Methylation of TET2 Promoter Is Associated with Global Hypomethylation and Hypohydroxymethylation in Peripheral Blood Mononuclear Cells of Systemic Lupus Erythematosus Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Methods
2.2.1. Isolation of Mononuclear Cells
2.2.2. Genomic DNA and RNA Extraction
2.2.3. DNA Methylation and Hydroxymethylation Assay
2.2.4. mRNA Expression of TETs
2.2.5. Single-Nucleotide Polymorphism (SNP) Genotyping
2.2.6. Next-Generation Sequencing (NGS)-Based Deep Bisulfite Sequencing
2.3. Statistics
3. Results
3.1. Global Methylation and Hydroxymethylation
3.2. TET mRNA Expression
3.3. TET2 mRNA and Immunologic Biomarkers
3.4. SNPs of TET2
3.5. Methylation Rates of TET2
3.6. The Relationships of SLE Disease Status and Global Methylation, Hydroxymethylation, and TET2 Methylation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Young, N.A.; Valiente, G.R.; Hampton, J.M.; Wu, L.-C.; Burd, C.J.; Willis, W.L.; Bruss, M.; Steigelman, H.; Gotsatsenko, M.; Amici, S.A.; et al. Estrogen-regulated STAT1 activation promotes TLR8 expression to facilitate signaling via microRNA-21 in systemic lupus erythematosus. Clin. Immunol. 2017, 176, 12–22. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, M.A.; Naga, O.S.; Eudaly, J.G.; Scott, J.L.; Gilkeson, G.S. Estrogen receptor alpha modulates toll-like receptor signaling in murine lupus. Clin. Immunol. 2012, 144, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, F.; Nyland, J.; Banyai, M.; Tatum, A.; Silverstone, A.E.; Gavalchin, J. The induction of the lupus phenotype by estrogen is via an estrogen receptor-α-dependent pathway. Clin. Immunol. 2010, 134, 226–236. [Google Scholar] [CrossRef]
- Podolska, M.J.; Biermann, M.H.; Maueroder, C.; Hahn, J.; Herrmann, M. Inflammatory etiopathogenesis of systemic lupus erythematosus: An update. J. Inflamm. Res. 2015, 8, 161–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Block, S.R.; Winfield, J.B.; Lockshin, M.D.; D’Angelo, W.A.; Christian, C.L. Studies of twins with systemic lupus erythematosus. Am. J. Med. 1975, 59, 533–552. [Google Scholar] [CrossRef] [PubMed]
- Deapen, D.; Escalante, A.; Weinrib, L.; Horwitz, D.; Bachman, B.; Roy-Burman, P.; Walker, A.; Mack, T.M. A revised estimate of twin concordance in systemic lupus erythematosus. Arthritis Rheumatol. 1992, 35, 311–318. [Google Scholar]
- Kyttaris, V.C. Systemic lupus erythematosus: From genes to organ damage. Methods Mol. Biol. 2010, 662, 265–283. [Google Scholar] [CrossRef] [Green Version]
- Edwards, C.J.; James, J.A. Making lupus: A complex blend of genes and environmental factors is required to cross the disease threshold. Lupus 2006, 15, 713–714. [Google Scholar] [CrossRef] [Green Version]
- Javierre, B.M.; Fernandez, A.F.; Richter, J.; Al-Shahrour, F.; Martin-Subero, J.I.; Rodriguez-Ubreva, J.; Berdasco, M.; Fraga, M.F.; O’Hanlon, T.P.; Rider, L.G.; et al. Changes in the pattern of DNA methylation associate with twin discordance in systemic lupus erythematosus. Genome Res. 2010, 20, 170–179. [Google Scholar] [CrossRef] [Green Version]
