Post-Mortem Interval and Microbiome Analysis through 16S rRNA Analysis: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
- Sites communicating with the outside: possible sampling sites without the need for incision/biopsy, i.e., eyes, ears, nose, mouth, rectum and skin.
- Internal sites: sampling requiring incision/biopsy, i.e., brain, spleen, liver, heart, prostate, uterus and bones.
- Both external and internal sites.
- Not only body sampling (e.g., grave soil).
3.1. Animal Models
3.1.1. Animal Model-Sites Communicating with the Outside
3.1.2. Animal Model-Internal Anatomical Sites
3.1.3. Animal Model—Not Only Body Samples
3.2. Human Models
3.2.1. Human Model-Sites Communicating with the Outside
3.2.2. Human Model-Internal Anatomical Sites
3.2.3. Human Model-Sites Communicating with the Outside and Internal Anatomical Sites
3.2.4. Human Model—Not Only Body Samples
3.3. Human and Animal Models
4. Discussion
Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Saukko, P.; Knight, B. Knight’s Forensic Pathology, 4th ed.; CRC Press: Boca Raton, FL, USA, 2015; pp. 58–66. [Google Scholar]
- Madea, B. Methods for determining time of death. Forensic Sci. Med. Pathol. 2016, 12, 451–485. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.Z.; Li, H.J.; Zhang, T.Y.; Ding, Z.J.; Wu, S.F.; Qiu, X.G.; Liu, Q. Application of Mixed-effect Model in PMI Estimation by Vitreous Humor. Fa Yi Xue Za Zhi 2018, 34, 13–17. [Google Scholar] [CrossRef] [PubMed]
- Scrivano, S.; Sanavio, M.; Tozzo, P.; Caenazzo, L. Analysis of RNA in the Estimation of Post-Mortem Interval: A Review of Current Evidence. Int. J. Leg. Med. 2019, 133, 1629–1640. [Google Scholar] [CrossRef]
- Sangwan, A.; Singh, S.P.; Singh, P.; Gupta, O.P.; Manas, A.; Gupta, S. Role of Molecular Techniques in PMI Estimation: An Update. J. Forensic Leg. Med. 2021, 83, 102251. [Google Scholar] [CrossRef]
- Zissler, A.; Stoiber, W.; Steinbacher, P.; Geissenberger, J.; Monticelli, F.C.; Pittner, S. Postmortem Protein Degradation as a Tool to Estimate the PMI: A Systematic Review. Diagnostics 2020, 10, 1014. [Google Scholar] [CrossRef] [PubMed]
- Tozzo, P.; Scrivano, S.; Sanavio, M.; Caenazzo, L. The Role of DNA Degradation in the Estimation of Post-Mortem Interval: A Systematic Review of the Current Literature. Int. J. Mol. Sci. 2020, 21, 3540. [Google Scholar] [CrossRef] [PubMed]
- Locci, E.; Bazzano, G.; Chighine, A.; Locco, F.; Ferraro, E.; Demontis, R.; d’Aloja, E. Forensic NMR Metabolomics: One More Arrow in the Quiver. Metabolomics 2020, 16, 118. [Google Scholar] [CrossRef] [PubMed]
- De-Giorgio, F.; Ciasca, G.; D’Amico, R.; Trombatore, P.; D’Angelo, A.; Rinaldi, P.; Milano, F.; Locci, E.; De Spirito, M.; D’Aloja, E.; et al. An Evaluation of the Objectivity and Reproducibility of Shear Wave Elastography in Estimating the Post-Mortem Interval: A Tissue Biomechanical Perspective. Int. J. Leg. Med. 2020, 134, 1939–1948. [Google Scholar] [CrossRef]
- De-Giorgio, F.; Ciasca, G.; Fecondo, G.; Mazzini, A.; Di Santo, R.; De Spirito, M.; Pascali, V.L. Post Mortem Computed Tomography Meets Radiomics: A Case Series on Fractal Analysis of Post Mortem Changes in the Brain. Int. J. Leg. Med. 2022, 136, 719–727. [Google Scholar] [CrossRef]
