Automatic Feature Segmentation in Dental Periapical Radiographs
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Selection
2.2. Radiographic Dataset
2.3. Image Evaluation
2.4. Deep Convolutional Neural Network
2.5. Model Pipeline and Training Phase
- Statistical Analysis
- Metrics Calculation Procedure
- True positive (TP): dental diagnoses correctly detected and segmented.
- False positive (FP): dental diagnoses detected but incorrectly segmented.
- False negative (FN): dental diagnoses incorrectly detected and segmented.
- Sensitivity, true positive rate (TPR): TP/(TP + FN)
- Precision, positive predictive value (PPV): TP/(TP + FP)
- F1 score: 2TP/(2TP + FP + FN)
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Keenan, J.R.; Keenan, A.V. Accuracy of dental radiographs for caries detection. Evid. -Based Dent. 2016, 17, 43. [Google Scholar] [CrossRef] [PubMed]
- White, S.C.; Pharoah, M.J. White and Pharoah’s Oral Radiology: Principles and Interpretation; Elsevier Health Sciences: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Khan, H.A.; Haider, M.A.; Ansari, H.A.; Ishaq, H.; Kiyani, A.; Sohail, K.; Muhammad, M.; Khurram, S.A. Automated feature detection in dental periapical radiographs by using deep learning. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2021, 131, 711–720. [Google Scholar] [CrossRef]
- Hung, K.; Montalvao, C.; Tanaka, R.; Kawai, T.; Bornstein, M.M. The use and performance of artificial intelligence applications in dental and maxillofacial radiology: A systematic review. Dentomaxillofacial Radiol. 2020, 49, 20190107. [Google Scholar] [CrossRef] [PubMed]
- Mazurowski, M.A. Artificial intelligence in radiology: Some ethical considerations for radiologists and algorithm developers. Acad. Radiol. 2020, 27, 127–129. [Google Scholar] [CrossRef] [PubMed]
- Thrall, J.H.; Li, X.; Li, Q.; Cruz, C.; Do, S.; Dreyer, K.; Brink, J. Artificial intelligence and machine learning in radiology: Opportunities, challenges, pitfalls, and criteria for success. J. Am. Coll. Radiol. 2018, 15, 504–508. [Google Scholar] [CrossRef]
- Hosny, A.; Parmar, C.; Quackenbush, J.; Schwartz, L.H.; Aerts, H.J. Artificial intelligence in radiology. Nat. Rev. Cancer 2018, 18, 500–510. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.-J.; Jung, Y.-H.; Cho, B.-H.; Heo, M.-S. An overview of deep learning in the field of dentistry. Imaging Sci. Dent. 2019, 49, 1–7. [Google Scholar] [CrossRef]
- Kositbowornchai, S.; Siriteptawee, S.; Plermkamon, S.; Bureerat, S.; Chetchotsak, D. An artificial neural network for detection of simulated dental caries. IJCARS 2006, 1, 91–96. [Google Scholar] [CrossRef]
- Hoerter, N.; Gross, S.A.; Liang, P.S. Artificial Intelligence and Polyp Detection. Curr. Treat. Options Gastroenterol. 2020, 18, 120–136. [Google Scholar] [CrossRef]
- Yasa, Y.; Çelik, Ö.; Bayrakdar, I.S.; Pekince, A.; Orhan, K.; Akarsu, S.; Atasoy, S.; Bilgir, E.; Odabaş, A.; Aslan, A.F. An artificial intelligence proposal to automatic teeth detection and numbering in dental bite-wing radiographs. Acta Odontol. Scand. 2020, 79, 275–281. [Google Scholar] [CrossRef]
- Lee, J.-H.; Kim, D.-H.; Jeong, S.-N.; Choi, S.-H. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. J. Dent. 2018, 77, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Cantu, A.G.; Gehrung, S.; Krois, J.; Chaurasia, A.; Rossi, J.G.; Gaudin, R.; Elhennawy, K.; Schwendicke, F. Detecting caries lesions of different radiographic extension on bitewings using deep learning. J. Dent. 2020, 100, 103425. [Google Scholar] [CrossRef] [PubMed]
- Devito, K.L.; de Souza Barbosa, F.; Felippe Filho, W.N. An artificial multilayer perceptron neural network for diagnosis of proximal dental caries. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontology 2008, 106, 879–884. [Google Scholar] [CrossRef] [PubMed]
