Midpalatal Suture Maturation Method for the Assessment of Maturation before Maxillary Expansion: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protocol and Registration
2.2. Eligibility Criteria
2.3. Information Sources and Search Strategy
2.4. Selection of Sources of Evidence
2.5. Data Charting Process and Data Items
2.6. Quality Assessment of Included Studies Synthesis of Results
3. Results
3.1. Results of Individual Sources of Evidence and Synthesis of Results
3.1.1. Angelieri et al. 2013
3.1.2. Tonello et al. 2017
3.1.3. Angelieri et al. 2017
3.1.4. Ladewig et al. 2018
3.1.5. Jiménez et al. 2019
3.1.6. Vahdat et al. 2020
3.1.7. Katti et al. 2020
3.1.8. Gatti reis et al. 2020
3.1.9. Villarroel et al. 2021
3.2. Quality Assessment of Included Studies
4. Discussion
4.1. Summary of Evidence
4.2. Methodological Quality Assessment
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baccetti, T.; Franchi, L.; McNamara, J.A., Jr.; Tollaro, I. Early dentofacial features of Class II malocclusion: A longitudinal study from the deciduous through the mixed dentition. Am. J. Orthod. Dentofac. Orthop. 1997, 111, 502–509. [Google Scholar] [CrossRef]
- Haas, A.J. Palatal expansion: Just the beginning of dentofacial orthopedics. Am. J. Orthod. 1970, 57, 219–255. [Google Scholar] [CrossRef]
- A McNamara, J. An orthopedic approach to the treatment of Class III malocclusion in young patients. J. Clin. Orthod. 1987, 21, 598–608, Erratum in J. Clin. Orthod. 1987, 21, 804. [Google Scholar] [PubMed]
- Rakosi, T.; Jonas, I.; Graber, T.M. Ortodontia e Ortopedia Facial: Diagnóstico. In Análise do Modelo de Estudo; Artes Médicas Sul.: Porto Alegre, Brazil, 1999; pp. 207–209. [Google Scholar]
- Egermark-Eriksson, I.; Carlsson, G.E.; Magnusson, T.; Thilander, B. A longitudinal study on malocclusion in relation to signs and symptoms of cranio-mandibular disorders in children and adolescents. Eur. J. Orthod. 1990, 12, 399–407. [Google Scholar] [CrossRef] [PubMed]
- Brunelle, J.; Bhat, M.; Lipton, J. Prevalence and Distribution of Selected Occlusal Characteristics in the US Population, 1988–1991. J. Dent. Res. 1996, 75, 706–713. [Google Scholar] [CrossRef]
- Grünheid, T.; Larson, C.E.; Larson, B.E. Midpalatal suture density ratio: A novel predictor of skeletal response to rapid maxillary expansion. Am. J. Orthod. Dentofac. Orthop. 2017, 151, 267–276. [Google Scholar] [CrossRef]
- McNamara, J.A.; Brudon, W.L. Orthodontics and Dentofacial Orthopedics; Needham Press: AnnArbor, MI, USA, 1995; p. 211e2. [Google Scholar]
- Bastos, R.T.D.R.M.; Blagitz, M.N.; Aragón, M.L.S.D.C.; Maia, L.C.; Normando, D. Periodontal side effects of rapid and slow maxillary expansion: A systematic review. Angle Orthod. 2019, 89, 651–660. [Google Scholar] [CrossRef] [Green Version]
- Bucci, R.; D’Antò, V.; Rongo, R.; Valletta, R.; Martina, R.; Michelotti, A. Dental and skeletal effects of palatal expansion techniques: A systematic review of the current evidence from systematic reviews and meta-analyses. J. Oral Rehabil. 2016, 43, 543–564. [Google Scholar] [CrossRef] [Green Version]
- Martina, R.; Cioffi, I.; Farella, M.; Leone, P.; Manzo, P.; Matarese, G.; Portelli, M.; Nucera, R.; Cordasco, G. Transverse changes determined by rapid and slow maxillary expansion—A low-dose CT-based randomized controlled trial. Orthod. Craniofac. Res. 2012, 15, 159–168. [Google Scholar] [CrossRef] [Green Version]
- Brunetto, M.; Andriani, J.D.S.P.; Ribeiro, G.L.U.; Locks, A.; Correa, M.; Correa, L.R. Three-dimensional assessment of buccal alveolar bone after rapid and slow maxillary expansion: A clinical trial study. Am. J. Orthod. Dentofac. Orthop. 2013, 143, 633–644. [Google Scholar] [CrossRef]
- Vizzotto, M.B.; de Araújo, F.B.; da Silveira, H.E.D.; Boza, A.A.; Closs, L.Q. The Quad-Helix Appliance in the Primary Dentition –Orthodontic and Orthopedic Measurements. J. Clin. Pediatr. Dent. 2007, 32, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Sandikcioglu, M.; Hazar, S. Skeletal and dental changes after maxillary expansion in the mixed dentition. Am. J. Orthod. Dentofac. Orthop. 1997, 111, 321–327. [Google Scholar] [CrossRef]