- Schmidt, V.-M.; Zelger, P.; Woess, C.; Pallua, A.K.; Arora, R.; Degenhart, G.; Brunner, A.; Zelger, B.; Schirmer, M.; Rabl, W.; et al. Application of Micro-Computed Tomography for the Estimation of the Post-Mortem Interval of Human Skeletal Remains. Biology 2022, 11, 1105. [Google Scholar] [CrossRef]
- Salerno, M.; Cocimano, G.; Roccuzzo, S.; Russo, I.; Piombino-Mascali, D.; Márquez-Grant, N.; Zammit, C.; Esposito, M.; Sessa, F. New Trends in Immunohistochemical Methods to Estimate the Time since Death: A Review. Diagnostics 2022, 12, 2114. [Google Scholar] [CrossRef]
- Mazzotti, M.C.; Fais, P.; Palazzo, C.; Fersini, F.; Ruggeri, A.; Falconi, M.; Pelotti, S.; Teti, G. Determining the Time of Death by Morphological and Immunohistochemical Evaluation of Collagen Fibers in Postmortem Gingival Tissues. Leg. Med. 2019, 39, 1–8. [Google Scholar] [CrossRef]
- Matuszewski, S. Post-Mortem Interval Estimation Based on Insect Evidence: Current Challenges. Insects 2021, 12, 314. [Google Scholar] [CrossRef] [PubMed]
- Wilk, L.S.; Edelman, G.J.; Roos, M.; Clerkx, M.; Dijkman, I.; Melgar, J.V.; Oostra, R.-J.; Aalders, M.C.G. Individualised and Non-Contact Post-Mortem Interval Determination of Human Bodies Using Visible and Thermal 3D Imaging. Nat. Commun. 2021, 12, 5997. [Google Scholar] [CrossRef] [PubMed]
- Pittner, S.; Ehrenfellner, B.; Monticelli, F.C.; Zissler, A.; Sänger, A.M.; Stoiber, W.; Steinbacher, P. Postmortem Muscle Protein Degradation in Humans as a Tool for PMI Delimitation. Int. J. Leg. Med. 2016, 130, 1547–1555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bisker, C.; Ralebitso-Senior, T.K. The Method Debate. In Forensic Ecogenomics; Elsevier: Cambridge, MA, USA, 2018; pp. 61–86. ISBN 978-0-12-809360-3. [Google Scholar]
- Dell’Aquila, M.; De Matteis, A.; Scatena, A. Estimation of the Time of Death: Where We Are Now? La Clin. Terap. 2021, 172, 109–112. [Google Scholar] [CrossRef]
- D’Angiolella, G.; Tozzo, P.; Gino, S.; Caenazzo, L. Trick or Treating in Forensics-The Challenge of the Saliva Microbiome: A Narrative Review. Microorganisms 2020, 8, 1501. [Google Scholar] [CrossRef]
- Procopio, N.; Lovisolo, F.; Sguazzi, G.; Ghignone, S.; Voyron, S.; Migliario, M.; Renò, F.; Sellitto, F.; D’Angiolella, G.; Tozzo, P.; et al. “Touch Microbiome” as a Potential Tool for Forensic Investigation: A Pilot Study. J. Forensic Leg. Med. 2021, 82, 102223. [Google Scholar] [CrossRef]
- Alan, G.; Sarah, J.P. Microbes as Forensic Indicators. Trop. Biomed. 2012, 29, 311–330. [Google Scholar]
- Metcalf, J.L.; Xu, Z.Z.; Bouslimani, A.; Dorrestein, P.; Carter, D.O.; Knight, R. Microbiome Tools for Forensic Science. Trends Biotechnol. 2017, 35, 814–823. [Google Scholar] [CrossRef]
- Oliveira, M.; Amorim, A. Microbial Forensics: New Breakthroughs and Future Prospects. Appl. Microbiol. Biotechnol. 2018, 102, 10377–10391. [Google Scholar] [CrossRef] [PubMed]
- Dahl, W.J.; Rivero Mendoza, D.; Lambert, J.M. Diet, Nutrients and the Microbiome. Prog. Mol. Biol. Transl. Sci. 2020, 171, 237–263. [Google Scholar] [CrossRef] [PubMed]
- Lynch, S.V.; Pedersen, O. The Human Intestinal Microbiome in Health and Disease. N. Engl. J. Med. 2016, 375, 2369–2379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, J.M.; Pasternak, Z.; Mason, C.E.; Elhaik, E. Forensic Applications of Microbiomics: A Review. Front. Microbiol. 2020, 11, 608101. [Google Scholar] [CrossRef]