- Valizadeh, S.; Goodini, M.; Ehsani, S.; Mohseni, H.; Azimi, F.; Bakhshandeh, H. Designing of a computer software for detection of approximal caries in posterior teeth. Iran. J. Radiol. 2015, 12, e16242. [Google Scholar] [CrossRef]
- Lee, J.-H.; Kim, D.-h.; Jeong, S.-N.; Choi, S.-H. Diagnosis and prediction of periodontally compromised teeth using a deep learning-based convolutional neural network algorithm. J. Periodontal Implant. Sci. 2018, 48, 114–123. [Google Scholar] [CrossRef]
- Krois, J.; Ekert, T.; Meinhold, L.; Golla, T.; Kharbot, B.; Wittemeier, A.; Dörfer, C.; Schwendicke, F. Deep learning for the radiographic detection of periodontal bone loss. Sci. Rep. 2019, 9, 8495. [Google Scholar] [CrossRef]
- Kunz, F.; Stellzig-Eisenhauer, A.; Zeman, F.; Boldt, J. Artificial intelligence in orthodontics. J. Orofac. Orthop. 2020, 81, 52–68. [Google Scholar] [CrossRef]
- Orhan, K.; Bayrakdar, I.; Ezhov, M.; Kravtsov, A.; Özyürek, T. Evaluation of artificial intelligence for detecting periapical pathosis on cone-beam computed tomography scans. Int. Endod. J. 2020, 53, 680–689. [Google Scholar] [CrossRef]
- Kats, L.; Vered, M.; Zlotogorski-Hurvitz, A.; Harpaz, I. Atherosclerotic carotid plaque on panoramic radiographs: Neural network detection. Int. J. Comput. Dent. 2019, 22, 163–169. [Google Scholar] [PubMed]
- Duman, S.; Yılmaz, E.F.; Eser, G.; Celik, Ö.; Bayrakdar, I.S.; Bilgir, E.; Costa, A.L.F.; Jagtap, R.; Orhan, K. Detecting the presence of taurodont teeth on panoramic radiographs using a deep learning-based convolutional neural network algorithm. Oral Radiol. 2022, 1–8. [Google Scholar] [CrossRef]
- Duman, S.B.; Syed, A.Z.; Celik Ozen, D.; Bayrakdar, I.S.; Salehi, H.S.; Abdelkarim, A.; Celik, Ö.; Eser, G.; Altun, O.; Orhan, K. Convolutional Neural Network Performance for Sella Turcica Segmentation and Classification Using CBCT Images. Diagnostics 2022, 12, 2244. [Google Scholar] [CrossRef] [PubMed]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention Conference, Munich, Germany, 5–9 October 2015; Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241. [Google Scholar]
- Lee, J.-H.; Han, S.-S.; Kim, Y.H.; Lee, C.; Kim, I. Application of a fully deep convolutional neural network to the automation of tooth segmentation on panoramic radiographs. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2020, 129, 635–642. [Google Scholar] [CrossRef] [PubMed]
- Hamdan, M.H.; Tuzova, L.; Mol, A.; Tawil, P.Z.; Tuzoff, D.; Tyndall, D.A. The effect of a deep learning tool on dentists’ performances in detecting apical radiolucencies on periapical radiographs. Dentomaxillofacial Radiol. 2022, 51, 20220122. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhang, K.; Lyu, P.; Li, H.; Zhang, L.; Wu, J.; Lee, C.-H. A deep learning approach to automatic teeth detection and numbering based on object detection in dental periapical films. Sci. Rep. 2019, 9, 3840. [Google Scholar] [CrossRef] [PubMed]
- Görürgöz, C.; Orhan, K.; Bayrakdar, I.S.; Çelik, Ö.; Bilgir, E.; Odabaş, A.; Aslan, A.F.; Jagtap, R. Performance of a convolutional neural network algorithm for tooth detection and numbering on periapical radiographs. Dentomaxillofacial Radiol. 2021, 50, 20210246. [Google Scholar] [CrossRef]
- Karatas, O.; Cakir, N.N.; Ozsariyildiz, S.S.; Kis, H.C.; Demirbuga, S.; Gurgan, C.A. A deep learning approach to dental restoration classification from bitewing and periapical radiographs. Quintessence Int. 2021, 52, 568–574. [Google Scholar]
- Kim, J.-E.; Nam, N.-E.; Shim, J.-S.; Jung, Y.-H.; Cho, B.-H.; Hwang, J.J. Transfer learning via deep neural networks for implant fixture system classification using periapical radiographs. J. Clin. Med. 2020, 9, 1117. [Google Scholar] [CrossRef]