- Zuccati, G.; Casci, S.; Doldo, T.; Clauser, C. Expansion of maxillary arches with crossbite: A systematic review of RCTs in the last 12 years. Eur. J. Orthod. 2011, 35, 29–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lione, R.; Ballanti, F.; Franchi, L.; Baccetti, T.; Cozza, P. Treatment and posttreatment skeletal effects of rapid maxillary expansion studied with low-dose computed tomography in growing subjects. Am. J. Orthod. Dentofac. Orthop. 2008, 134, 389–392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, S.; Xu, T.; Zou, W. Effects of rapid maxillary expansion on the midpalatal suture: A systematic review. Eur. J. Orthod. 2015, 37, 651–655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Camps-Perepérez, I.; Guijarro-Martínez, R.; Peiró-Guijarro, M.; Hernández-Alfaro, F. The value of cone beam computed tomography imaging in surgically assisted rapid palatal expansion: A systematic review of the literature. Int. J. Oral Maxillofac. Surg. 2017, 46, 827–838. [Google Scholar] [CrossRef]
- Chrcanovic, B.R.; Custódio, A.L.N. Orthodontic or surgically assisted rapid maxillary expansion. Oral Maxillofac. Surg. 2009, 13, 123–137. [Google Scholar] [CrossRef]
- Suri, L.; Taneja, P. Surgically assisted rapid palatal expansion: A literature review. Am. J. Orthod. Dentofac. Orthop. 2008, 133, 290–302. [Google Scholar] [CrossRef]
- Lagravere, M.; Major, P.W.; Flores-Mir, C. Long-term skeletal changes with rapid maxillary expansion: A systematic review. Angle Orthod. 2005, 75, 1046–1052. [Google Scholar] [CrossRef]
- Lin, J.-H.; Li, C.; Wong, H.; Chamberland, S.; Le, A.D.; Chung, C.-H. Asymmetric Maxillary Expansion Introduced by Surgically Assisted Rapid Palatal Expansion: A Systematic Review. J. Oral Maxillofac. Surg. 2022. [CrossRef]
- Lee, K.-J.; Park, Y.-C.; Park, J.-Y.; Hwang, W.-S. Miniscrew-assisted nonsurgical palatal expansion before orthognathic surgery for a patient with severe mandibular prognathism. Am. J. Orthod. Dentofac. Orthop. 2010, 137, 830–839. [Google Scholar] [CrossRef] [PubMed]
- Moon, W. An interview with Won Moon. By André Wilson Machado, Barry Briss, Greg J Huang, Richard Kulbersh and Sergei Godeiro Fernandes Rabelo Caldas. Dent. Press J. Orthod. 2013, 18, 12–28. [Google Scholar]
- Ventura, V.; Botelho, J.; Machado, V.; Mascarenhas, P.; Pereira, F.D.; Mendes, J.J.; Delgado, A.S.; Pereira, P.M. Miniscrew-Assisted Rapid Palatal Expansion (MARPE): An Umbrella Review. J. Clin. Med. 2022, 11, 1287. [Google Scholar] [CrossRef] [PubMed]
- Acar, Y.B.; Motro, M.; Erverdi, A.N. Hounsfield Units: A new indicator showing maxillary resistance in rapid maxillary expansion cases? Angle Orthod. 2014, 85, 109–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Angelieri, F.; Cevidanes, L.H.; Franchi, L.; Gonçalves, R.; Benavides, E.; Jr, J.A.M. Midpalatal suture maturation: Classification method for individual assessment before rapid maxillary expansion. Am. J. Orthod. Dentofac. Orthop. 2013, 144, 759–769. [Google Scholar] [CrossRef] [Green Version]
- Thadani, M.; Shenoy, U.; Patle, B.; Kalra, A.; Goel, S.; Toshinawal, N. Midpalatal suture ossification and skeletal maturation: A com-parative computerized tomographic scan and roentgenographic study. J. Indian Acad. Oral Med. Radiol. 2010, 22, 81–87. [Google Scholar] [CrossRef]
- Baccetti, T.; Franchi, L.; McNamara, J.A., Jr. An improved version of the cervical vertebral maturation (CVM) method for the assessment of mandibular growth. Angle Orthod. 2002, 72, 316–323. [Google Scholar]
- Filho, L.C.; Neto, J.C.; Filho, O.G.D.S.; Ursi, W.J. Non-surgically assisted rapid maxillary expansion in adults. Int. J. Adult Orthod. Orthognath. Surg. 1996, 11, 57–66. [Google Scholar]
- Handelman, C.S. Nonsurgical rapid maxillary alveolar expansion in adults: A clinical evaluation. Angle Orthod. 1997, 67, 291–305. [Google Scholar] [CrossRef]
- Handelman, C.S.; Wang, L.; A BeGole, E.; Haas, A.J. Nonsurgical rapid maxillary expansion in adults: Report on 47 cases using the Haas expander. Angle Orthod. 2000, 70, 129–144. [Google Scholar] [CrossRef]
