Pathogenic Copy Number Variations Involved in the Genetic Etiology of Syndromic and Non-Syndromic Intellectual Disability—Data from a Romanian Cohort
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Inclusion and Evaluation
2.2. Genetic Testing
2.3. Variant Interpretation and Reporting
3. Results
3.1. Diagnosis Rate
3.2. Genetic Findings
- -
- pCNVs overlapping with known genomic disorders were found in 34/84 (40.48%) of CNVs, out of which 15 were gains and 19 were losses. These are associated with known microduplication or deletion syndromes, allowing genetic diagnosis for 9.16% of the patients of this study.
- -
- pCNVs not associated with any known syndrome, but already reported in the literature, were found in 50/84 (59.52%) of CNVs, with 20 gains and 30 losses.
3.3. Clinical Findings
4. Discussion
4.1. Diagnosis Rate and Choice of Test
4.2. Cohort Findings
4.3. Limitations and Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ilyas, M.; Mir, A.; Efthymiou, S. The genetics of intellectual disability: Advancing technology and gene editing. F1000Research 2020, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Committee to Evaluate the Supplemental Security Income Disability Program for Children with Mental Disorders; Board on the Health of Select Populations; Board on Children, Youth, and Families; Institute of Medicine; Division of Behavioral and Social Sciences and Education; The National Academies of Sciences, Engineering, and Medicine; Boat, T.F.; Wu, J.T. (Eds.) Mental Disorders and Disabilities Among Low-Income Children; Prevalence of Intellectual Disabilities; National Academies Press (US): Washington, DC, USA, 2015. Available online: https://www.ncbi.nlm.nih.gov/books/NBK332894/ (accessed on 1 October 2022).
- MedlinePlus [Internet]. Intellectual Disability; National Library of Medicine (US): Bethesda, MD, USA, 2021. Available online: https://medlineplus.gov/ency/article/001523.htm (accessed on 4 February 2022).
- Parker, S.E.; Mai, C.T.; Canfield, M.A.; Rickard, R.; Wang, Y.; Meyer, R.E.; Anderson, P.; Mason, C.A.; Collins, J.S.; Kirby, R.S.; et al. Updated National Birth Prevalence estimates for selected birth defects in the United States, 2004–2006. Birth Defects Res. Part A Clin. Mol. Teratol. 2010, 88, 1008–1016. [Google Scholar] [CrossRef] [PubMed]
- Coffee, B.; Keith, K.; Albizua, I.; Malone, T.; Mowrey, J.; Sherman, S.L.; Warren, S.T. Incidence of fragile X syndrome by newborn screening for methylated FMR1 DNA. Am. J. Hum. Genet. 2009, 85, 503–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palmer, E.; Speirs, H.; Taylor, P.J.; Mullan, G.; Turner, G.; Einfeld, S.; Tonge, B.; Mowat, D. Changing interpretation of chromosomal microarray over time in a community cohort with intellectual disability. Am. J. Med. Genet. A 2014, 164a, 377–385. [Google Scholar] [CrossRef] [PubMed]
- Miller, D.T.; Adam, M.P.; Aradhya, S.; Biesecker, L.G.; Brothman, A.R.; Carter, N.P.; Church, D.M.; Crolla, J.A.; Eichler, E.E.; Epstein, C.J.; et al. Consensus statement: Chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am. J. Hum. Genet. 2010, 86, 749–764. [Google Scholar] [CrossRef] [PubMed]
- Roselló, M.; Martínez, F.; Monfort, S.; Mayo, S.; Oltra, S.; Orellana, C. Phenotype profiling of patients with intellectual disability and copy number variations. Eur. J. Paediatr. Neurol. 2014, 18, 558–566. [Google Scholar] [CrossRef]
- Pfundt, R.; Kwiatkowski, K.; Roter, A.; Shukla, A.; Thorland, E.; Hockett, R.; DuPont, B.; Fung, E.T.; Chaubey, A. Clinical performance of the CytoScan Dx Assay in diagnosing developmental delay/intellectual disability. Genet. Med. 2016, 18, 168–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anazi, S.; Maddirevula, S.; Faqeih, E.; Alsedairy, H.; Alzahrani, F.; Shamseldin, H.E.; Patel, N.; Hashem, M.; Ibrahim, N.; Abdulwahab, F.; et al. Clinical genomics expands the morbid genome of intellectual disability and offers a high diagnostic yield. Mol. Psychiatry 2017, 22, 615–624. [Google Scholar] [CrossRef]
- Kashevarova, A.A.; Nazarenko, L.P.; Skryabin, N.A.; Salyukova, O.A.; Chechetkina, N.N.; Tolmacheva, E.N.; Sazhenova, E.A.; Magini, P.; Graziano, C.; Romeo, G.; et al. Array CGH analysis of a cohort of Russian patients with intellectual disability. Gene 2014, 536, 145–150. [Google Scholar] [CrossRef]
- Wu, X.L.; Li, R.; Fu, F.; Pan, M.; Han, J.; Yang, X.; Zhang, Y.L.; Li, F.T.; Liao, C. Chromosome microarray analysis in the investigation of children with congenital heart disease. BMC Pediatr. 2017, 17, 117. [Google Scholar] [CrossRef]