- Handy, D.E.; Castro, R.; Loscalzo, J. Epigenetic Modifications: Basic Mechanisms and Role in Cardiovascular Disease. Circulation 2011, 123, 2145–2156. [Google Scholar] [CrossRef] [Green Version]
- Lin, S.Y.; Hsieh, S.C.; Lin, Y.C.; Lee, C.N.; Tsai, M.H.; Lai, L.C.; Chuang, E.Y.; Chen, P.C.; Hung, C.C.; Chen, L.Y.; et al. A whole genome methylation analysis of systemic lupus erythematosus: Hypomethylation of the IL10 and IL1R2 promoters is associated with disease activity. Genes Immun. 2012, 13, 214–220. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Zhao, M.; Chang, C.; Lu, Q. The real culprit in systemic lupus erythematosus: Abnormal epigenetic regulation. Int. J. Mol. Sci. 2015, 16, 11013–11033. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Wang, Z.; Yung, S.; Lu, Q. Epigenetic dynamics in immunity and autoimmunity. Int. J. Biochem. Cell Biol. 2015, 67, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Wang, J.; Liao, W.; Li, D.; Li, M.; Wu, H.; Zhang, Y.; Gershwin, M.E.; Lu, Q. Increased 5-hydroxymethylcytosine in CD4+ T cells in systemic lupus erythematosus. J. Autoimmun. 2016, 69, 64–73. [Google Scholar] [CrossRef]
- Chen, S.H.; Lv, Q.L.; Hu, L.; Peng, M.J.; Wang, G.H.; Sun, B. DNA methylation alterations in the pathogenesis of lupus. Clin. Exp. Immunol. 2017, 187, 185–192. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.Y.; Behe, M.J. Salt induced transitions between multiple conformations of poly (rG-m5dC), poly (rG-m5dC). Nucleic Acids Res. 1985, 13, 3931–3940. [Google Scholar] [CrossRef] [Green Version]
- Ho, L.; Bohr, V.A.; Hanawalt, P.C. Demethylation enhances removal of pyrimidine dimers from the overall genome and from specific DNA sequences in Chinese hamster ovary cells. Mol. Cell. Biol. 1989, 9, 1594–1603. [Google Scholar]
- Quddus, J.; Johnson, K.J.; Gavalchin, J.; Amento, E.P.; Chrisp, C.E.; Yung, R.L.; Richardson, B.C. Treating activated CD4+ T cells with either of two distinct DNA methyltransferase inhibitors, 5-azacytidine or procainamide, is sufficient to cause a lupus-like disease in syngeneic mice. J. Clin. Investig. 1993, 92, 38–53. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Liu, J.; Zhao, C.Q.; Diwan, B.A.; Merrick, B.A.; Waalkes, M.P. Association of c-myc overexpression and hyperproliferation with arsenite-induced malignant transformation. Toxicol. Appl. Pharmacol. 2001, 175, 260–268. [Google Scholar] [CrossRef]
- Pol Bodetto, S.; Carouge, D.; Fonteneau, M.; Dietrich, J.B.; Zwiller, J.; Anglard, P. Cocaine represses protein phosphatase-1Cbeta through DNA methylation and Methyl-CpG Binding Protein-2 recruitment in adult rat brain. Neuropharmacology 2013, 73, 31–40. [Google Scholar] [CrossRef]
- Wyatt, G.R.; Cohen, S.S. A New Pyrimidine Base from Bacteriophage Nucleic Acids. Nature 1952, 170, 1072–1073. [Google Scholar] [CrossRef]
- Liang, J.; Yang, F.; Zhao, L.; Bi, C.; Cai, B. Physiological and pathological implications of 5-hydroxymethylcytosine in diseases. Oncotarget 2016, 7, 48813–48831. [Google Scholar] [CrossRef] [PubMed]