- Korbmacher, H.; Schilling, A.; Puschel, K.; Amling, M.; Kahl-Nieke, B. Age dependent three-dimensional micro-computed tomography analysis of the human midpalatal suture. J. Orofac. Orthop. 2007, 68, 364–376. [Google Scholar] [CrossRef] [PubMed]
- Gueutier, A.; Paré, A.; Joly, A.; Laure, B.; de Pinieux, G.; Goga, D. Rapid maxillary expansion in adults: Can multislice computed tomography help choose between orthopedic or surgical treatment? Rev. Stomatol. Chir. Maxillo-Faciale Chir. Orale 2016, 117, 327–334. [Google Scholar] [CrossRef] [PubMed]
- Persson, M.; Thilander, B. Palatal suture closure in man from 15 to 35 years of age. Am. J. Orthod. 1977, 72, 42–52. [Google Scholar] [CrossRef]
- Knaup, B.; Yildizhan, F.; Wehrbein, H. Age-Related Changes in the Midpalatal Suture. J. Orofac. Orthop. 2004, 65, 467–474. [Google Scholar] [CrossRef]
- Persson, M.; Magnusson, B.C.; Thilander, B. Sutural closure in rabbit and man: A morphological and histochemical study. J. Anat. 1978, 125, 313–321. [Google Scholar] [PubMed]
- Wehrbein, H.; Yildizhan, F. The mid-palatal suture in young adults. A radiological-histological investigation. Eur. J. Orthod. 2001, 23, 105–114. [Google Scholar] [CrossRef] [Green Version]
- Ferrillo, M.; Curci, C.; Roccuzzo, A.; Migliario, M.; Invernizzi, M.; de Sire, A. Reliability of cervical vertebral maturation compared to hand-wrist for skeletal maturation assessment in growing subjects: A systematic review. J. Back Musculoskelet. Rehabil. 2021, 34, 925–936. [Google Scholar] [CrossRef]
- Luk, K.D.; Saw, L.B.; Grozman, S.; Cheung, K.M.; Samartzis, D. Assessment of skeletal maturity in scoliosis patients to determine clinical management: A new classification scheme using distal radius and ulna radiographs. Spine J. 2014, 14, 315–325. [Google Scholar] [CrossRef]
- Beit, P.; Peltomäki, T.; Schätzle, M.; Signorelli, L.; Patcas, R. Evaluating the agreement of skeletal age assessment based on hand-wrist and cervical vertebrae radiography. Am. J. Orthod. Dentofac. Orthop. 2013, 144, 838–847. [Google Scholar] [CrossRef]
- Lamparski, D.G. Skeletal Age Assessment Utilizing Cervical Vertebrae. Master’s Thesis, Department of Orthodontics, The University of Pittsburgh, Pittsburgh, PA, USA, 1972. [Google Scholar]
- Szemraj, A.; Wojtaszek-Słomińska, A.; Racka-Pilszak, B. Is the cervical vertebral maturation (CVM) method effective enough to replace the hand-wrist maturation (HWM) method in determining skeletal maturation?—A systematic review. Eur. J. Radiol. 2018, 102, 125–128. [Google Scholar] [CrossRef]
- De Vos, W.; Casselman, J.; Swennen, G. Cone-beam computerized tomography (CBCT) imaging of the oral and maxillofacial region: A systematic review of the literature. Int. J. Oral Maxillofac. Surg. 2009, 38, 609–625. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Sun, J.; Zhou, X.; Yu, G. In vivo methods for evaluating human midpalatal suture maturation and ossification: An updated review. Int. Orthod. 2022, 20, 100634. [Google Scholar] [CrossRef]
- Moreno, A.M.G.; Garcovich, D.; Wu, A.Z.; Lorenzo, A.A.; Martínez, L.B.; Aiuto, R. Cone Beam Computed Tomography evaluation of midpalatal suture maturation according to age and sex: A systematic review. Eur. J. Paediatr. Dent. 2022, 23, 44–50. [Google Scholar]
- Isfeld, D.; Flores-Mir, C.; Leon-Salazar, V.; Lagravère, M. Evaluation of a novel palatal suture maturation classification as assessed by cone-beam computed tomography imaging of a pre- and post expansion treatment cohort. Angle Orthod. 2019, 89, 252–261. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan—A web and mobile app for systematic reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.L.; Wang, Y.Y.; Yang, Z.H.; Huang, D.; Weng, H.; Zeng, X.T. Methodological quality (risk of bias) assessment tools for primary and secondary medical studies: What are they and which is better? Mil. Med. Res. 2020, 7, 1–11. [Google Scholar] [CrossRef] [Green Version]
- National Heart, Lung, and Blood Institute, National Institutes of Health. Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies. 2017. Available online: https://www.nhlbi.nih.gov/health-topics/study-quality-assessmenttools (accessed on 1 October 2022).