- Bartnik, M.; Nowakowska, B.; Derwińska, K.; Wiśniowiecka-Kowalnik, B.; Kędzior, M.; Bernaciak, J.; Ziemkiewicz, K.; Gambin, T.; Sykulski, M.; Bezniakow, N.; et al. Application of array comparative genomic hybridization in 256 patients with developmental delay or intellectual disability. J. Appl. Genet. 2014, 55, 125–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coutton, C.; Dieterich, K.; Satre, V.; Vieville, G.; Amblard, F.; David, M.; Cans, C.; Jouk, P.S.; Devillard, F. Array-CGH in children with mild intellectual disability: A population-based study. Eur. J. Pediatr. 2015, 174, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Preiksaitiene, E.; Molytė, A.; Kasnauskiene, J.; Ciuladaite, Z.; Utkus, A.; Patsalis, P.C.; Kučinskas, V. Considering specific clinical features as evidence of pathogenic copy number variants. J. Appl. Genet. 2014, 55, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Lay-Son, G.; Espinoza, K.; Vial, C.; Rivera, J.C.; Guzmán, M.L.; Repetto, G.M. Chromosomal microarrays testing in children with developmental disabilities and congenital anomalies. J. Pediatr. 2015, 91, 189–195. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.P.; Hwang, K.S.; Su, H.Y.; Lin, S.P.; Su, Y.N.; Chern, S.R.; Su, J.W.; Chen, Y.T.; Chen, W.L.; Wang, W. Prenatal diagnosis and molecular cytogenetic characterization of a de novo interstitial duplication of 14q (14q31.3→q32.12) associated with abnormal maternal serum biochemistry. Taiwan J. Obstet. Gynecol. 2013, 52, 125–128. [Google Scholar] [CrossRef] [Green Version]
- García-Acero, M.; Suárez-Obando, F.; Gómez-Gutiérrez, A. CGH analysis in Colombian patients: Findings of 1374 arrays in a seven-year study. Mol. Cytogenet. 2018, 11, 46. [Google Scholar] [CrossRef] [Green Version]
- Quintela, I.; Eirís, J.; Gómez-Lado, C.; Pérez-Gay, L.; Dacruz, D.; Cruz, R.; Castro-Gago, M.; Míguez, L.; Carracedo, Á.; Barros, F. Copy number variation analysis of patients with intellectual disability from North-West Spain. Gene 2017, 626, 189–199. [Google Scholar] [CrossRef]
- Heide, S.; Keren, B.; Billette de Villemeur, T.; Chantot-Bastaraud, S.; Depienne, C.; Nava, C.; Mignot, C.; Jacquette, A.; Fonteneau, E.; Lejeune, E.; et al. Copy Number Variations Found in Patients with a Corpus Callosum Abnormality and Intellectual Disability. J. Pediatr. 2017, 185, 160–166.e161. [Google Scholar] [CrossRef]
- Di Gregorio, E.; Riberi, E.; Belligni, E.F.; Biamino, E.; Spielmann, M.; Ala, U.; Calcia, A.; Bagnasco, I.; Carli, D.; Gai, G.; et al. Copy number variants analysis in a cohort of isolated and syndromic developmental delay/intellectual disability reveals novel genomic disorders, position effects and candidate disease genes. Clin. Genet. 2017, 92, 415–422. [Google Scholar] [CrossRef]
- Sansović, I.; Ivankov, A.M.; Bobinec, A.; Kero, M.; Barišić, I. Chromosomal microarray in clinical diagnosis: A study of 337 patients with congenital anomalies and developmental delays or intellectual disability. Croat. Med. J. 2017, 58, 231–238. [Google Scholar] [CrossRef]
- Hochstenbach, R.; van Binsbergen, E.; Engelen, J.; Nieuwint, A.; Polstra, A.; Poddighe, P.; Ruivenkamp, C.; Sikkema-Raddatz, B.; Smeets, D.; Poot, M. Array analysis and karyotyping: Workflow consequences based on a retrospective study of 36,325 patients with idiopathic developmental delay in the Netherlands. Eur. J. Med. Genet. 2009, 52, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Moeschler, J.B.; Shevell, M. Comprehensive evaluation of the child with intellectual disability or global developmental delays. Pediatrics 2014, 134, e903–e918. [Google Scholar] [CrossRef] [Green Version]
- Micleaa, D.; Al-Khzouza, C.; Osan, S.; Bucerzan, S.; Cret, V.; Popp, R.A.; Puiu, M.; Chirita-Emandi, A.; Zimbru, C.; Ghervan, C. Genomic study via chromosomal microarray analysis in a group of Romanian patients with obesity and developmental disability/intellectual disability. J. Pediatr. Endocrinol. Metab. 2019, 32, 667–674. [Google Scholar] [CrossRef] [PubMed]
- Srour, M.; Shevell, M. Chapter 14—Global Developmental Delay and Intellectual Disability. In Rosenberg’s Molecular and Genetic Basis of Neurological and Psychiatric Disease, 3rd ed.; Rosenberg, R.N., Pascual, J.M., Eds.; Academic Press: Boston, MA, USA, 2015; pp. 151–161. [Google Scholar]
- Specchio, N.; Wirrell, E.C.; Scheffer, I.E.; Nabbout, R.; Riney, K.; Samia, P.; Guerreiro, M.; Gwer, S.; Zuberi, S.M.; Wilmshurst, J.M.; et al. International League Against Epilepsy classification and definition of epilepsy syndromes with onset in childhood: Position paper by the ILAE Task Force on Nosology and Definitions. Epilepsia 2022, 63, 1398–1442. [Google Scholar] [CrossRef] [PubMed]
- Roza, E.U.G.E.N.I.A.; Streață, I.O.A.N.A.; Șoșoi, S.I.M.O.N.A.; Burada, F.; Puiu, M.; Ioana, M.; Teleanu, R.I. A 14q31. 1–q32. 11 deletion case: Genotype—Neurological phenotype correlations in 14q interstitial deletion syndrome. Rom. Biotechnol. Lett. 2020, 25, 1677–1682. [Google Scholar] [CrossRef]
- Kearney, H.M.; Thorland, E.C.; Brown, K.K.; Quintero-Rivera, F.; South, S.T. American College of Medical Genetics standards and guidelines for interpretation and reporting of postnatal constitutional copy number variants. Genet. Med. 2011, 13, 680–685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riggs, E.R.; Andersen, E.F.; Cherry, A.M.; Kantarci, S.; Kearney, H.; Patel, A.; Raca, G.; Ritter, D.I.; South, S.T.; Thorland, E.C.; et al. Technical standards for the interpretation and reporting of constitutional copy-number variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet. Med. 2020, 22, 245–257. [Google Scholar] [CrossRef] [Green Version]
- OMIM. Available online: http://www.ncbi.nlm.nih.gov/omim/ (accessed on 1 October 2022).
- ClinVar. Available online: https://www.ncbi.nlm.nih.gov/clinvar/ (accessed on 1 October 2022).