- Bhutani, N.; Burns, D.M.; Blau, H.M. DNA demethylation dynamics. Cell 2011, 146, 866–872. [Google Scholar] [CrossRef] [Green Version]
- Schomacher, L. Mammalian DNA demethylation. Epigenetics 2013, 8, 679–684. [Google Scholar] [CrossRef] [Green Version]
- Shukla, A.; Sehgal, M.; Singh, T.R. Hydroxymethylation and its potential implication in DNA repair system: A review and future perspectives. Gene 2015, 564, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Tahiliani, M.; Koh, K.P.; Shen, Y.; Pastor, W.A.; Bandukwala, H.; Brudno, Y.; Agarwal, S.; Iyer, L.M.; Liu, D.R.; Aravind, L.; et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 2009, 324, 930–935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ito, S.; Shen, L.; Dai, Q.; Wu, S.C.; Collins, L.B.; Swenberg, J.A.; He, C.; Zhang, Y. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 2011, 333, 1300–1303. [Google Scholar] [CrossRef] [Green Version]
- Akahori, H.; Guindon, S.; Yoshizaki, S.; Muto, Y. Molecular Evolution of the TET Gene Family in Mammals. Int. J. Mol. Sci. 2015, 16, 28472–28485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, L.; Shi, Y.G. Tet family proteins and 5-hydroxymethylcytosine in development and disease. Development 2012, 139, 1895–1902. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, S.; Meletis, K.; Fu, D.; Jhaveri, S.; Jaenisch, R. Ablation of de novo DNA methyltransferase Dnmt3a in the nervous system leads to neuromuscular defects and shortened lifespan. Dev. Dyn. 2007, 236, 1663–1676. [Google Scholar] [CrossRef]
- Ficz, G.; Branco, M.R.; Seisenberger, S.; Santos, F.; Krueger, F.; Hore, T.A.; Marques, C.J.; Andrews, S.; Reik, W. Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Nature 2011, 473, 398–402. [Google Scholar] [CrossRef] [PubMed]
- Chiba, S. Dysregulation of TET2 in hematologic malignancies. Int. J. Hematol. 2017, 105, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Figueroa, M.E.; Abdel-Wahab, O.; Lu, C.; Ward, P.S.; Patel, J.; Shih, A.; Li, Y.; Bhagwat, N.; Vasanthakumar, A.; Fernandez, H.F.; et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 2010, 18, 553–567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ko, M.; Huang, Y.; Jankowska, A.M.; Pape, U.J.; Tahiliani, M.; Bandukwala, H.S.; An, J.; Lamperti, E.D.; Koh, K.P.; Ganetzky, R.; et al. Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature 2010, 468, 839–843. [Google Scholar] [CrossRef] [Green Version]
- Oh, Y.J.; Shin, D.Y.; Hwang, S.M.; Kim, S.M.; Im, K.; Park, H.S.; Kim, J.A.; Song, Y.W.; Márquez, A.; Martín, J.; et al. Mutation of ten-eleven translocation-2 is associated with increased risk of autoimmune disease in patients with myelodysplastic syndrome. Korean J. Intern. Med. 2020, 35, 457–464. [Google Scholar] [CrossRef] [Green Version]
- Song, C.X.; He, C. The hunt for 5-hydroxymethylcytosine: The sixth base. Epigenomics 2011, 3, 521–523. [Google Scholar] [CrossRef] [Green Version]