- Lax, S.; Hampton-Marcell, J.T.; Gibbons, S.M.; Colares, G.B.; Smith, D.; Eisen, J.A.; Gilbert, J.A. Forensic Analysis of the Microbiome of Phones and Shoes. Microbiome 2015, 3, 21. [Google Scholar] [CrossRef] [Green Version]
- Haarkötter, C.; Saiz, M.; Gálvez, X.; Medina-Lozano, M.I.; Álvarez, J.C.; Lorente, J.A. Usefulness of Microbiome for Forensic Geolocation: A Review. Life 2021, 11, 1322. [Google Scholar] [CrossRef]
- Huang, S.; Haiminen, N.; Carrieri, A.-P.; Hu, R.; Jiang, L.; Parida, L.; Russell, B.; Allaband, C.; Zarrinpar, A.; Vázquez-Baeza, Y.; et al. Human Skin, Oral, and Gut Microbiomes Predict Chronological Age. mSystems 2020, 5, e00630-19. [Google Scholar] [CrossRef] [Green Version]
- Díez López, C.; Vidaki, A.; Kayser, M. Integrating the Human Microbiome in the Forensic Toolkit: Current Bottlenecks and Future Solutions. Forensic Sci. Int. Genet. 2022, 56, 102627. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, W.; Simayijiang, H.; Hu, P.; Yan, J. Application of Microbiome in Forensics. Genom. Proteom. Bioinform. 2022, S1672022922000961. [Google Scholar] [CrossRef]
- Zapico, S.C.; Adserias-Garriga, J. Postmortem Interval Estimation: New Approaches by the Analysis of Human Tissues and Microbial Communities’ Changes. Forensic Sci. 2022, 2, 163–174. [Google Scholar] [CrossRef]
- Metcalf, J.L. Estimating the Postmortem Interval Using Microbes: Knowledge Gaps and a Path to Technology Adoption. Forensic Sci. Int. Genet. 2019, 38, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Speruda, M.; Piecuch, A.; Borzęcka, J.; Kadej, M.; Ogórek, R. Microbial Traces and Their Role in Forensic Science. J. Appl. Microbiol. 2022, 132, 2547–2557. [Google Scholar] [CrossRef] [PubMed]
- Franzosa, E.A.; Huang, K.; Meadow, J.F.; Gevers, D.; Lemon, K.P.; Bohannan, B.J.M.; Huttenhower, C. Identifying Personal Microbiomes Using Metagenomic Codes. Proc. Natl. Acad. Sci. USA 2015, 112, E2930–E2938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weinroth, M.D.; Belk, A.D.; Dean, C.; Noyes, N.; Dittoe, D.K.; Rothrock, M.J.; Ricke, S.C.; Myer, P.R.; Henniger, M.T.; Ramírez, G.A.; et al. Considerations and Best Practices in Animal Science 16S Ribosomal RNA Gene Sequencing Microbiome Studies. J. Anim. Sci. 2022, 100, skab346. [Google Scholar] [CrossRef]
- Galloway-Peña, J.; Hanson, B. Tools for Analysis of the Microbiome. Am. J. Dig. Dis. 2020, 65, 674–685. [Google Scholar] [CrossRef] [Green Version]
- Tozzo, P.; D’Angiolella, G.; Brun, P.; Castagliuolo, I.; Gino, S.; Caenazzo, L. Skin Microbiome Analysis for Forensic Human Identification: What Do We Know So Far? Microorganisms 2020, 8, 873. [Google Scholar] [CrossRef]
- Caporaso, J.G.; Lauber, C.L.; Walters, W.A.; Berg-Lyons, D.; Lozupone, C.A.; Turnbaugh, P.J.; Fierer, N.; Knight, R. Global Patterns of 16S rRNA Diversity at a Depth of Millions of Sequences per Sample. Proc. Natl. Acad. Sci. USA 2011, 108 (Suppl. 1), 4516–4522. [Google Scholar] [CrossRef] [Green Version]
- Shadoff, R.; Panoyan, M.A.; Novroski, N. Microbial Forensics: A Present to Future Perspective on Genomic Targets, Bioinformatic Challenges, and Applications. Forensic Genom. 2022, 2, 42–64. [Google Scholar] [CrossRef]