- ClinGen-Clinical Genome Resource Map, C.D.S. Available online: http://www.ncbi.nlm.nih.gov/projects/dbvar/clingen/ (accessed on 1 October 2022).
- ISCA. Available online: http://dbsearch.clinicalgenome.org/search/ (accessed on 1 October 2022).
- Clinical Genomic Database. Available online: http://research.nhgri.nih.gov/CGD/search/ (accessed on 1 October 2022).
- DECIPHER. Available online: https://decipher.sanger.ac.uk/ (accessed on 1 October 2022).
- PubMed. Available online: http://www.ncbi.nlm.nih.gov/pubmed/ (accessed on 1 October 2022).
- Hehir-Kwa, J.Y.; Rodríguez-Santiago, B.; Vissers, L.E.; de Leeuw, N.; Pfundt, R.; Buitelaar, J.K.; Pérez-Jurado, L.A.; Veltman, J.A. De novo copy number variants associated with intellectual disability have a paternal origin and age bias. J. Med. Genet. 2011, 48, 776–778. [Google Scholar] [CrossRef]
- Coe, B.P.; Witherspoon, K.; Rosenfeld, J.A. Refining analyses of copy number variation identifies specific genes associated with developmental delay. Nat. Genet. 2014, 46, 1063–1071. [Google Scholar] [CrossRef]
- Shoukier, M.; Klein, N.; Auber, B.; Wickert, J.; Schröder, J.; Zoll, B.; Burfeind, P.; Bartels, I.; Alsat, E.A.; Lingen, M.; et al. Array CGH in patients with developmental delay or intellectual disability: Are there phenotypic clues to pathogenic copy number variants? Clin. Genet. 2013, 83, 53–65. [Google Scholar] [CrossRef]
- Wolfe, K.; Strydom, A.; Morrogh, D.; Carter, J.; Cutajar, P.; Eyeoyibo, M.; Hassiotis, A.; McCarthy, J.; Mukherjee, R.; Paschos, D.; et al. Chromosomal microarray testing in adults with intellectual disability presenting with comorbid psychiatric disorders. Eur. J. Hum. Genet. 2016, 25, 66–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peycheva, V.; Kamenarova, K.; Ivanova, N.; Stamatov, D.; Avdjieva-Tzavella, D.; Alexandrova, I.; Zhelyazkova, S.; Pacheva, I.; Dimova, P.; Ivanov, I.; et al. Chromosomal microarray analysis of Bulgarian patients with epilepsy and intellectual disability. Gene 2018, 667, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Miclea, D.; Szucs, A.; Mirea, A.; Stefan, D.M.; Nazarie, F.; Bucerzan, S.; Lazea, C.; Grama, A.; Pop, T.L.; Farcas, M.; et al. Diagnostic Usefulness of MLPA Techniques for Recurrent Copy Number Variants Detection in Global Developmental Delay/Intellectual Disability. Int. J. Gen. Med. 2021, 14, 4511–4515. [Google Scholar] [CrossRef] [PubMed]
- Wayhelova, M.; Smetana, J.; Vallova, V.; Hladilkova, E.; Filkova, H.; Hanakova, M.; Vilemova, M.; Nikolova, P.; Gromesova, B.; Gaillyova, R.; et al. The clinical benefit of array-based comparative genomic hybridization for detection of copy number variants in Czech children with intellectual disability and developmental delay. BMC Med. Genom. 2019, 12, 111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erzurumluoglu, A.M.; Shihab, H.A.; Rodriguez, S.; Gaunt, T.R.; Day, I.N. Importance of Genetic Studies in Consanguineous Populations for the Characterization of Novel Human Gene Functions. Ann. Hum. Genet. 2016, 80, 187–196. [Google Scholar] [CrossRef] [Green Version]
- Silva, M.; de Leeuw, N.; Mann, K.; Schuring-Blom, H.; Morgan, S.; Giardino, D.; Rack, K.; Hastings, R. European guidelines for constitutional cytogenomic analysis. Eur. J. Hum. Genet. 2019, 27, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Bi, W.; Borgan, C.; Pursley, A.N.; Hixson, P.; Shaw, C.A.; Bacino, C.A.; Lalani, S.R.; Patel, A.; Stankiewicz, P.; Lupski, J.R.; et al. Comparison of chromosome analysis and chromosomal microarray analysis: What is the value of chromosome analysis in today’s genomic array era? Genet. Med. 2013, 15, 450–457. [Google Scholar] [CrossRef] [Green Version]
- Chaves, T.F.; Baretto, N.; Oliveira, L.F.; Ocampos, M.; Barbato, I.T.; Anselmi, M.; De Luca, G.R.; Barbato Filho, J.H.; Pinto, L.L.C.; Bernardi, P.; et al. Copy Number Variations in a Cohort of 420 Individuals with Neurodevelopmental Disorders From the South of Brazil. Sci. Rep. 2019, 9, 17776. [Google Scholar] [CrossRef] [Green Version]
- Flore, L.A.; Milunsky, J.M. Updates in the genetic evaluation of the child with global developmental delay or intellectual disability. Semin. Pediatr. Neurol. 2012, 19, 173–180. [Google Scholar] [CrossRef]