- da Mata Santos, R.P.; Vieira Oliveira Prado, H.E.; Aranha Neto, I.S.; Alves de Oliveira, G.A.; Vespasiano Silva, A.I.; Gonçalves Zenóbio, E.; Manzi, F.R. Automated Identification of Dental Implants Using Artificial Intelligence. Int. J. Oral Maxillofac. Implant. 2021, 36, 918–923. [Google Scholar] [CrossRef]
- Cha, J.-Y.; Yoon, H.-I.; Yeo, I.-S.; Huh, K.-H.; Han, J.-S. Peri-Implant Bone Loss Measurement Using a Region-Based Convolutional Neural Network on Dental Periapical Radiographs. J. Clin. Med. 2021, 10, 1009. [Google Scholar] [CrossRef]
- Li, S.; Liu, J.; Zhou, Z.; Zhou, Z.; Wu, X.; Li, Y.; Wang, S.; Liao, W.; Ying, S.; Zhao, Z. Artificial intelligence for caries and periapical periodontitis detection. J. Dent. 2022, 122, 104107. [Google Scholar] [CrossRef]
- Chen, H.; Li, H.; Zhao, Y.; Zhao, J.; Wang, Y. Dental disease detection on periapical radiographs based on deep convolutional neural networks. Int. J. Comput. Assist. Radiol. Surg. 2021, 16, 649–661. [Google Scholar] [CrossRef] [PubMed]
- Duong, D.L.; Kabir, M.H.; Kuo, R.F. Automated caries detection with smartphone color photography using machine learning. Health Inform. J. 2021, 27, 14604582211007530, Erratum in Health Inform. J. 2021, 27, 14604582211027744. [Google Scholar] [CrossRef] [PubMed]
- Alevizakos, V.; Bekes, K.; Steffen, R.; von See, C. Artificial intelligence system for training diagnosis and differentiation with molar incisor hypomineralization (MIH) and similar pathologies. Clin. Oral Investig. 2022, 26, 6917–6923. [Google Scholar] [CrossRef] [PubMed]
Periapical Radiograph Numbers for Training | Label Numbers for Training | Periapical Radiograph Numbers for Test | Label Numbers for Test | Periapical Radiograph Numbers for Test | Label Numbers for Test | Learning Rate | Epoch | |
---|---|---|---|---|---|---|---|---|
Carious lesion | 352 | 577 | 35 | 59 | 35 | 53 | 0.0001 | 800 |
Crown | 91 | 108 | 9 | 11 | 9 | 12 | 0.0001 | 300 |
Dental Pulp | 975 | 3482 | 97 | 347 | 97 | 348 | 0.0001 | 200 |
Filling | 758 | 1600 | 75 | 169 | 75 | 161 | 0.0001 | 200 |
Root Canal Filling | 627 | 1389 | 62 | 138 | 62 | 165 | 0.0001 | 300 |
Periapical Lesion | 266 | 327 | 26 | 34 | 26 | 30 | 0.0001 | 500 |
True-Positive (TP) | False- Positive (FP) | False- Negative (FN) | Sensitivity (TP/(TP + FN)) | Precision (TP/(TP + FP)) | F1 Score (2TP/2TP + FP + FN)) | |
---|---|---|---|---|---|---|
Carious lesion | 34 | 7 | 7 | 0.82 | 0.82 | 0.82 |
Crown | 12 | 0 | 0 | 1 | 1 | 1 |
Dental Pulp | 274 | 40 | 6 | 0.97 | 0.87 | 0.92 |
Filling | 129 | 6 | 6 | 0.95 | 0.95 | 0.95 |
Root Canal Filling | 110 | 4 | 0 | 1 | 0.96 | 0.98 |
Periapical Lesion | 24 | 4 | 2 | 0.92 | 0.85 | 0.88 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ari, T.; Sağlam, H.; Öksüzoğlu, H.; Kazan, O.; Bayrakdar, İ.Ş.; Duman, S.B.; Çelik, Ö.; Jagtap, R.; Futyma-Gąbka, K.; Różyło-Kalinowska, I.; et al. Automatic Feature Segmentation in Dental Periapical Radiographs. Diagnostics 2022, 12, 3081. https://doi.org/10.3390/diagnostics12123081
Ari T, Sağlam H, Öksüzoğlu H, Kazan O, Bayrakdar İŞ, Duman SB, Çelik Ö, Jagtap R, Futyma-Gąbka K, Różyło-Kalinowska I, et al. Automatic Feature Segmentation in Dental Periapical Radiographs. Diagnostics. 2022; 12(12):3081. https://doi.org/10.3390/diagnostics12123081
Chicago/Turabian StyleAri, Tugba, Hande Sağlam, Hasan Öksüzoğlu, Orhan Kazan, İbrahim Şevki Bayrakdar, Suayip Burak Duman, Özer Çelik, Rohan Jagtap, Karolina Futyma-Gąbka, Ingrid Różyło-Kalinowska, and et al. 2022. "Automatic Feature Segmentation in Dental Periapical Radiographs" Diagnostics 12, no. 12: 3081. https://doi.org/10.3390/diagnostics12123081
APA StyleAri, T., Sağlam, H., Öksüzoğlu, H., Kazan, O., Bayrakdar, İ. Ş., Duman, S. B., Çelik, Ö., Jagtap, R., Futyma-Gąbka, K., Różyło-Kalinowska, I., & Orhan, K. (2022). Automatic Feature Segmentation in Dental Periapical Radiographs. Diagnostics, 12(12), 3081. https://doi.org/10.3390/diagnostics12123081