- Tonello, D.L.; Ladewig, V.M.; Guedes, F.P.; Conti, A.C.C.F.; Almeida-Pedrin, R.R.; Capelozza-Filho, L. Midpalatal suture maturation in 11 to 15 years old subject: A tomographic study. Am. J. Orthod. Dentofac. Orthop. 2017, 152, 42–48. [Google Scholar] [CrossRef]
- Angelieri, F.; Franchi, L.; Cevidanes, L.; Gonçalves, J.; Nieri, M.; Wolford, L.; McNamara, J. Cone beam computed tomography evaluation of midpalatal suture maturation in adults. Int. J. Oral Maxillofac. Surg. 2017, 46, 1557–1561. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, N.M.V.; de Castro, A.C.; Conti, F.; Capelozza-Filho, L.; de Almeida-Pedrin, R.R.; Cardoso, M.D.A. Reliability and reproducibility of the method of assessment of midpalatal suture maturation: A tomographic study. Angle Orthod. 2018, 89, 71–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ladewig, V.d.M.; Capelozza-Filho, L.; Almeida-Pedrin, R.R.; Guedes, F.P.; de Almeida, C.; de Castro, F.C. Tomographic evaluation of the maturation stage of the midpalatal suture in post adolescents. Am. J. Orthod. Dentofac. Orthop. 2018, 153, 818–824. [Google Scholar] [CrossRef] [PubMed]
- Jimenez-Valdivia, L.M.; Malpartida-Carrillo, V.; Rodríguez-Cárdenas, Y.A.; Silveira, H.; Arriola-Guillén, L.E. Midpalatal suture maturation stage assessment in adolescents and young adults using cone-beam computed tomography. Prog. Orthod. 2019, 20, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Vahdat, A.S.; Kachoei, M.; Ghoghani, F.E.; Ghasemi, S.; Zarif, P. Evaluation of Midpalatal Suture Ossification Based on Age and Gender Using Cone Beam Computed Tomography (CBCT). Arch. Pharm. Pr. 2020, 11, 44–50. [Google Scholar]
- Katti, G.; Shahbaz, S.; Katti, C.; Rahman, M.S. Evaluation of Midpalatal Suture Ossification Using Cone-Beam Computed Tomography: A Digital Radiographic Study. Acta Med. 2020, 63, 188–193. [Google Scholar] [CrossRef]
- Reis, L.G.; Ribeiro, R.A.; Vitral, R.; Reis, H.N.; DeVito, K.L. Classification of the midpalatal suture maturation in individuals older than 15 years: A cone beam computed tomographic study. Surg. Radiol. Anat. 2020, 42, 1043–1049. [Google Scholar] [CrossRef] [PubMed]
- Villarroel, T.; Alvarado, M.J.; Concha, G.; Vicuña, D.; Oyonarte, R. Maduración de la Sutura Palatina Media En Adolescentes y Adultos Jóvenes Chilenos: Estudio Transversal. Int. J. Interdiscip. Dent. 2021, 14, 140–143. [Google Scholar] [CrossRef]
- Rungcharassaeng, K.; Caruso, J.M.; Kan, J.Y.; Kim, J.; Taylor, G. Factors affecting buccal bone changes of maxillary posterior teeth after rapid maxillary expansion. Am. J. Orthod. Dentofac. Orthop. 2007, 132, 428.e1–428.e8. [Google Scholar] [CrossRef]
- Kiliç, N.; Kiki, A.; Oktay, H. A comparison of dentoalveolar inclination treated by two palatal expanders. Eur. J. Orthod. 2008, 30, 67–72. [Google Scholar] [CrossRef] [Green Version]
- Garib, D.G.; Henriques, J.F.C.; Janson, G.; Freitas, M.R.; Coelho, R.A. Rapid maxillary expansion—Tooth tissue-borne versus tooth-borne expanders: A computed tomography evaluation of dentoskeletal effects. Angle Orthod. 2005, 75, 548–557. [Google Scholar] [CrossRef]
- Bell, W.H.; Epker, B.N. Surgical-orthodontic expansion of the maxilla. Am. J. Orthod. 1976, 70, 517–528. [Google Scholar] [CrossRef]
- Betts, N.J.; Vanarsdall, R.L.; Barber, H.D.; Higgins-Barber, K.; Fonseca, R.J. Diagnosis and treatment of transverse maxillary deficiency. Int. J. Adult Orthod. Orthognath. Surg. 1995, 10, 75–96. [Google Scholar]
- Northway, W.M.; Meade, J.B., Jr. Surgically assisted rapid maxillary expansion: A comparison of technique, response, and stability. Angle Orthod. 1997, 67, 309–320. [Google Scholar] [CrossRef] [PubMed]
- Wertz, R.A. Skeletal and dental changes accompanying rapid midpalatal suture opening. Am. J. Orthod. 1970, 58, 41–66. [Google Scholar] [CrossRef]