- O’Byrne, J.J.; Lynch, S.A.; Treacy, E.P.; King, M.D.; Betts, D.R.; Mayne, P.D.; Sharif, F. Unexplained developmental delay/learning disability: Guidelines for best practice protocol for first line assessment and genetic/metabolic/radiological investigations. Ir. J. Med. Sci. 2016, 185, 241–248. [Google Scholar] [CrossRef]
- Battaglia, A.; Doccini, V.; Bernardini, L.; Novelli, A.; Loddo, S.; Capalbo, A.; Filippi, T.; Carey, J.C. Confirmation of chromosomal microarray as a first-tier clinical diagnostic test for individuals with developmental delay, intellectual disability, autism spectrum disorders and dysmorphic features. Eur. J. Paediatr. Neurol. 2013, 17, 589–599. [Google Scholar] [CrossRef] [PubMed]
- Manning, M.; Hudgins, L. Array-based technology and recommendations for utilization in medical genetics practice for detection of chromosomal abnormalities. Genet. Med. 2010, 12, 742–745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Girirajan, S.; Rosenfeld, J.A.; Cooper, G.M.; Antonacci, F.; Siswara, P.; Itsara, A.; Vives, L.; Walsh, T.; McCarthy, S.E.; Baker, C.; et al. A recurrent 16p12.1 microdeletion supports a two-hit model for severe developmental delay. Nat. Genet. 2010, 42, 203–209. [Google Scholar] [CrossRef]
- Bélanger, S.A.; Caron, J. Evaluation of the child with global developmental delay and intellectual disability. Paediatr. Child Health 2018, 23, 403–419. [Google Scholar] [CrossRef]
- Kaufman, L.; Ayub, M.; Vincent, J.B. The genetic basis of non-syndromic intellectual disability: A review. J. Neurodev. Disord. 2010, 2, 182–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwase, S.; Bérubé, N.G.; Zhou, Z.; Kasri, N.N.; Battaglioli, E.; Scandaglia, M.; Barco, A. Epigenetic Etiology of Intellectual Disability. J. Neurosci. 2017, 37, 10773–10782. [Google Scholar] [CrossRef] [Green Version]
- de Leeuw, N.; Dijkhuizen, T.; Hehir-Kwa, J.Y.; Carter, N.P.; Feuk, L.; Firth, H.V.; Kuhn, R.M.; Ledbetter, D.H.; Martin, C.L.; van Ravenswaaij-Arts, C.M.; et al. Diagnostic interpretation of array data using public databases and internet sources. Hum. Mutat. 2012, 33, 930–940. [Google Scholar] [CrossRef] [Green Version]
- Rice, A.M.; McLysaght, A. Dosage sensitivity is a major determinant of human copy number variant pathogenicity. Nat. Commun. 2017, 8, 14366. [Google Scholar] [CrossRef] [Green Version]
- Conrad, B.; Antonarakis, S.E. Gene duplication: A drive for phenotypic diversity and cause of human disease. Annu Rev Genom. Hum. Genet. 2007, 8, 17–35. [Google Scholar] [CrossRef]
- Stankiewicz, P.; Pursley, A.N.; Cheung, S.W. Challenges in clinical interpretation of microduplications detected by array CGH analysis. Am. J. Med. Genet. A 2010, 152a, 1089–1100. [Google Scholar] [CrossRef]
- Ahn, J.W.; Bint, S.; Bergbaum, A.; Mann, K.; Hall, R.P.; Ogilvie, C.M. Array CGH as a first line diagnostic test in place of karyotyping for postnatal referrals—Results from four years’ clinical application for over 8,700 patients. Mol. Cytogenet. 2013, 6, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carreira, I.M.; Ferreira, S.I.; Matoso, E.; Pires, L.M.; Ferrão, J.; Jardim, A.; Mascarenhas, A.; Pinto, M.; Lavoura, N.; Pais, C.; et al. Copy number variants prioritization after array-CGH analysis—A cohort of 1000 patients. Mol. Cytogenet. 2015, 8, 103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malhotra, D.; Sebat, J. CNVs: Harbingers of a rare variant revolution in psychiatric genetics. Cell 2012, 148, 1223–1241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenfeld, J.A.; Coe, B.P.; Eichler, E.E.; Cuckle, H.; Shaffer, L.G. Estimates of penetrance for recurrent pathogenic copy-number variations. Genet. Med. 2013, 15, 478–481. [Google Scholar] [CrossRef] [PubMed]
- Kirov, G.; Rees, E.; Walters, J.T.; Escott-Price, V.; Georgieva, L.; Richards, A.L.; Chambert, K.D.; Davies, G.; Legge, S.E.; Moran, J.L.; et al. The penetrance of copy number variations for schizophrenia and developmental delay. Biol. Psychiatry 2014, 75, 378–385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hehir-Kwa, J.Y.; Pfundt, R.; Veltman, J.A.; de Leeuw, N. Pathogenic or not? Assessing the clinical relevance of copy number variants. Clin. Genet. 2013, 84, 415–421. [Google Scholar] [CrossRef] [Green Version]
