Novel Magnetic Resonance Imaging Tools for the Diagnosis of Degenerative Disc Disease: A Narrative Review
Abstract
:1. Introduction
2. Intervertebral Disc: Anatomy and Biomechanics
3. Magnetic Resonance Imaging in Intervertebral Disc Degeneration
4. Novel MR Imaging Tools for Intervertebral Disc Degeneration
4.1. T1ρ and T2 Relaxation Mapping
4.2. Quantitative T2 Star (T2*) Mapping
4.3. Diffusion-Weighted Imaging (DWI) and Diffusion Tensor Imaging (DTI)
4.4. Sodium Magnetic Resonance Imaging (23Na+−MRI)
4.5. GAG Chemical Exchange Saturation Transfer (GagCEST)
4.6. Ultrashort TE (and Zero-TE Sequences)
4.7. Magnetic Resonance Spectroscopy
4.8. Delayed Gadolinium-Enhanced MRI of Cartilage (dGEMRIC)
4.9. Magnetization Transfer (MT) and MT Ratio (MTR)
5. New Diagnostic Perspective: Artificial Intelligence
6. MRI as a Tool for Follow-Up Disc Regenerative Therapy
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Filippiadis, D.K.; Kelekis, A. A review of percutaneous techniques for low back pain and neuralgia: Current trends in epidural infiltrations, intervertebral disk and facet joint therapies. Br. J. Radiol. 2016, 89, 20150357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amelot, A.; Mazel, C. The Intervertebral Disc: Physiology and Pathology of a Brittle Joint. World Neurosurg. 2018, 120, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Mwale, F.; Iatridis, J.C.; Antoniou, J. Quantitative MRI as a diagnostic tool of intervertebral disc matrix composition and integrity. Eur. Spine. J. 2008, 17 (Suppl. 4), 432–440. [Google Scholar] [CrossRef] [Green Version]
- Menezes-Reis, R.; Salmon, C.E.G.; Carvalho, C.S.; Bonugli, G.P.; Chung, C.B.; Nogueira-Barbosa, M.H. T1ρ and T2 Mapping of the Intervertebral Disk: Comparison of Different Methods of Segmentation. Am. J. Neuroradiol. 2015, 36, 606–611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruiz Santiago, F.; Castellano Garcia Mdel, M.; Aparisi Rodriguez, F. Role of interventional radiology in diagnosis and management of the painful spine. Med. Clin. 2013, 140, 458–465. [Google Scholar] [CrossRef] [PubMed]
- Cannata, F.; Vadala, G.; Ambrosio, L.; Fallucca, S.; Napoli, N.; Papalia, R.; Pozzilli, P.; Denaro, V. Intervertebral disc degeneration: A focus on obesity and type 2 diabetes. Diabetes Metab. Res. Rev. 2020, 36, e3224. [Google Scholar] [CrossRef]
- Vo, N.V.; Hartman, R.A.; Patil, P.R.; Risbud, M.V.; Kletsas, D.; Iatridis, J.C.; Hoyland, J.A.; Le Maitre, C.L.; Sowa, G.A.; Kang, J.D. Molecular mechanisms of biological aging in intervertebral discs. J. Orthop. Res. 2016, 34, 1289–1306. [Google Scholar] [CrossRef] [Green Version]
- Russo, F.; Ambrosio, L.; Ngo, K.; Vadala, G.; Denaro, V.; Fan, Y.; Sowa, G.; Kang, J.D.; Vo, N. The Role of Type I Diabetes in Intervertebral Disc Degeneration. Spine 2019, 44, 1177–1185. [Google Scholar] [CrossRef]
- Antoniou, J.; Steffen, T.; Nelson, F.; Winterbottom, N.; Hollander, A.P.; Poole, R.A.; Aebi, M.; Alini, M. The human lumbar intervertebral disc: Evidence for changes in the biosynthesis and denaturation of the extracellular matrix with growth, maturation, ageing, and degeneration. J. Clin. Invest. 1996, 98, 996–1003. [Google Scholar] [CrossRef]