- Timms, D.J.; Moss, J.P. An histological investigation into the effects of rapid maxillary expansion on the teeth and their supporting tissues. Trans. Eur. Orthod. Soc. 1971, 263–271. [Google Scholar]
- Haas, A.J. Long-term post treatment evaluation of rapid palatal expansion. Angle Orthod. 1980, 50, 189–217. [Google Scholar]
- Greenbaum, K.R.; Zachrisson, B.U. The effect of palatal expansion therapy on the periodontal supporting tissues. Am. J. Orthod. 1982, 81, 12–21. [Google Scholar] [CrossRef]
- Proffit, W.R.; A Turvey, T.; Phillips, C. The hierarchy of stability and predictability in orthognathic surgery with rigid fixation: An update and extension. Head Face Med. 2007, 3, 21. [Google Scholar] [CrossRef]
- Bailey, L.T.J.; Cevidanes, L.H.S.; Proffit, W.R. Stability and predictability of orthognathic surgery. Am. J. Orthod. Dentofac. Orthop. 2004, 126, 273–277. [Google Scholar] [CrossRef] [Green Version]
- Da Cunha, A.C.; Lee, H.; Nojima, L.I.; Nojima, M.D.C.G.; Lee, K.-J. Miniscrew-assisted rapid palatal expansion for managing arch perimeter in an adult patient. Dent. Press J. Orthod. 2017, 22, 97–108. [Google Scholar] [CrossRef]
- Brunetto, D.P.; Sant’Anna, E.F.; Machado, A.W.; Moon, W. Non-surgical treatment of transverse deficiency in adults using Microimplant-assisted Rapid Palatal Expansion (MARPE). Dent. Press J. Orthod. 2017, 22, 110–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, J.J.; Park, Y.-C.; Lee, K.-J.; Cha, J.-Y.; Tahk, J.H.; Choi, Y.J. Skeletal and dentoalveolar changes after miniscrew-assisted rapid palatal expansion in young adults: A cone-beam computed tomography study. Korean J. Orthod. 2017, 47, 77–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Angelieri, F.; Franchi, L.; Cevidanes, L.H.; McNamara, J.A., Jr. Diagnostic performance of skeletal maturity for the assessment of midpalatal suture maturation. Am. J. Orthod. Dentofac. Orthop. 2015, 148, 1010–1016. [Google Scholar] [CrossRef] [PubMed]
- Mommaerts, M. Transpalatal distraction as a method of maxillary expansion. Br. J. Oral Maxillofac. Surg. 1999, 37, 268–272. [Google Scholar] [CrossRef] [Green Version]
- Epker, B.N.; Wolford, L.M. Transverse Maxillary Deficiency Dentofacial Deformities: Inte-Grated Orthodontic and Surgical Correction; Mosby: St Louis, MO, USA, 1980. [Google Scholar]
- Mossaz, C.F.; Byloff, F.K.; Richter, M. Unilateral and bilateral corticotomies for correction of maxillary transverse discrepancies. Eur. J. Orthod. 1992, 14, 110–116. [Google Scholar] [CrossRef] [Green Version]
- Timms, D.; Vero, D. The relationship of rapid maxillary expansion to surgery with special reference to midpalatal synostosis. Br. J. Oral Surg. 1981, 19, 180–196. [Google Scholar] [CrossRef]
- Alpern, M.C.; Yurosko, J.J. Rapid palatal expansion in adults with and without surgery. Angle Orthod. 1987, 57, 245–263. [Google Scholar] [CrossRef]
- Fishman, L.S. Radiographic evaluation of skeletal maturation. A clinically oriented method based on hand-wrist films. Angle Orthod. 1982, 52, 88–112. [Google Scholar] [CrossRef]
- Björk, A. Sutural growth of the upper face studied by the implant method. Acta Odontol. Scand. 1966, 24, 109–127. [Google Scholar] [CrossRef]
- Fishman, L.S. Chronological versus skeletal age, an evaluation of craniofacial growth. Angle Orthod. 1979, 49, 181–189. [Google Scholar] [CrossRef]
- Cole, T.J.; Rousham, E.K.; Hawley, N.L.; Cameron, N.; A Norris, S.; Pettifor, J.M. Ethnic and sex differences in skeletal maturation among the Birth to Twenty cohort in South Africa. Arch. Dis. Child. 2014, 100, 138–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koziel, S. Relationships among tempo of maturation, midparent height, and growth in height of adolescent boys and girls. Am. J. Hum. Biol. 2001, 13, 15–22. [Google Scholar] [CrossRef]
- Samra, D.A.; Hadad, R. Midpalatal suture: Evaluation of the morphological maturation stages via bone density. Prog. Orthod. 2018, 19, 29. [Google Scholar] [CrossRef] [Green Version]