- Vulto-van Silfhout, A.T.; Hehir-Kwa, J.Y.; van Bon, B.W.; Schuurs-Hoeijmakers, J.H.; Meader, S.; Hellebrekers, C.J.; Thoonen, I.J.; de Brouwer, A.P.; Brunner, H.G.; Webber, C.; et al. Clinical significance of de novo and inherited copy-number variation. Hum. Mutat. 2013, 34, 1679–1687. [Google Scholar] [CrossRef]
- Chen, C.P.; Lin, S.P.; Lee, C.L.; Chern, S.R.; Wu, P.S.; Chen, Y.N.; Chen, S.W.; Wang, W. Familial transmission of recurrent 15q11.2 (BP1-BP2) microdeletion encompassing NIPA1, NIPA2, CYFIP1, and TUBGCP5 associated with phenotypic variability in developmental, speech, and motor delay. Taiwan J. Obstet. Gynecol. 2017, 56, 93–97. [Google Scholar] [CrossRef]
Patient # /Gender | pCNVs Identified | pCNVs Size (Mb) | No. of OMIM Genes | Phenotype | Diagnosed Syndrome | De novo Status |
---|---|---|---|---|---|---|
#2 M | arr[hg19]7q11.23 (72, 766, 313-74, 133, 332) ×1 | 1.36 Mb | 24 | MID, CA, FD | Williams–Beuren syndrome (OMIM 194050; ORPHA 904) | de novo |
#7 M | arr[hg19]3q13.2-q13.31 (112, 183, 943-115, 492, 949) ×1 | 3.30 Mb | 18 | GDD/MID, ASD, SLD, FD | ND | |
#11 M | arr[hg19]9p24.2-p22.3 (4, 382, 484-16, 182, 060) ×1 | 11.80 Mb | 34 | GDD/MID, SLD, FD | ND | |
#28 M | arr[hg19]15q11.2-q13.3 (22, 765, 628-32, 418, 879) ×3 | 9.65 Mb | 35 | GDD/MID, SLD, FD | 15q11.2 duplication syndrome (OMIM 608636; ORPHA 238446) | de novo |
#29 F | arr[hg19]3q28-q29 (190, 674, 919-197, 837, 049) ×3 | 7.16 Mb | 44 | MID, CA, FD | ND | |
arr[hg19]18q22.3-q23 (71, 021, 353-78, 010, 032) ×1 | 6.98 Mb | 20 | ND | |||
#38 M | arr[hg19]17q12 (34, 822, 500-36, 248, 918) ×1 | 1.42 Mb | 14 | PID, SLD | 17q12 deletion syndrome (OMIM 614527; ORPHA 261265) | ND |
#39 M | arr[hg19]Xq28 (151, 371, 831-155, 226, 073) ×3 | 3.85 Mb | 2 | MID, SLD, CA, FD | ND | |
#40 F | arr[hg19]15q11.2-q13.3 (22, 469, 323-32, 432, 126) ×3 | 9.96 Mb | 35 | MID, ASD | 15q11.2 duplication syndrome (OMIM 608636; ORPHA 238446) | de novo |
#44 F | arr[hg19]1q21.3 (153, 832, 229-154, 473, 676) ×1 | 0.64 Mb | 15 | GDD/MID, CA, FD | ND | |
#49 M | arr[hg19]13q34 (111, 574, 034-112, 873, 904) ×1 | 1.30 Mb | 2 | MID, SLD, FD | ND | |
#54 M | arr[hg19]17p11.2 (16, 782, 546 -20, 294, 038) ×1 | 3.51 Mb | 41 | GDD/MID, ASD, SLD, CA, FD | Smith–Magenis syndrome (OMIM 182290; ORPHA 819) | de novo |
#56 M | arr[hg19]15q13.3 (31, 972, 646-32, 509, 926) ×3 | 0.53 Mb | 2 | GDD/MID, SLD, CA, FD | de novo | |
#60 F | arr[hg19]7q36.1-q36.3 (148, 039, 892-159, 125, 464) ×1 | 11.00 Mb | 71 | GDD/MID, SLD, CA, FD | ND | |
#63 F | arr[hg19]10p12.31-p11.22 (19, 126, 070-32, 661, 401) ×3 | 13.50 Mb | 47 | GDD/MID, ASD, FD | ND | |
#65 F | arr[hg19]11q23.3-q24.3 (118, 633, 886-134, 934, 196) ×1 | 16.30 Mb | 102 | GDD/SID, SLD, CA, FD | ND | |
#71 F | arr[hg19]8p23.3-p21.1 (191, 530-27, 794, 516) ×3 | 27.60 Mb | 130 | MID | ND | |
#72 M | arr[hg19]7p14.2-p11.2 (36, 087, 852-54, 131, 443) ×1 | 18.04 Mb | 66 | MID, SLD, CA | Greig cephalopolysyndactyly contiguous gene syndrome (OMIM 175700; ORPHA 380) | de novo |
#74 M | arr[hg19]15q13.3 (32, 065, 000-32, 443, 078) ×3 | 0.37 Mb | 2 | GDD/SID, ASD | de novo | |
#77 M | arr[hg19]22q13.1-q13.33 (40, 731, 210-51, 178, 264) ×3 | 10.44 Mb | 107 | GDD/MID, SLD, CA, FD | de novo | |
#90 M | arr[hg19]12q15-q21.2 (69, 970, 372-77, 106, 446) ×1 | 7.10 Mb | 27 | GDD/MID, SLD, CA, FD | ND | |
#95 F | arr[hg19]3p26.3 (2, 300, 379-2, 371, 253) ×1 | 0.07 Mb | 1 | GDD/MID, SLD, CA, FD | ND | |
#96 F | arr[hg19]18p11.32-p11.21 (148, 963-14, 081, 887) ×1 | 13.93 Mb | 56 | GDD/MID, SLD, CA, FD | de novo | |
#102 M | arr[hg19]20p12.1 (15, 849, 333-17, 190, 245) ×3 | 1.34 Mb | 4 | MID, SLD, FD | ND | |
#107 M | arr[hg19]2q13 (110, 457, 697-111, 103, 309) ×3 | 0.64 Mb | 5 | MID, ASD, SLD, FD | ND | |
#112 M | arr[hg19]15q13.2-q13.3 (30, 954, 726-32, 509, 926) ×1 | 1.55 Mb | 6 | GDD/MID, ASD, SLD, FD | de novo | |
#118 F | arr[hg19]8p23.3-p23.1 (191, 530-10, 724, 642) ×1 | 10.53 Mb | 32 | GDD/MID | ND | |