- Walters, K.E.; Martiny, J.B.H. Alpha-, Beta-, and Gamma-Diversity of Bacteria Varies across Habitats. PLoS ONE 2020, 15, e0233872. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. PLoS Med. 2021, 18, e1003583. [Google Scholar] [CrossRef]
- Guo, J.; Fu, X.; Liao, H.; Hu, Z.; Long, L.; Yan, W.; Ding, Y.; Zha, L.; Guo, Y.; Yan, J.; et al. Potential Use of Bacterial Community Succession for Estimating Post-Mortem Interval as Revealed by High-Throughput Sequencing. Sci. Rep. 2016, 6, 24197. [Google Scholar] [CrossRef] [PubMed]
- Dong, K.; Xin, Y.; Cao, F.; Huang, Z.; Sun, J.; Peng, M.; Liu, W.; Shi, P. Succession of Oral Microbiota Community as a Tool to Estimate Postmortem Interval. Sci. Rep. 2019, 9, 13063. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Zhang, S.; Liu, R.; Yuan, L.; Wu, D.; Yang, E.; Yang, H.; Ullah, S.; Ishaq, H.M.; Liu, H.; et al. Potential Use of Molecular and Structural Characterization of the Gut Bacterial Community for Postmortem Interval Estimation in Sprague Dawley Rats. Sci. Rep. 2021, 11, 225. [Google Scholar] [CrossRef]
- Heimesaat, M.M.; Boelke, S.; Fischer, A.; Haag, L.-M.; Loddenkemper, C.; Kühl, A.A.; Göbel, U.B.; Bereswill, S. Comprehensive Postmortem Analyses of Intestinal Microbiota Changes and Bacterial Translocation in Human Flora Associated Mice. PLoS ONE 2012, 7, e40758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iancu, L.; Junkins, E.N.; Necula-Petrareanu, G.; Purcarea, C. Characterizing Forensically Important Insect and Microbial Community Colonization Patterns in Buried Remains. Sci. Rep. 2018, 8, 15513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burcham, Z.M.; Pechal, J.L.; Schmidt, C.J.; Bose, J.L.; Rosch, J.W.; Benbow, M.E.; Jordan, H.R. Bacterial Community Succession, Transmigration, and Differential Gene Transcription in a Controlled Vertebrate Decomposition Model. Front. Microbiol. 2019, 10, 745. [Google Scholar] [CrossRef]
- Burcham, Z.M.; Cowick, C.A.; Baugher, C.N.; Pechal, J.L.; Schmidt, C.J.; Rosch, J.W.; Benbow, M.E.; Jordan, H.R. Total RNA Analysis of Bacterial Community Structural and Functional Shifts Throughout Vertebrate Decomposition. J. Forensic Sci. 2019, 64, 1707–1719. [Google Scholar] [CrossRef]
- Liu, R.; Gu, Y.; Shen, M.; Li, H.; Zhang, K.; Wang, Q.; Wei, X.; Zhang, H.; Wu, D.; Yu, K.; et al. Predicting Postmortem Interval Based on Microbial Community Sequences and Machine Learning Algorithms. Environ. Microbiol. 2020, 22, 2273–2291. [Google Scholar] [CrossRef]
- Liu, R.; Wang, Q.; Zhang, K.; Wu, H.; Wang, G.; Cai, W.; Yu, K.; Sun, Q.; Fan, S.; Wang, Z. Analysis of Postmortem Intestinal Microbiota Successional Patterns with Application in Postmortem Interval Estimation. Microb. Ecol. 2021. [Google Scholar] [CrossRef]
- Metcalf, J.L.; Wegener Parfrey, L.; Gonzalez, A.; Lauber, C.L.; Knights, D.; Ackermann, G.; Humphrey, G.C.; Gebert, M.J.; Van Treuren, W.; Berg-Lyons, D.; et al. A Microbial Clock Provides an Accurate Estimate of the Postmortem Interval in a Mouse Model System. eLife 2013, 2, e01104. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, M.; Qi, X.; Shi, L.; Zhang, J.; Zhang, X.; Yang, T.; Ren, J.; Liu, F.; Zhang, G.; et al. Predicting the Postmortem Interval of Burial Cadavers Based on Microbial Community Succession. Forensic. Sci. Int. Genet. 2021, 52, 102488. [Google Scholar] [CrossRef] [PubMed]