- Aringer, M.; Costenbader, K.; Daikh, D.; Brinks, R.; Mosca, M.; Ramsey-Goldman, R.; Smolen, J.S.; Wofsy, D.; Boumpas, D.T.; Kamen, D.L.; et al. 2019 European League Against Rheumatism/American College of Rheumatology Classification Criteria for Systemic Lupus Erythematosus. Arthritis Rheumatol. 2019, 71, 1400–1412. [Google Scholar] [CrossRef] [Green Version]
- Radonić, A.; Thulke, S.; Mackay, I.M.; Landt, O.; Siegert, W.; Nitsche, A. Guideline to reference gene selection for quantitative real-time PCR. Biochem. Biophys. Res. Commun. 2004, 313, 856–862. [Google Scholar] [CrossRef]
- Leitao, E.; Beygo, J.; Zeschnigk, M.; Klein-Hitpass, L.; Bargull, M.; Rahmann, S.; Horsthemke, B. Locus-Specific DNA Methylation Analysis by Targeted Deep Bisulfite Sequencing. Methods Mol. Biol. 2018, 1767, 351–366. [Google Scholar] [CrossRef]
- Masser, D.R.; Stanford, D.R.; Freeman, W.M. Targeted DNA methylation analysis by next-generation sequencing. J. Vis. Exp. 2015, 96, e52488. [Google Scholar] [CrossRef] [Green Version]
- Illei, G.G.; Tackey, E.; Lapteva, L.; Lipsky, P.E. Biomarkers in systemic lupus erythematosus: II. Markers of disease activity. Arthritis Rheum. 2004, 50, 2048–2065. [Google Scholar] [CrossRef] [PubMed]
- Coit, P.; Jeffries, M.; Altorok, N.; Dozmorov, M.G.; Koelsch, K.A.; Wren, J.D.; Merrill, J.T.; McCune, W.J.; Sawalha, A.H. Genome-wide DNA methylation study suggests epigenetic accessibility and transcriptional poising of interferon-regulated genes in naive CD4+ T cells from lupus patients. J. Autoimmun. 2013, 43, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Teruel, M.; Sawalha, A.H. Epigenetic Variability in Systemic Lupus Erythematosus: What We Learned from Genome-Wide DNA Methylation Studies. Curr. Rheumatol. Rep. 2017, 19, 32. [Google Scholar] [CrossRef] [PubMed]
- Mok, A.; Solomon, O.; Nayak, R.R.; Coit, P.; Quach, H.L.; Nititham, J.; Sawalha, A.H.; Barcellos, L.F.; Criswell, L.A.; Chung, S.A. Genome-wide profiling identifies associations between lupus nephritis and differential methylation of genes regulating tissue hypoxia and type 1 interferon responses. Lupus Sci. Med. 2016, 3, e000183. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.C.; Ou, T.T.; Wu, C.C.; Li, R.N.; Lin, Y.C.; Lin, C.H.; Tsai, W.C.; Liu, H.W.; Yen, J.H. Global DNA methylation, DNMT1, and MBD2 in patients with systemic lupus erythematosus. Lupus 2011, 20, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Seah, M.K.; O’Neill, C. Mapping global changes in nuclear cytosine base modifications in the early mouse embryo. Reproduction 2016, 151, 83–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sui, W.; Tan, Q.; Yang, M.; Yan, Q.; Lin, H.; Ou, M.; Xue, W.; Chen, J.; Zou, T.; Jing, H.; et al. Genome-wide analysis of 5-hmC in the peripheral blood of systemic lupus erythematosus patients using an hMeDIP-chip. Int. J. Mol. Med. 2015, 35, 1467–1479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lio, C.-W.J.; Rao, A. TET Enzymes and 5hmC in Adaptive and Innate Immune Systems. Front. Immunol. 2019, 10, 210. [Google Scholar] [CrossRef] [Green Version]