- Colonna, A.; Cenedese, S.; Sartorato, F.; Spedicato, G.A.; Siciliani, G.; Lombardo, L. Association of the mid-palatal suture morphology to the age and to its density: A CBCT retrospective comparative observational study. Int. Orthod. 2021, 19, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Filho, O.G.D.S.; Magro, A.C.; Filho, L.C. Early treatment of the Class III malocclusion with rapid maxillary expansion and maxillary protraction. Am. J. Orthod. Dentofac. Orthop. 1998, 113, 196–203. [Google Scholar] [CrossRef]
- Melsen, B.; Melsen, F. The postnatal development of the palatomaxillary region studied on human autopsy material. Am. J. Orthod. 1982, 82, 329–342. [Google Scholar] [CrossRef]
- Jafari, A.; Shetty, K.S.; Kumar, M. Study of stress distribution and displacement of various craniofacial structures following application of transverse orthopedic forces—A three-dimensional FEM study. Angle Orthod. 2003, 73, 12–20. [Google Scholar] [CrossRef]
- Magnusson, A.; Bjerklin, K.; Nilsson, P.; Marcusson, A. Surgically assisted rapid maxillary expansion: Long-term stability. Eur. J. Orthod. 2008, 31, 142–149. [Google Scholar] [CrossRef]
- Chaconas, S.J.; Caputo, A.A. Observation of orthopedic force distribution produced by maxillary orthodontic appliances. Am. J. Orthod. 1982, 82, 492–501. [Google Scholar] [CrossRef]
- Martin, M.A.; Lipani, E.; Lorenzo, A.A.; Martinez, L.B.; Aiuto, R.; Dioguardi, M.; Re, D.; Paglia, L.; Garcovich, D. The effect of maxillary protraction, with or without rapid palatal expansion, on airway dimensions: A systematic review and meta-analysis. Eur. J. Paediatr. Dent. 2020, 21, 262–270. [Google Scholar] [CrossRef]
- Stratis, A.; Zhang, G.; Jacobs, R.; Bogaerts, R.; Bosmans, H. The growing concern of radiation dose in paediatric dental and maxillo-facial CBCT: An easy guide for daily practice. Eur. Radiol. 2019, 29, 7009–7018. [Google Scholar] [CrossRef] [PubMed]
- Scarfe, W.C. Clinical recommendations regarding use of cone beam computed tomography in orthodontic treatment. Position statement by the American Academy of Oral and Maxillofacial Radiology. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2013, 116, 238–257. [Google Scholar]
- Shin, H.; Hwang, C.-J.; Lee, K.-J.; Choi, Y.J.; Han, S.-S.; Yu, H.S. Predictors of midpalatal suture expansion by miniscrew-assisted rapid palatal expansion in young adults: A preliminary study. Korean J. Orthod. 2019, 49, 360–371. [Google Scholar] [CrossRef] [PubMed]
Stage | Description |
---|---|
A | Represents the earliest maturation stage of the suture, and in this stage the suture was identified as a relatively straight high-density line at the midline |
B | The suture presents an irregular shape and was identified as a scalloped high-density line at the midline |
C | The suture is seen as two parallel, scalloped, high-density lines close to each other and separated in some areas by small low-density spaces |
D | The complete fusion of the suture has occurred in the palatine bone and the radiographic image of the suture was identified as two scalloped, high-density lines at the midline on the maxillary portion of the palate that were not visible in the palatine bone |
E | Fusion of the suture has occurred in the maxilla. It is not possible to identify the MPS. As to bone density, it is the same as in other parts of the palate |
Database | Keywords | Time Frame | Result | Included Articles |
---|---|---|---|---|
MEDLINE/PubMed | (“midpalatal suture maturation” OR “midpalatal suture maturation method”) AND (“cranial suture” OR “cranial sutures” OR “midpalatal suture”) AND (“maturation” OR “interdigitation” OR “ossification”) AND (“evaluation” OR “assess” OR “assessment”) | January 2013–July 2022 | 31 | 10 |
Scopus | 18 | |||
Web of Science | 23 | |||
Cochrane Library | 3 | |||
LILACS | 1 | |||