arr[hg19]15q26.1-q26.3 (92, 055, 381-102, 383, 473) ×3 | 10.32 Mb | 21 | de novo | |||
#122 F | arr[hg19]22q13.2-q13.33 (43, 072, 344-51, 178, 264) ×1 | 8.10 Mb | 65 | GDD/SID, FD | Phelan–McDermid syndrome (OMIM 606232; ORPHA 48652) | de novo |
#124 M | arr[hg19]15q11.2 (25, 520, 851-25, 610, 995) ×1 | 0.09 Mb | 2 | GDD/MID, SLD, FD | Prader–Willi/Angelman/ 15q11.2 deletion syndrome (OMIM 176270/105830/615656; ORPHA 739/72/261183) | de novo |
#129 F | arr[hg19]Xp11.23-p11.22 (48, 204, 101-52, 613, 025) ×3 | 4.40 Mb | 74 | MID | ND | |
#131 F | arr[hg19]18p11.32-p11.21 (148, 963-14, 081, 887) ×1 | 13.90 Mb | 56 | GDD/MID | ND | |
#134 M | arr[hg19]22q11.1-q11.21 (17, 397, 498-18, 628, 078) ×3 | 1.23 Mb | 10 | MID, SLD, CA, FD | 22q11.2 duplication syndrome (OMIM 608363; ORPHA 1727) | de novo |
#137 M | arr[hg19]22q11.21 (18, 894, 835-21, 505, 417) ×3 | 2.61 Mb | 44 | MID, ASD, SLD, FD | 22q11.2 duplication syndrome (OMIM 608363; ORPHA 1727) | de novo |
#140 M | arr[hg19]2q13 (110, 862, 477-110, 964, 737) ×1 | 0.10 Mb | 2 | MID, ASD, SLD, FD | ND | |
#141 M | arr[hg19]5q23.1 (116, 416, 138-120, 031, 429) ×3 | 3.61 Mb | 5 | GDD/MID | ND | |
#143 F | arr[hg19]15q11.2 (22, 765, 628-23, 300, 287) ×1 | 0.53 Mb | 4 | GDD/MID, FD | Prader–Willi/Angelman/ 15q11.2 deletion syndrome (OMIM 176270/105830/615656; ORPHA 739/72/261183) | de novo |
#153 M | arr[hg19]13q31.2-q32.2 (88, 267, 238-98, 888, 611) ×1 | 10.62 Mb | 25 | MID, CA, FD | ND | |
#156 M | arr[hg19]15q11.2-q13.1 (22, 833, 122-28, 691, 460) ×3 | 5.85 Mb | 24 | GDD/MID, ASD, SLD, CA, FD | 15q11.2 duplication syndrome (OMIM 608636; ORPHA 238446) | de novo |
#165 M | arr[hg19]15q11.2-q13.1 (22, 765, 628-28, 691, 460) ×3 | 5.92 Mb | 24 | GDD/MID, FD | 15q11.2 duplication syndrome (OMIM 608636; ORPHA 238446) | de novo |
#176 M | arr[hg19]9p13.1-p11.2 (39, 254, 329-43, 704, 969) ×1 | 4.45 Mb | 4 | MID, SLD | ND | |
#177 F | arr[hg19]3p21.31 (49, 067, 306-49, 348, 838) ×3 | 0.28 Mb | 7 | GDD/MID, CA, FD | ND | |
arr[hg19]Xp22.31 (6, 488, 721-8, 097, 511) ×3 | 1.60 Mb | 4 | ND | |||
#178 M | arr[hg19]8q24.11-q24.13 (118, 411, 534-125, 872, 913) ×1 | 7.46 Mb | 28 | MID, FD | ND | |
#187 M | arr[hg19]15q11.1-q13.3 (20, 686, 203-32, 631, 681)×3 | 11.95 Mb | 37 | GDD/MID, FD | 15q11.2 duplication syndrome (OMIM 608636; ORPHA 238446) | de novo |
#188 M | arr[hg19]1q21.1-q21.2 (145, 899, 359-147, 824, 212) ×3 | 1.92 Mb | 13 | GDD, FD | 1q21.1 duplication syndrome (OMIM 612475; ORPHA 250994) | ND |
#190 F | arr[hg19]16p12.2 (21, 444, 452-21, 926, 420) ×1 | 0.48 Mb | 3 | GDD/SID, SLD, FD | 16p12.2 deletion syndrome (OMIM 613604; ORPHA 261211) | de novo |
#194 M | arr[hg19]7q35 (145, 868, 726-145, 971, 078) ×1 | 0.10 Mb | 1 | GDD/MID, ASD, SLD, FD | ND | |
#205 M | arr[hg19]16p11.2-p11.1 (32, 573, 813-34, 727, 365) ×3 | 2.15 Mb | 1 | GDD/PID, SLD, CA | 16p11.2 duplication syndrome (OMIM 614671; ORPHA 370079) | de novo |
#208 M | arr[hg19]19q13.2-q13.31 (43, 242, 811-43, 741, 714) ×3 | 0.49 Mb | 10 | MID, SLD, FD | ND | |
#214 F | arr[hg19]3p14.2-p14.1 (62, 145, 868-66, 369, 539) ×1 | 4.22 Mb | 12 | GDD/SID, SLD, CA, FD | ND | |
#215 F | arr[hg19] 7q11.23 (76, 139, 286-76, 557, 072) ×1 | 0.41 Mb | 2 | MID, ASD, SLD, FD | Williams–Beuren syndrome (OMIM 19405) | ND |
#216 F | arr[hg19]1p36.32-p36.33 (564, 512-2, 633, 410) ×1 | 2.07 Mb | 47 | GDD/MID, FD | 1p36 deletion syndrome (OMIM 607872; ORPHA 1606) | ND |
#217 F | arr[hg19]2q13 (110, 862, 474-110, 964, 775) ×1 | 0.10 Mb | 2 | GDD/MID, FD | ND | |
#219 M | arr[hg19]1q21.1-q21.2 (146, 155, 929-147, 824, 212) ×3 | 1.67 Mb | 13 | MID, ASD, SLD, FD | 1q21.1 duplication syndrome (OMIM 612475; ORPHA 250994) | ND |
#220 M | arr[hg19]22q12.3 (33, 809, 250-35, 821, 348) ×3 | 2.01 Mb | 6 | GDD/MID, ASD, FD | de novo | |
#221 M | arr[hg19]2q22.2-q22.3 (142, 553, 348-144, 922, 249) ×1 | 2.37 Mb | 4 | MID, ASD | ND | |
#222 M | arr[hg19]2p25.2-p24.3 (6, 119, 066-23, 743, 786) ×1 | 17.62 Mb | 50 | GDD, FD | ND | |
#223 F | arr[hg19]17p11.2 (16, 637, 872-20, 294, 010) ×1 | 3.66 Mb | 41 | SID, ASD, SLD, FD | Smith–Magenis syndrome (OMIM 182290; ORPHA 819) | de novo |