- Johnson, H.R.; Trinidad, D.D.; Guzman, S.; Khan, Z.; Parziale, J.V.; DeBruyn, J.M.; Lents, N.H. A Machine Learning Approach for Using the Postmortem Skin Microbiome to Estimate the Postmortem Interval. PLoS ONE 2016, 11, e0167370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adserias-Garriga, J.; Quijada, N.M.; Hernandez, M.; Rodríguez Lázaro, D.; Steadman, D.; Garcia-Gil, L.J. Dynamics of the Oral Microbiota as a Tool to Estimate Time since Death. Mol. Oral Microbiol. 2017, 32, 511–516. [Google Scholar] [CrossRef] [PubMed]
- Kodama, W.A.; Xu, Z.; Metcalf, J.L.; Song, S.J.; Harrison, N.; Knight, R.; Carter, D.O.; Happy, C.B. Trace Evidence Potential in Postmortem Skin Microbiomes: From Death Scene to Morgue. J. Forensic Sci. 2019, 64, 791–798. [Google Scholar] [CrossRef]
- Pittner, S.; Bugelli, V.; Benbow, M.E.; Ehrenfellner, B.; Zissler, A.; Campobasso, C.P.; Oostra, R.-J.; Aalders, M.C.G.; Zehner, R.; Lutz, L.; et al. The Applicability of Forensic Time since Death Estimation Methods for Buried Bodies in Advanced Decomposition Stages. PLoS ONE 2020, 15, e0243395. [Google Scholar] [CrossRef]
- Hauther, K.A.; Cobaugh, K.L.; Jantz, L.M.; Sparer, T.E.; DeBruyn, J.M. Estimating Time Since Death from Postmortem Human Gut Microbial Communities. J. Forensic Sci. 2015, 60, 1234–1240. [Google Scholar] [CrossRef]
- DeBruyn, J.M.; Hauther, K.A. Postmortem Succession of Gut Microbial Communities in Deceased Human Subjects. PeerJ 2017, 5, e3437. [Google Scholar] [CrossRef] [Green Version]
- Lutz, H.; Vangelatos, A.; Gottel, N.; Osculati, A.; Visona, S.; Finley, S.J.; Gilbert, J.A.; Javan, G.T. Effects of Extended Postmortem Interval on Microbial Communities in Organs of the Human Cadaver. Front. Microbiol. 2020, 11, 569630. [Google Scholar] [CrossRef]
- Deel, H.; Emmons, A.L.; Kiely, J.; Damann, F.E.; Carter, D.O.; Lynne, A.; Knight, R.; Xu, Z.Z.; Bucheli, S.; Metcalf, J.L. A Pilot Study of Microbial Succession in Human Rib Skeletal Remains during Terrestrial Decomposition. mSphere 2021, 6, e0045521. [Google Scholar] [CrossRef]
- Hu, L.; Xing, Y.; Jiang, P.; Gan, L.; Zhao, F.; Peng, W.; Li, W.; Tong, Y.; Deng, S. Predicting the Postmortem Interval Using Human Intestinal Microbiome Data and Random Forest Algorithm. Sci. Justice 2021, 61, 516–527. [Google Scholar] [CrossRef]
- Hyde, E.R.; Haarmann, D.P.; Lynne, A.M.; Bucheli, S.R.; Petrosino, J.F. The Living Dead: Bacterial Community Structure of a Cadaver at the Onset and End of the Bloat Stage of Decomposition. PLoS ONE 2013, 8, e77733. [Google Scholar] [CrossRef] [PubMed]
- Javan, G.T.; Finley, S.J.; Can, I.; Wilkinson, J.E.; Hanson, J.D.; Tarone, A.M. Human Thanatomicrobiome Succession and Time Since Death. Sci. Rep. 2016, 6, 29598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Damann, F.E.; Williams, D.E.; Layton, A.C. Potential Use of Bacterial Community Succession in Decaying Human Bone for Estimating Postmortem Interval. J. Forensic Sci. 2015, 60, 844–850. [Google Scholar] [CrossRef] [PubMed]
- Adserias-Garriga, J.; Hernández, M.; Quijada, N.M.; Rodríguez Lázaro, D.; Steadman, D.; Garcia-Gil, J. Daily Thanatomicrobiome Changes in Soil as an Approach of Postmortem Interval Estimation: An Ecological Perspective. Forensic Sci. Int. 2017, 278, 388–395. [Google Scholar] [CrossRef] [PubMed]
