Automatic Cardiopulmonary Endurance Assessment: A Machine Learning Approach Based on GA-XGBOOST
Abstract
Share and Cite
Deng, J.; Fu, Y.; Liu, Q.; Chang, L.; Li, H.; Liu, S. Automatic Cardiopulmonary Endurance Assessment: A Machine Learning Approach Based on GA-XGBOOST. Diagnostics 2022, 12, 2538. https://doi.org/10.3390/diagnostics12102538
Deng J, Fu Y, Liu Q, Chang L, Li H, Liu S. Automatic Cardiopulmonary Endurance Assessment: A Machine Learning Approach Based on GA-XGBOOST. Diagnostics. 2022; 12(10):2538. https://doi.org/10.3390/diagnostics12102538
Chicago/Turabian StyleDeng, Jia, Yan Fu, Qi Liu, Le Chang, Haibo Li, and Shenglin Liu. 2022. "Automatic Cardiopulmonary Endurance Assessment: A Machine Learning Approach Based on GA-XGBOOST" Diagnostics 12, no. 10: 2538. https://doi.org/10.3390/diagnostics12102538
APA StyleDeng, J., Fu, Y., Liu, Q., Chang, L., Li, H., & Liu, S. (2022). Automatic Cardiopulmonary Endurance Assessment: A Machine Learning Approach Based on GA-XGBOOST. Diagnostics, 12(10), 2538. https://doi.org/10.3390/diagnostics12102538