SciELO | 1 |
Authors (y) | Country | Sample Size | Age | Study Design | Equipment Used | Specifications |
---|---|---|---|---|---|---|
Angelieri et al. (2013) [27] | United States | 140 (54 M–86 F) | 5.6–58.4 years | Cross-sectional | iCAT cone-beam 3D imaging system | 8.9 to 20 s, FoV at least 11 cm, voxel 0.2 a 0.3 mm |
Tonello et al. (2017) [53] | Brazil | 84 (40 M–44 F) | 11–15 years | Cross-sectional | iCAT scanner | 8.9 to 30 s, FoV at least 11 cm, voxel 0.2 a 0.3 mm |
Angelieri et al. (2017) [54] | Brazil | 78 (14 M–64 M) | 18–66 years | Cross-sectional | iCAT Cone Beam 3D Imaging system scanner | 17.8 s, coxel 0.3 mm |
Barbosa et al. (2018) [55] | Brazil | 60 (27 M–33 F) | 11–21 years | Cross-sectional | Not mentioned | Not mentioned |
Ladewig et al. (2018) [56] | Brazil | 112 (68 M–44F) | 16–20 years | Cross-sectional | iCAT scanner | 40 s, FoV 22 × 16 cm, 120 kV, 36 mA, 0.4 voxel |
Jimenez et al. (2019) [57] | Peru | 200 (95 M–105 F) | 10–25 years | Cross-sectional | Planmeca ProMax 3D Mid scanner | 13.68 s, FoV at least 11 cm,90 kV, 10 mA, 0.2 a 0.3 mm voxel |
Vahdat et al. (2020) [58] | Iran | 178 (89 M–89 F) | 10–70 years | Cross-sectional | Newtom VGi Cone Beam CT | 18 s, 110 kV, 1–20 mA. |
The equipment was automatically adjusted | ||||||
Katti et al. (2020) [59] | India | 200 (95 M–105 F) | 11–50 years | Cross-sectional | NewTom Giano CBCT machine | Not mentioned |
Gatti Reis et al. (2020) [60] | Brazil | 487 (198 M–289 F) | 15–40 years | Cross-sectional | iCAT scanner | 120 kV, 8 mA, 26.9 s rotation, 0.25 mm voxel |
FOV between 6 × 23 and 8 × 23 cm. | ||||||
Villarroel et al. (2021) [61] | Chile | 150 (73 M–77 F) | 15–30 years | Cross-sectional | Sirona Ortophos XG3D | 14 segundos, FoV 8 × 8, 85 kV, 7 mA, voxel 0.16 |
Authors (y) | Nº Examiners | Calibration-Validation Process | Intraexaminer Agreement | Interexaminer Agreement | Washout Period | Images Included in Second Examination | Randomization of Images (Second Examination) | Blinding |
---|---|---|---|---|---|---|---|---|
Angelieri et al. (2013) [27] | 3 | Yes (10 images calibration–30 images calibration) | K: 0.77 (0.75–0.79) | K: 0.87 (0.82–0.93) | 2 days | 30 images | Yes | Yes |
Tonello et al. 2017 [53] | 2 | Not mentioned | Not mentioned | Not mentioned | 15 days | All images | Not mentioned | Yes |
Angelieri et al. 2017 [54] | 1 | Not mentioned | K: 0.80 | Not applicable | 30 days | 30 images | Yes | Yes |
Barbosa et al. 2018 [55] | 21 | Not mentioned | K: 0.42 | K: 0.34 | 21 days | All images | Yes | Yes |
Ladewig et al. 2018 [56] | 2 | Yes (used images included in main study) | K: 0.87 | K: 0.89 | 15 days | All images | Not mentioned | Yes |
Jimenez et al. (2017) [57] | 2 | Yes (not clear if they used same images included in main study) | K: 0.89 | K: 0.90 | 30 days | All images | Yes | Yes |
Vahdat et al. (2018) [58] | 1 | Not mentioned | Not mentioned | Not applicable | Not mentioned | Not mentioned | Not mentioned | Not mentioned |
Katti et al. 2020 [59] | 1 | Not mentioned | ICC > 0.8 | Not applicable | 5 days | All images | Not mentioned | Not mentioned |
Gatti Reis et al. 2020 [60] | 1 | Not mentioned | K: 0.8774 | Not applicable | 30 days | 49 images | Yes | Not mentioned |
Villarroel et al 2021 [61] | 1 | Yes (used 10 images) | PCC: 0.94 | PCC 1.0 | Not mentioned | Not mentioned | Not mentioned | Yes |
Included Studies | Quality Assessment Criteria | Quality Score (%) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | ||
Angelieri et al. 2013 [27] | Yes | No | Yes | Yes | No | No | No | Yes | Yes | NA | Yes | Yes | NA | Yes | 8/12 (66.6%) |
Tonello et al. 2017 [53] | Yes | No | Yes | Yes | No | No | No | Yes | Yes | NA | Yes | Yes | NA | Yes | 8/12 (66.6%) |
Angelieri et al. 2017 [54] | Yes | No | Yes | Yes | Yes | No | No | Yes | Yes | NA | Yes | Yes | NA | Yes | 9/12 (75%) |