- Metcalf, J.L.; Xu, Z.Z.; Weiss, S.; Lax, S.; Van Treuren, W.; Hyde, E.R.; Song, S.J.; Amir, A.; Larsen, P.; Sangwan, N.; et al. Microbial Community Assembly and Metabolic Function during Mammalian Corpse Decomposition. Science 2016, 351, 158–162. [Google Scholar] [CrossRef] [Green Version]
- Dell’Annunziata, F.; Martora, F.; Pepa, M.E.D.; Folliero, V.; Luongo, L.; Bocelli, S.; Guida, F.; Mascolo, P.; Campobasso, C.P.; Maione, S.; et al. Postmortem Interval Assessment by MALDI-TOF Mass Spectrometry Analysis in Murine Cadavers. J. Appl. Microbiol. 2022, 132, 707–714. [Google Scholar] [CrossRef]
- Singh, R.K.; Chang, H.-W.; Yan, D.; Lee, K.M.; Ucmak, D.; Wong, K.; Abrouk, M.; Farahnik, B.; Nakamura, M.; Zhu, T.H.; et al. Influence of Diet on the Gut Microbiome and Implications for Human Health. J. Transl. Med. 2017, 15, 73. [Google Scholar] [CrossRef] [Green Version]
- Yatsunenko, T.; Rey, F.E.; Manary, M.J.; Trehan, I.; Dominguez-Bello, M.G.; Contreras, M.; Magris, M.; Hidalgo, G.; Baldassano, R.N.; Anokhin, A.P.; et al. Human Gut Microbiome Viewed across Age and Geography. Nature 2012, 486, 222–227. [Google Scholar] [CrossRef] [Green Version]
- Bishop, C.M.; Nasrabadi, N.M. Pattern Recognition and Machine Learning; Springer: New York, NY, USA, 2006; Volume 4. [Google Scholar]
- Ang, J.L.; Collis, S.; Dhillon, B.; Cackett, P. The Eye in Forensic Medicine: A Narrative Review. Asia-Pacific J. Ophthalmol. 2021, 10, 486–494. [Google Scholar] [CrossRef]
- Locci, E.; Stocchero, M.; Gottardo, R.; De-Giorgio, F.; Demontis, R.; Nioi, M.; Chighine, A.; Tagliaro, F.; d’Aloja, E. Comparative Use of Aqueous Humour 1H NMR Metabolomics and Potassium Concentration for PMI Estimation in an Animal Model. Int. J. Leg. Med. 2021, 135, 845–852. [Google Scholar] [CrossRef]
- Singh, H.; Clarke, T.; Brinkac, L.; Greco, C.; Nelson, K.E. Forensic Microbiome Database: A Tool for Forensic Geolocation Meta-Analysis Using Publicly Available 16S rRNA Microbiome Sequencing. Front. Microbiol. 2021, 12, 644861. [Google Scholar] [CrossRef] [PubMed]
- Caenazzo, L.; Tozzo, P. Microbiome Forensic Biobanking: A Step toward Microbial Profiling for Forensic Human Identification. Healthcare 2021, 9, 1371. [Google Scholar] [CrossRef] [PubMed]
- Chighine, A.; Locci, E.; Nioi, M.; d’Aloja, E. Looking for Post-Mortem Metabolomic Standardization: Waiting for Godot-The Importance of Post-Mortem Interval in Forensic Metabolomics. Chem. Res. Toxicol. 2021, 34, 1946–1947. [Google Scholar] [CrossRef] [PubMed]
- Ganda, E.; Beck, K.L.; Haiminen, N.; Silverman, J.D.; Kawas, B.; Cronk, B.D.; Anderson, R.R.; Goodman, L.B.; Wiedmann, M. DNA Extraction and Host Depletion Methods Significantly Impact and Potentially Bias Bacterial Detection in a Biological Fluid. mSystems 2021, 6, e0061921. [Google Scholar] [CrossRef]
- Johnson, J.S.; Spakowicz, D.J.; Hong, B.-Y.; Petersen, L.M.; Demkowicz, P.; Chen, L.; Leopold, S.R.; Hanson, B.M.; Agresta, H.O.; Gerstein, M.; et al. Evaluation of 16S RRNA Gene Sequencing for Species and Strain-Level Microbiome Analysis. Nat. Commun. 2019, 10, 5029. [Google Scholar] [CrossRef] [PubMed]
Reference | Model | Body Site | Numerosity (Number of Subjects Enrolled in the Study) | Temperature | Time Interval |
---|---|---|---|---|---|
Liu R. et al., 2021 | Animal (murine) | Cecum | 24 | 25 ± 1.5 °C | 15 days |
