pre-microRNA-146a is associated with lung cancer risk in a Korean population. Gene 2014, 534, 66–71. [Google Scholar] [CrossRef]
- Marino, M.; Cirello, V.; Gnarini, V.; Colombo, C.; Pignatti, E.; Casarini, L.; Diazzi, C.; Rochira, V.; Cioni, K.; Madeo, B. Are pre-miR-146a and PTTG1 associated with papillary thyroid cancer? Endocr. Connect. 2013, 2, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Khan, R.; Shaheen, H.; Mansoor, Q.; Abbasi, S.A.; Fatima, S.; Ammar, A.; Baig, R.M. Genetic predisposition of SNPs in miRNA-149 (rs2292832) and FOXE1 (rs3758249) in thyroid Cancer. Mol. Biol. Rep. 2021, 48, 7801–7809. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Liu, L.; Liu, J.; Zhang, Y.; Zhu, J.; Chen, J.; Liu, S.; Liu, Z.; Shi, H.; Shen, H. A potentially functional polymorphism in the promoter region of miR-34b/c is associated with an increased risk for primary hepatocellular carcinoma. Int. J. Cancer 2011, 128, 412–417. [Google Scholar] [CrossRef]
- Bartel, D.P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 2004, 116, 281–297. [Google Scholar] [CrossRef] [Green Version]
- Botchkarev, V.A.; Flores, E.R. p53/p63/p73 in the epidermis in health and disease. Cold Spring Harb. Perspect. Med. 2014, 4, a015248. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Guo, D.; Guo, Y. Association between p53 Arg72Pro polymorphism and thyroid cancer risk: A meta-analysis. Tumor Biol. 2014, 35, 561–565. [Google Scholar] [CrossRef] [PubMed]
- Son, M.S.; Jang, M.J.; Jeon, Y.J.; Kim, W.H.; Kwon, C.-I.; Ko, K.H.; Park, P.W.; Hong, S.P.; Rim, K.S.; Kwon, S.W. Promoter polymorphisms of pri-miR-34b/c are associated with hepatocellular carcinoma. Gene 2013, 524, 156–160. [Google Scholar] [CrossRef]
- Hashemi, M.; Danesh, H.; Bizhani, F.; Narouie, B.; Sotoudeh, M.; Nouralizadeh, A.; Sharifiaghdas, F.; Bahari, G.; Taheri, M. Pri-miR-34b/c rs4938723 polymorphism increased the risk of prostate cancer. Cancer Biomark. 2017, 18, 155–159. [Google Scholar] [CrossRef]
- Yi, D.-H.; Wang, B.-G.; Zhong, X.-P.; Liu, H.; Liu, Y.-F. Pri-miR-34b/c rs4938723 TC heterozygote is associated with increased cancer risks: Evidence from published data. Tumor Biol. 2014, 35, 11967–11975. [Google Scholar] [CrossRef]
- Gao, L.-B.; Li, L.-J.; Pan, X.-M.; Li, Z.-H.; Liang, W.-B.; Bai, P.; Zhu, Y.-H.; Zhang, L. A genetic variant in the promoter region of miR-34b/c is associated with a reduced risk of colorectal cancer. Biol. Chem. 2013, 394, 415–420. [Google Scholar] [CrossRef]
- Chatzikyriakidou, A.; Voulgari, P.V.; Georgiou, I.; Drosos, A.A. miRNAs and related polymorphisms in rheumatoid arthritis susceptibility. Autoimmun. Rev. 2012, 11, 636–641. [Google Scholar] [CrossRef] [PubMed]
- Yajima, M.; Miyata, M.; Ikuta, K.; Hasegawa, Y.; Oneyama, C.; Kanda, T. Efficient Epstein-Barr virus progeny production mediated by cancer-derived LMP1 and virally-encoded microRNAs. Microorganisms 2019, 7, 119. [Google Scholar] [CrossRef] [Green Version]
- Xiang, Z.; Song, J.; Zhuo, X.; Li, Q.; Zhang, X. MiR-146a rs2910164 polymorphism and head and neck carcinoma risk: A meta-analysis based on 10 case-control studies. Oncotarget 2017, 8, 1226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, P.; Sun, R.; Pu, Y.; Bai, P.; Yuan, F.; Liang, Y.; Zhou, B.; Wang, Y.; Sun, Y.; Zhu, J. Pri-miR-34b/C and Tp-53 polymorphisms are associated with the susceptibility of papillary thyroid carcinoma: A case–control study. Medicine 2015, 94, e1536. [Google Scholar] [CrossRef] [PubMed]
- Granja, F.; Morari, J.; Morari, E.C.; Correa, L.A.; Assumpção, L.V.; Ward, L.S. Proline homozygosity in codon 72 of p53 is a factor of susceptibility for thyroid cancer. Cancer Lett. 2004, 210, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Rogounovitch, T.I.; Saenko, V.A.; Ashizawa, K.; Sedliarou, I.A.; Namba, H.; Abrosimov, A.Y.; Lushnikov, E.F.; Roumiantsev, P.O.; Konova, M.V.; Petoukhova, N.S. TP53 codon 72 polymorphism in radiation-associated human papillary thyroid cancer. Oncol. Rep. 2006, 15, 949–956. [Google Scholar] [CrossRef]