Barbosa et al. 2018 [55] | Yes | No | Yes | Yes | Yes | No | No | Yes | Yes | NA | Yes | Yes | NA | Yes | 9/12 (75%) |
Ladewig et al. 2018 [56] | Yes | No | Yes | Yes | Yes | No | No | Yes | Yes | NA | Yes | Yes | NA | Yes | 9/12 (75%) |
Jimenez et al. 2019 [57] | Yes | Yes | Yes | Yes | Yes | No | No | Yes | Yes | NA | Yes | Yes | NA | Yes | 10/12 (83.3%) |
Vahdat et al. 2020 [58] | Yes | No | Yes | Yes | Yes | No | No | Yes | Yes | NA | Yes | No | NA | Yes | 8/12 (66.6%) |
Katti et al. 2020 [59] | Yes | No | Yes | Yes | No | No | No | Yes | Yes | NA | Yes | No | NA | Yes | 7/12 (58.3%) |
Gatti Reis et al. 2020 [60] | Yes | No | Yes | Yes | Yes | No | No | Yes | Yes | NA | Yes | No | NA | Yes | 8/12 (66.6%) |
Villarroel et al. 2021 [61] | Yes | Yes | Yes | Yes | Yes | No | No | Yes | Yes | NA | Yes | Yes | NA | Yes | 10/12 (83.3%) |
Angelieri et al. 2013 [27] | Age groups | 5 < 11 y | 11–<14 y | 14–18 y | >18 y | ||
MPS Stages (n) | A:4; B:22; C:2; D:0; E:0 | A:1; B:28; C:13; D:1; E:5 | A:0; B:6; C:12; D:6; E:8 | A:0; B:1; C:4; D:10; E:17 | - | - | |
Tonello et al. 2017 [53] | Age groups | 11 | 12 | 13 | 14 | 15 | |
MPS Stages (n) | A:1; B:4; C:8; D:0; E:0 | A:0; B:9; C:14; D:3; E:1 | A:0; B:5; C:6; D:1; E:0 | A:0; B:1; C:8; D:3; E:3 | A:0; B:2; C:2; D:3; E:4 | - | |
Angelieri et al. 2017 [54] | Age groups | <30 y | >30 y | ||||
MPS Stages (n) | A:0; B:1; C:3; D:11; E:21 | A:0; B:2; C:3; D:8; E:29 | - | - | - | - | |
Ladewig et al. 2018 [56] | Age groups | 16 | 17 | 18 | 19 | 20 | |
MPS Stages (n) | A:1; B:3; C:9; D:4; E:5 | A:0; B:4; C:13; D:5; E:4 | A:0; B:0; C:13; D:5; E:6 | A:0; B:0; C:7; D:8; E:8 | A:0; B:1; C:8; D:8; E:4 | ||
Jimenez et al. 2019 [57] | Age groups | 10–15 | 16–20 | 21–25 | |||
MPS Stages (n) | A:2; B:13; C:20; D:9; E:4 | A:0; B:1; C:10; D:21; E:20 | A:0; B:2; C:15; D:28; E:55 | - | - | - | |
Katti et al. 2020 [58] | Age groups | 11–20 | 21–30 | 31–40 | 41–50 | ||
MPS Stages (n) | A:15; B:25; C:10; D:0; E:0 | A:0; B:5; C:30; D:0; E:0 | A:0; B:5; C:20; D:15; E:10 | A:0; B:5; C:10; D:5; E:25 | - | - | |
Vahdat et al. 2020 [59] | Age groups | 10–19 | 20–29 | 30–39 | 40–49 | 50–59 | 60–69 |
MPS Stages (n) | A:0; B:12; C:0; D:0; E:0 | A:0; B:6; C:7; D:5; E:0 | A:0; B:2; C:26; D:12; E:2 | A:0; B:0; C:20; D:13; E:7 | A:0; B:1; C:11; D:8; E:17 | A:0; B:3; C:5; D:5; E:7 | |
Gatti Reis et al. 2020 [60] | Age groups | 15–20 | 21–25 | 26–30 | 31–35 | 36–40 | |
MPS Stages (n) | A:0; B:0; C:43; D:17; E:34 | A:0; B:1; C:71; D:34; E:102 | A:0; B:1; C:25; D:15; E:44 | A:0; B:2; C:13; D:10; E:32 | A:0; B:1; C:14; D:5; E:23 | - | |
Villaroel et al. 2021 [61] | Age groups | 15–20 | 21–25 | 26–30 | |||
MPS Stages (n) | A:0; B:0; C:32; D:10; E:7 | A:0; B:2; C:18; D:8; E:23 | A:0; B:0; C:15; D:20; E:20 | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shayani, A.; Sandoval Vidal, P.; Garay Carrasco, I.; Merino Gerlach, M. Midpalatal Suture Maturation Method for the Assessment of Maturation before Maxillary Expansion: A Systematic Review. Diagnostics 2022, 12, 2774. https://doi.org/10.3390/diagnostics12112774
Shayani A, Sandoval Vidal P, Garay Carrasco I, Merino Gerlach M. Midpalatal Suture Maturation Method for the Assessment of Maturation before Maxillary Expansion: A Systematic Review. Diagnostics. 2022; 12(11):2774. https://doi.org/10.3390/diagnostics12112774
Chicago/Turabian StyleShayani, Anis, Paulo Sandoval Vidal, Ivonne Garay Carrasco, and Marco Merino Gerlach. 2022. "Midpalatal Suture Maturation Method for the Assessment of Maturation before Maxillary Expansion: A Systematic Review" Diagnostics 12, no. 11: 2774. https://doi.org/10.3390/diagnostics12112774
APA StyleShayani, A., Sandoval Vidal, P., Garay Carrasco, I., & Merino Gerlach, M. (2022). Midpalatal Suture Maturation Method for the Assessment of Maturation before Maxillary Expansion: A Systematic Review. Diagnostics, 12(11), 2774. https://doi.org/10.3390/diagnostics12112774