Hu L. et al., 2021 | Human | Vermiform appendix, transverse colon | 63 (45 M + 18 F) | 1 °C | 8 days |
Deel H. et al., 2021 | Human | Bones | 6 | 0 °C | 9 months |
Zhang J. et al., 2021 | Animal (murine) | Rectum, skin, grave soil | 50 M | N.A. | 60 days |
Li H. et al., 2021 | Animal (murine) | Rectal | 8 M | 21.63 ± 0.93 °C | 15 days |
Lutz H. et al., 2020 | Human | Brain, heart, liver, spleen, prostate, uterus | 40 (26 M + 14 F) | 1 °C | 24–432 h |
Pittner S. et al., 2020 | Human | Eyes, ears, mouth, nose, rectum, skin | 2 M | From 1.4 to 34.6 °C | 16–122 days |
Liu R. et al., 2020 | Animal (murine) | Brain, heart, cecum | 80 | 25 ± 1.5 °C | 15 days |
Dong K. et al., 2019 | Animal (murine) | Oral cavity | 24 | 22.4 °C | 240 h |
Burcham Z.M. et al., 2019 | Animal (murine) | Heart, stomach, intestines, bone marrow | 45 | N.A. | 170 h |
Burcham Z.M. et al., 2019 | Animal (murine) | Heart, intestines, bone marrow, lungs | 90 | N.A. | 30 days |
Kodama W.A. et al., 2019 | Human | Skin | 16 (11 M + 5 F) | 6 °C | 60 h |
Iancu L. et al., 2018 | Animal (murine) | Intestinal | 60 | From 7.28 to 25.37 °C | 30 days |
Adserias-Garriga J. et al., 2017 | Human | Soil sample around the body | 3 (1 M + 2 F) | From 21 to 27 °C | 12 days |
Adserias-Garriga J. et al., 2017 | Human | Oral cavity | 3 (1 M + 2 F) | From 21 to 27 °C | 12 days |
DeBruyn J.M.et al., 2017 | Human | Cecum | 4 | N.A. | 7 days |
Johnson H.R. et al., 2016 | Human | Ear, nose | 21 | 3 °C | 24 h |
Javan G.T. et al., 2016 | Human | Blood, brain, buccal cavity, heart, liver, spleen | 27 (15 M + 12 F) | 1 °C | 3.5–240 h |
Guo J. et al., 2016 | Animal (murine) | Buccal cavity, rectum | 18 F | From 22.71 to 27.67 °C | 8 days |
Metcalf J.L. et al., 2016 | Animal (murine) and human | Skin, abdominal cavity, grave soil | 5 rats—4 humans | N.A. | 71–143 days |
Hauther K.A. et al., 2015 | Human | Cecum | 12 | 0 °C | 20 days |
Damann F.E. et al., 2015 | Human | Bones, soil | 12 | N.A. | 24–1692 days |
Hyde E.R. et al., 2013 | Human | Mouth, rectal, intestine, stomach | 2 | From 17 to 3.33 °C | >102 days |
Metcalf J.L. et al., 2013 | Animal (murine) | Abdominal cavity, skin, grave soil | 40 | N.A. | 48 days |
Heimesaat M.M. et al., 2012 | Animal (murine) | Intestine | N.A. | 21 °C | 72 h |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tozzo, P.; Amico, I.; Delicati, A.; Toselli, F.; Caenazzo, L. Post-Mortem Interval and Microbiome Analysis through 16S rRNA Analysis: A Systematic Review. Diagnostics 2022, 12, 2641. https://doi.org/10.3390/diagnostics12112641
Tozzo P, Amico I, Delicati A, Toselli F, Caenazzo L. Post-Mortem Interval and Microbiome Analysis through 16S rRNA Analysis: A Systematic Review. Diagnostics. 2022; 12(11):2641. https://doi.org/10.3390/diagnostics12112641
Chicago/Turabian StyleTozzo, Pamela, Irene Amico, Arianna Delicati, Federico Toselli, and Luciana Caenazzo. 2022. "Post-Mortem Interval and Microbiome Analysis through 16S rRNA Analysis: A Systematic Review" Diagnostics 12, no. 11: 2641. https://doi.org/10.3390/diagnostics12112641
APA StyleTozzo, P., Amico, I., Delicati, A., Toselli, F., & Caenazzo, L. (2022). Post-Mortem Interval and Microbiome Analysis through 16S rRNA Analysis: A Systematic Review. Diagnostics, 12(11), 2641. https://doi.org/10.3390/diagnostics12112641