#225 F | arr[hg19]22q12.3 (33, 809, 250-35, 821, 348) ×3 | 2.01 Mb | 6 | GDD/MID, ASD, FD | de novo | |
#229 M | arr[hg19]14q31.3-q32.12 (89, 006, 445-93, 270, 145) ×1 | 4.26 Mb | 23 | MID, SLD, FD | ND | |
#230 M | arr[hg19]1q21.1-q21.2 (143, 700, 143-149, 754, 257) ×1 | 6.05 Mb | 41 | MID, ASD, SLD, FD | 1q21.1 deletion syndrome (OMIM 612474; ORPHA 250989) | ND |
#234 F | arr[hg19]5p15.33-p15.2 (22, 149-10, 213, 019) ×1 | 10.16 Mb | 37 | GDD/MID, SLD, CA, FD | Cri du chat syndrome (OMIM 123450; ORPHA 281) | de novo |
arr[hg19]15q25.2-q26.3 (84, 084, 270-102, 383, 479) ×3 | 18.29 Mb | 71 | de novo | |||
#251 F | arr[hg19]9p24.3 (204, 090-318, 901) ×1 | 0.11 Mb | 1 | GDD/MID, FD | ND | |
#256 M | arr[hg19]18q21.31-q23 (54, 370, 373-78, 012, 819) ×1 | 23.55 Mb | 68 | GDD/SID, ASD, SLD, CA, FD | Distal 18q deletion syndrome (OMIM 601808) | ND |
#258 M | arr[hg19]18q22.1-q23 (61, 916, 757-78, 012, 819) ×1 | 16.01 Mb | 30 | GDD/MID, SLD, CA, FD | Distal 18q deletion syndrome (OMIM 601808) | ND |
#264 M | arr[hg19]2q31.3 (181, 725, 071-182, 872, 274) ×1 | 1.15 Mb | 7 | GDD/MID, SLD | ND | |
#269 M | arr[hg19]15q11.2-q13.2 (23, 707, 435-30, 366, 138) ×3 | 6.94 Mb | 24 | GDD/MID, ASD, SLD, FD | 15q11.2 duplication syndrome (OMIM 608636; ORPHA 238446) | de novo |
#275 M | arr[hg19]10q11.22 (46, 699, 438-47, 768, 540) ×3 | 1.07 Mb | 8 | GDD/MID, ASD, SLD, CA, FD | ND | |
#283 F | arr[hg19]7p15.2 (27, 216, 450-27, 529, 778) ×1 | 0.31 Mb | 6 | GDD/MID, SLD, FD | ND | |
#290 F | arr[hg19]22q11.21 (18, 765, 102-21, 661, 435) ×1 | 2.90 Mb | 45 | MID, ASD, SLD, CA, FD | DiGeorge syndrome (OMIM 188400; ORPHA 567) | de novo |
#297 F | arr[hg19]21q11.2-q22.3 (15, 485, 038-48, 090, 352) ×3 | 32.61 Mb | 165 | GDD/MID, SLD, FD | 22q11.2 duplication syndrome (OMIM 608363; ORPHA 1727) | de novo |
#301 M | arr[hg19]13q33.2 (105, 143, 800 -106, 578, 383) ×1 | 1.43 Mb | 2 | MID, SLD | ND | |
#302 M | arr[hg19]3q24-q29 (142, 811, 019-197, 837, 069) ×3 | 55.02 Mb | 228 | GDD/MID, FD | 3q29 duplication syndrome (OMIM 611936; ORPHA 251038) | ND |
#307 F | arr[hg19]15q11.2 (22, 698, 520-23, 260, 534) ×1 | 0.56 Mb | 4 | GDD/MID, ASD, SLD, FD | Prader–Willi/Angelman/ 15q11.2 deletion syndrome (OMIM 176270/105830/615656; ORPHA 739/72/261183) | de novo |
#315 F | arr[hg19]15q11.1-q13.1 (20, 686, 203-28, 592, 766) ×3 | 7.91 Mb | 26 | MID | 15q11.2 duplication syndrome (OMIM 608636; ORPHA 238446) | de novo |
#317 M | arr[hg19]14q32.2-q32.31 (100, 396, 820-101, 488, 898) ×1 | 1.09 Mb | 22 | MID, SLD, FD | ND | |
#328 M | arr[hg19]8p23.3-p23.2 (61, 749-4, 173, 771) ×1 | 4.11 Mb | 6 | GDD/MID, SLD, FD | de novo | |
arr[hg19]8q23.3-q24.3 (117, 002, 727-146, 280, 167) ×3 | 29.28 Mb | 137 | Langer–Giedion syndrome (OMIM 150230; ORPHA 502) | de novo | ||
#344 F | arr[hg19]20q13.13 (46, 786, 589-47, 852, 910) ×3 | 1.07 Mb | 5 | MID, FD | ND | |
#348 M | arr[hg19]15q24.1-q24.2 (73, 703, 885-75, 257, 869) ×1 | 1.55 Mb | 29 | GDD/SID, ASD, SLD, FD | 15q24 deletion syndrome (OMIM 613406; ORPHA 94065) | de novo |
#351 M | arr[hg19]Xp22.31 (6, 488, 462-7, 809, 341) ×1 | 1.32 Mb | 2 | MID, ASD, SLD, FD | ND | |
#370 M | arr[hg19]16p11.2 (29, 673, 967-30, 332, 569) ×1 | 0.65 Mb | 21 | GDD/MID, ASD, SLD, FD | Distal 16p11.2 deletion syndrome (OMIM 613604; ORPHA 261211) | de novo |
Clinical Features | Patients with Condition % (n = 371) | Patients with pCNV and with Condition % (n) | Patients with pCNV and without Condition % (n) | OR (95% CI), p-Value |
---|---|---|---|---|
Intellectual disability total | 371 | 79 | - | |
mild | 34.78% (129/371) | 27.85% (22/79) | ||
moderate | 49.05% (182/371) | 59.49% (47/79) | ||
severe | 14.82% (55/371) | 10.12% (8/79) | ||
profound | 1.34% (5/371) | 2.53% (2/79) | ||
ASD | 36.65% (136/371) | 32.91% (26/79) | 67.08% (53/79) | 0.81 (0.48–1.37), p = 0.21 |
ADHD | 20.21% (75/371) | 22.78% (18/79) | 77.21% (61/79) | 1.21 (0.66–2.21), p = 0.26 |
Speech/language delay | 64.15% (238/371) | 63.29% (50/79) | 36.70% (29/79) | 0.95 (0.56–1.59), p = 0.42 |
Learning disability | 6.46% (24/371) | 5.06% (4/79) | 94.93% (75/79) | 0.72 (0.24–2.18), p = 0.28 |
Aggressive behavior | 10.24% (38/371) | 11.39% (9/79) | 88.60% (70/79) | 1.16 (0.52–2.57), p = 0.35 |