Variables | Patients (n = 200) | Frequency (%) | Hormonal Levels | ||
---|---|---|---|---|---|
TSH | TG | ATG | |||
Age | <50 | 34 | - | - | - |
50–60 | 52 | - | - | - | |
>60 | 14 | - | - | - | |
Gender | Females | 86 | - | - | - |
Males | 14 | - | - | - | |
Metastasis | Metastatic | 7 | - | - | - |
Non-metastatic | 93 | - | - | - | |
Types of cancer | Papillary thyroid cancer | 53 | 42.55 | 228 | 81.7 |
Follicular variant of PTC | 42 | 42.0 | 156 | 232.34 | |
Hurthle cell cancer | 3.0 | 72.17 | 132.34 | 239.65 | |
Insular papillary thyroid cancer | 1.0 | 64.76 | 12.96 | 24.3 | |
Classical variant of PTC | 2.0 | 55.8 | 80.3 | 173.4 |
Genotypes | Patients Observed Frequency, % | Expected H-W Frequency, % | Control Observed Frequency, % | Expected H-W Frequency, % | p-Value for the Risk Assessment between Patients & Controls |
---|---|---|---|---|---|
rs2910164 | - | - | - | - | 0.00001 ** |
GG | 60 | 62.8056 | 98 | 98.01 | |
CG | 38.50 | 32.8888 | 02 | 1.98 | |
CC | 1.50 | 4.3056 | 00 | 0.01 | |
p-value = 0.2332 | - | p-value = 0.99048 | - | ||
rs4938723 | - | - | - | - | 2 × 10−8 ** |
TT | 10 | 8.12 | 30.00 | 32.81 | |
TC | 36 | 40.75 | 54.50 | 48.36 | |
CC | 54 | 51.1 | 15.50 | 17.81 | |
p-value = 0.6541 | - | p-value = 0.51053 | - |
Genotypes | Patients Observed Frequency, % | Control Observed Frequency, % | p-Value for the Risk Assessment between Patients & Controls |
---|---|---|---|
rs2910164 | |||
GG | 60 | 98 | p-value ≤ 0.00001 |
CG/CC | 40 | 2 | Chi-square = 43.52 |
rs4938723 | |||
TT | 10 | 30 | p-value = 0.00030426 |
TT/CC | 90 | 70 | Chi square = 13.044 |
Genotypes | Patients Observed Frequency % | Control Observed Frequency % | Correlation by OR (95%CI) between Patient & Control | p-Value for the Risk Assessment between Patients & Controls |
---|---|---|---|---|
rs2910164 | ||||
GG | 60 | 98 | 0.03 (0.007–0.13) | <0.0001 |
CG | 38.50 | 02 | 30.67(7.14–131.66) | <0.0001 |
CC | 1.50 | 00 | 24.75(3.25–188.43) | <0.0001 |
rs4938723 | ||||
TT | 10 | 30.00 | 0.22(0.10–0.48) | <0.0001 |
TC | 36 | 54.50 | 0.4792(0.27–0.84) | 0.01048 |
CC | 54 | 15.50 | 6.65(3.38–13.06) | <0.0001 |
Alleles | Patients Observed Frequency % | Control Observed Frequency % | Correlation by OR (95%CI) between Patient & Control | p-Value for the Risk Assessment between Patients & Controls |
---|---|---|---|---|
rs2910164 | ||||
G | 79.25 | 99 | 0.04 (0.005–0.30) | <0.0001 |
C | 20.75 | 1 | 23.01 (3.03–174.72) | <0.0001 |
rs4938723 | ||||
T | 28.57 | 42.30 | 0.56 (0.31–1.01) | 0.05474 |
C | 71.43 | 57.70 | 1.93 (1.07- 3.49) | 0.026702 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, R.; Abbasi, S.A.; Mansoor, Q.; Ahmed, M.N.; Mir, K.B.; Baig, R.M. Analysis of Rare Alleles of miRNA-146a (rs2910164) and miRNA-34b/c (rs4938723) as a Prognostic Marker in Thyroid Cancer in Pakistani Population. Diagnostics 2022, 12, 2495. https://doi.org/10.3390/diagnostics12102495
Khan R, Abbasi SA, Mansoor Q, Ahmed MN, Mir KB, Baig RM. Analysis of Rare Alleles of miRNA-146a (rs2910164) and miRNA-34b/c (rs4938723) as a Prognostic Marker in Thyroid Cancer in Pakistani Population. Diagnostics. 2022; 12(10):2495. https://doi.org/10.3390/diagnostics12102495
Chicago/Turabian StyleKhan, Rashida, Samina Asghar Abbasi, Qaisar Mansoor, Mehvish Naseer Ahmed, Kahkashan Bashir Mir, and Ruqia Mehmood Baig. 2022. "Analysis of Rare Alleles of miRNA-146a (rs2910164) and miRNA-34b/c (rs4938723) as a Prognostic Marker in Thyroid Cancer in Pakistani Population" Diagnostics 12, no. 10: 2495. https://doi.org/10.3390/diagnostics12102495
APA StyleKhan, R., Abbasi, S. A., Mansoor, Q., Ahmed, M. N., Mir, K. B., & Baig, R. M. (2022). Analysis of Rare Alleles of miRNA-146a (rs2910164) and miRNA-34b/c (rs4938723) as a Prognostic Marker in Thyroid Cancer in Pakistani Population. Diagnostics, 12(10), 2495. https://doi.org/10.3390/diagnostics12102495