- Ichiyama, K.; Chen, T.; Wang, X.; Yan, X.; Kim, B.S.; Tanaka, S.; Ndiaye-Lobry, D.; Deng, Y.; Zou, Y.; Zheng, P.; et al. The methylcytosine dioxygenase Tet2 promotes DNA demethylation and activation of cytokine gene expression in T cells. Immunity 2015, 42, 613–626. [Google Scholar] [CrossRef] [Green Version]
- Yang, R.; Qu, C.; Zhou, Y.; Konkel, J.E.; Shi, S.; Liu, Y.; Chen, C.; Liu, S.; Liu, D.; Chen, Y.; et al. Hydrogen Sulfide Promotes Tet1- and Tet2-Mediated Foxp3 Demethylation to Drive Regulatory T Cell Differentiation and Maintain Immune Homeostasis. Immunity 2015, 43, 251–263. [Google Scholar] [CrossRef] [Green Version]
- Coit, P.; Dozmorov, M.G.; Merrill, J.T.; McCune, W.J.; Maksimowicz-McKinnon, K.; Wren, J.D.; Sawalha, A.H. Epigenetic Reprogramming in Naive CD4+ T Cells Favoring T Cell Activation and Non-Th1 Effector T Cell Immune Response as an Early Event in Lupus Flares. Arthritis Rheumatol. 2016, 68, 2200–2209. [Google Scholar] [CrossRef] [Green Version]
- Mak, A.; Kow, N.Y. The Pathology of T Cells in Systemic Lupus Erythematosus. J. Immunol. Res. 2014, 2014, 8. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Tang, H.; Zhang, Y.; Tang, X.; Zhang, J.; Sun, L.; Yang, J.; Cui, Y.; Zhang, L.; Hirankarn, N.; et al. Meta-analysis followed by replication identifies loci in or near CDKN1B, TET3, CD80, DRAM1, and ARID5B as associated with systemic lupus erythematosus in Asians. Am. J. Hum. Genet. 2013, 92, 41–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, X.; Kim, K.; Suetsugu, H.; Bang, S.Y.; Wen, L.; Koido, M.; Ha, E.; Liu, L.; Sakamoto, Y.; Jo, S.; et al. Meta-analysis of 208370 East Asians identifies 113 susceptibility loci for systemic lupus erythematosus. Ann. Rheum. Dis. 2021, 80, 632–640. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.C. The non-canonical NF-κB pathway in immunity and inflammation. Nat. Rev. Immunol. 2017, 17, 545–558. [Google Scholar] [CrossRef] [PubMed]
- Cha, T.-L.; Zhou, B.P.; Xia, W.; Wu, Y.; Yang, C.-C.; Chen, C.-T.; Ping, B.; Otte, A.P.; Hung, M.-C. Akt-Mediated Phosphorylation of EZH2 Suppresses Methylation of Lysine 27 in Histone H3. Science 2005, 310, 306–310. [Google Scholar] [CrossRef] [PubMed]
- Spangle, J.M.; Dreijerink, K.M.; Groner, A.C.; Cheng, H.; Ohlson, C.E.; Reyes, J.; Lin, C.Y.; Bradner, J.; Zhao, J.J.; Roberts, T.M.; et al. PI3K/AKT Signaling Regulates H3K4 Methylation in Breast Cancer. Cell Rep. 2016, 15, 2692–2704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rose, N.R.; Klose, R.J. Understanding the relationship between DNA methylation and histone lysine methylation. Biochim. Biophys. Acta BBA Gene Regul. Mech. 2014, 1839, 1362–1372. [Google Scholar] [CrossRef] [PubMed]
Female | Male | |||||
---|---|---|---|---|---|---|
SLE (n = 91) | Health Donors (n = 76) | p | SLE (n = 10) | Health Donors (n = 21) | p | |
Age (mean ± SD) | 38.34 ± 11.14 | 35.64 ± 10.24 | 0.108 | 34.3 ± 15.9 | 33.4 ± 15.17 | 0.878 |
<20 | 2 | 0 | 2 | 0 | ||
20–30 | 22 | 24 | 3 | 3 | ||
30–40 | 24 | 25 | 2 | 12 | ||
40–50 | 27 | 24 | 1 | 3 | ||
>50 | 16 | 3 | 2 | 2 | ||