Psychiatric disturbance | 11.05% (41/371) | 6.32% (5/79) | 93.67% (74/79) | 0.48 (0.18–1.26), p = 0.06 |
Sleep problems | 5.12% (19/371) | 3.79% (3/79) | 96.20% (76/79) | 0.68 (0.19–2.39), p = 0.27 |
Eating disorder | 1.07% (4/371) | 1.26% (1/79) | 98.73% (78/79) | 1.23 (0.12–12.03), p = 0.42 |
Motor delay | 61.18% (227/371) | 62.02% (49/79) | 37.97% (30/79) | 1.04 (0.62–1.74), p = 0.43 |
Ophthalmological impairment | 16.71% (62/371) | 20.25% (16/79) | 79.74% (63/79) | 1.35 (0.72–2.55), p = 0.17 |
Hearing impairment | 4.04% (15/371) | 7.59% (6/79) | 92.40% (73/79) | 2.58 (0.89–7.49), p = 0.04 |
Facial dysmorphism | 83.28% (309/371) | 89.87% (71/79) | 10.12% (8/79) | 2.01 (0.91–4.43), p = 0.04 |
Congenital malformations | 16.71% (62/371) | 21.51% (17/79) | 78.48% (62/79) | 1.50 (0.80–2.80), p = 0.09 |
Cranial anomalies (microcephaly/ macrocephaly) | 37.46% (139/371) | 36.70% (29/79) | 63.29% (50/79) | 0.95 (0.57–1.60), p = 0.44 |
Skeletal anomalies | 20.75% (77/371) | 17.72% (14/79) | 82.27% (65/79) | 0.78 (0.41–1.49), p = 0.23 |
Muscular anomalies | 20.21% (75/371) | 17.72% (14/79) | 82.27% (65/79) | 0.81 (0.43–1.55), p = 0.27 |
Limbs abnormalities | 12.93% (48/371) | 12.65% (10/79) | 87.34% (69/79) | 0.97 (0.46–2.04), p = 0.46 |
Fingers abnormalities | 25.87% (96/371) | 34.17% (27/79) | 65.82% (52/79) | 1.68 (0.98–2.87), p = 0.03 |
Short stature | 11.05% (41/371) | 8.86% (7/79) | 91.13% (72/79) | 0.74 (0.31–1.73), p = 0.24 |
Study/Year | Cohort | CMA Platforms | Sample No. | Detection Rate of pCNVs |
---|---|---|---|---|
Di Gregorio et al., 2016 [21] | Patients with GDD/ID in Italy | Agilent 60k | 1015 | 11.0% |
Wolfe et al., 2017 [41] | Patients with ID, adults | Nimblegen 135k | 202 | 11.0% |
Quintela et al., 2017 [19] | Patients with ID from NW Spain | Cytogenetics Whole-Genome 2.7M SNP array/CytoScan High-Density SNP array | 573 | 11.2% |
Peycheva et al., 2018 [42] | Patients with epileptic seizures, DD/ID, autistic features, and additional brain malformations | Agilent 180k | 92 | 15.2% |
Miclea et al., 2019 [43] | Patients with GDD/ID and obesity in Cluj, Romania | Infinium OmniExpress-24, Illumina | 36 | 33.0% |
Wayhelova et al., 2019 [44] | Patients with GDD/ID, ASD and MCA from Czech Republic, children | Agilent 60k/180k/OGT 180k | 542 | 5.9% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Streață, I.; Caramizaru, A.; Riza, A.-L.; Șerban-Sosoi, S.; Pîrvu, A.; Cara, M.-L.; Cucu, M.-G.; Dobrescu, A.M.; Ro-NMCA-ID Group; CExBR Pediatric Neurology Obregia Group; et al. Pathogenic Copy Number Variations Involved in the Genetic Etiology of Syndromic and Non-Syndromic Intellectual Disability—Data from a Romanian Cohort. Diagnostics 2022, 12, 3137. https://doi.org/10.3390/diagnostics12123137
Streață I, Caramizaru A, Riza A-L, Șerban-Sosoi S, Pîrvu A, Cara M-L, Cucu M-G, Dobrescu AM, Ro-NMCA-ID Group, CExBR Pediatric Neurology Obregia Group, et al. Pathogenic Copy Number Variations Involved in the Genetic Etiology of Syndromic and Non-Syndromic Intellectual Disability—Data from a Romanian Cohort. Diagnostics. 2022; 12(12):3137. https://doi.org/10.3390/diagnostics12123137
Chicago/Turabian StyleStreață, Ioana, Alexandru Caramizaru, Anca-Lelia Riza, Simona Șerban-Sosoi, Andrei Pîrvu, Monica-Laura Cara, Mihai-Gabriel Cucu, Amelia Mihaela Dobrescu, Ro-NMCA-ID Group, CExBR Pediatric Neurology Obregia Group, and et al. 2022. "Pathogenic Copy Number Variations Involved in the Genetic Etiology of Syndromic and Non-Syndromic Intellectual Disability—Data from a Romanian Cohort" Diagnostics 12, no. 12: 3137. https://doi.org/10.3390/diagnostics12123137
APA StyleStreață, I., Caramizaru, A., Riza, A. -L., Șerban-Sosoi, S., Pîrvu, A., Cara, M. -L., Cucu, M. -G., Dobrescu, A. M., Ro-NMCA-ID Group, CExBR Pediatric Neurology Obregia Group, CExBR Pediatric Neurology “V. Gomoiu” Hospital Group, Shelby, E. -S., Albeanu, A., Burada, F., & Ioana, M. (2022). Pathogenic Copy Number Variations Involved in the Genetic Etiology of Syndromic and Non-Syndromic Intellectual Disability—Data from a Romanian Cohort. Diagnostics, 12(12), 3137. https://doi.org/10.3390/diagnostics12123137