Drugs | ||||||
Methotrexate | 4 | N/A | 2 | N/A | ||
Cyclophosphamide | 23 | N/A | 3 | N/A |
SLE (n = 101) | Healthy Donors (n = 100) | pa | |
---|---|---|---|
5-mC (%, mean ± SD) | 1.109 ± 0.710 | 1.365 ± 0.830 | 0.021 |
5-hmC (%, mean ± SD) | 0.063 ± 0.097 | 0.109 ± 0.133 | 0.012 |
5-mC | 5-hmC | TET2 mRNA | ||||
---|---|---|---|---|---|---|
β | p | β | p | β | p | |
Age | −0.150 | 0.142 | −0.131 | 0.379 | 0.034 | 0.737 |
Gender | 0.123 | 0.903 | 0.052 | 0.111 | −0.027 | 0.795 |
Methotrexate | −0.176 | 0.086 | −0.018 | 0.862 | 0.151 | 0.155 |
Cyclophosphamide | −0.112 | 0.270 | 0.144 | 0.163 | 0.118 | 0.253 |
mRNA | Anti-dsDNA | C3 | C4 |
---|---|---|---|
TET1 | −0.096 | 0.119 | −0.017 |
TET2 | 0.379 ** | −0.257 * | −0.328 ** |
TET3 | 0.018 | −0.179 | −0.185 |
CpG | SLE (%) | Healthy Donor (%) | pa |
---|---|---|---|
105146116 | 1.222 ± 1.237 | 0.712 ± 0.646 | 0.048 |
105146072-154 | 4.738 ± 2.533 | 3.310 ± 1.207 | 0.006 |
105146218-331 | 1.242 ± 0.562 | 1.644 ± 0.649 | 0.014 |
105146718 | 0.526 ± 0.288 | 0.736 ± 0.463 | 0.040 |
105146116 | 105146072-154 | 105146218-331 | 105146718 | |||||
---|---|---|---|---|---|---|---|---|
β | p | β | p | β | p | β | p | |
Age | −0.294 | 0.051 | −0.888 | 0.379 | −0.261 | 0.317 | −0.181 | 0.424 |
Gender | −0.251 | 0.091 | −0.244 | 0.111 | −0.410 | 0.147 | −0.180 | 0.443 |
Methotrexate | −0.235 | 0.110 | N/A | N/A | 0.028 | 0.919 | −0.072 | 0.743 |
Cyclophosphamide | −0.046 | 0.752 | 0.030 | 0.844 | 0.221 | 0.482 | 0.141 | 0.536 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sung, W.-Y.; Lin, Y.-Z.; Hwang, D.-Y.; Lin, C.-H.; Li, R.-N.; Tseng, C.-C.; Wu, C.-C.; Ou, T.-T.; Yen, J.-H. Methylation of TET2 Promoter Is Associated with Global Hypomethylation and Hypohydroxymethylation in Peripheral Blood Mononuclear Cells of Systemic Lupus Erythematosus Patients. Diagnostics 2022, 12, 3006. https://doi.org/10.3390/diagnostics12123006
Sung W-Y, Lin Y-Z, Hwang D-Y, Lin C-H, Li R-N, Tseng C-C, Wu C-C, Ou T-T, Yen J-H. Methylation of TET2 Promoter Is Associated with Global Hypomethylation and Hypohydroxymethylation in Peripheral Blood Mononuclear Cells of Systemic Lupus Erythematosus Patients. Diagnostics. 2022; 12(12):3006. https://doi.org/10.3390/diagnostics12123006
Chicago/Turabian StyleSung, Wan-Yu, Yuan-Zhao Lin, Daw-Yang Hwang, Chia-Hui Lin, Ruei-Nian Li, Chia-Chun Tseng, Cheng-Chin Wu, Tsan-Teng Ou, and Jeng-Hsien Yen. 2022. "Methylation of TET2 Promoter Is Associated with Global Hypomethylation and Hypohydroxymethylation in Peripheral Blood Mononuclear Cells of Systemic Lupus Erythematosus Patients" Diagnostics 12, no. 12: 3006. https://doi.org/10.3390/diagnostics12123006
APA StyleSung, W. -Y., Lin, Y. -Z., Hwang, D. -Y., Lin, C. -H., Li, R. -N., Tseng, C. -C., Wu, C. -C., Ou, T. -T., & Yen, J. -H. (2022). Methylation of TET2 Promoter Is Associated with Global Hypomethylation and Hypohydroxymethylation in Peripheral Blood Mononuclear Cells of Systemic Lupus Erythematosus Patients. Diagnostics, 12(12), 3006. https://doi.org/10.3390/diagnostics12123006