- Wang, C.; Auerbach, J.D.; Witschey, W.R.; Balderston, R.A.; Reddy, R.; Borthakur, A. Advances in Magnetic Resonance Imaging for the assessment of degenerative disc disease of the lumbar spine. Semin. Spine Surg. 2007, 19, 65–71. [Google Scholar] [CrossRef] [Green Version]
- Luoma, K.; Riihimaki, H.; Luukkonen, R.; Raininko, R.; Viikari-Juntura, E.; Lamminen, A. Low back pain in relation to lumbar disc degeneration. Spine 2000, 25, 487–492. [Google Scholar] [CrossRef]
- Vadapalli, R.; Mulukutla, R.; Vadapalli, A.S.; Vedula, R.R. Quantitative Predictive Imaging Biomarkers of Lumbar Intervertebral Disc Degeneration. Asian Spine J. 2019, 13, 527–534. [Google Scholar] [CrossRef] [PubMed]
- Reis, E.P.; Silva Junior, N.A.; Appenzeller, S.; Reis, F. Radicular compression syndrome after exercise in a young patient: Not everything is a herniated disk! Radiol. Bras. 2018, 51, 408–409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knezevic, N.N.; Candido, K.D.; Vlaeyen, J.W.S.; Van Zundert, J.; Cohen, S.P. Low back pain. Lancet 2021, 398, 78–92. [Google Scholar] [CrossRef]
- Wu, P.H.; Kim, H.S.; Jang, I.T. Intervertebral Disc Diseases PART 2: A Review of the Current Diagnostic and Treatment Strategies for Intervertebral Disc Disease. Int. J. Mol. Sci. 2020, 21, 2135. [Google Scholar] [CrossRef] [Green Version]
- Tertti, M.; Paajanen, H.; Laato, M.; Aho, H.; Komu, M.; Kormano, M. Disc degeneration in magnetic resonance imaging. A comparative biochemical, histologic, and radiologic study in cadaver spines. Spine 1991, 16, 629–634. [Google Scholar] [CrossRef] [PubMed]
- Urban, J.P.; Winlove, C.P. Pathophysiology of the intervertebral disc and the challenges for MRI. J. Magn. Reson. Imaging 2007, 25, 419–432. [Google Scholar] [CrossRef]
- Vadala, G.; Ambrosio, L.; Russo, F.; Papalia, R.; Denaro, V. Interaction between Mesenchymal Stem Cells and Intervertebral Disc Microenvironment: From Cell Therapy to Tissue Engineering. Stem Cells Int. 2019, 2019, 15. [Google Scholar] [CrossRef]
- Urban, J.P. The role of the physicochemical environment in determining disc cell behaviour. Biochem. Soc. Trans. 2002, 30, 858–864. [Google Scholar] [CrossRef]
- Iatridis, J.C.; Weidenbaum, M.; Setton, L.A.; Mow, V.C. Is the nucleus pulposus a solid or a fluid? Mechanical behaviors of the nucleus pulposus of the human intervertebral disc. Spine 1996, 21, 1174–1184. [Google Scholar] [CrossRef]
- Heneghan, P.; Riches, P.E. The strain-dependent osmotic pressure and stiffness of the bovine nucleus pulposus apportioned into ionic and non-ionic contributors. J. Biomech. 2008, 41, 2411–2416. [Google Scholar] [CrossRef] [PubMed]
- Eyre, D.R.; Muir, H. Types I and II collagens in intervertebral disc. Interchanging radial distributions in annulus fibrosus. Biochem. J. 1976, 157, 267–270. [Google Scholar] [CrossRef] [PubMed]
- Guerin, H.L.; Elliott, D.M. Quantifying the contributions of structure to annulus fibrosus mechanical function using a nonlinear, anisotropic, hyperelastic model. J. Orthop. Res. 2007, 25, 508–516. [Google Scholar] [CrossRef] [PubMed]
- Elliott, D.M.; Setton, L.A. Anisotropic and inhomogeneous tensile behavior of the human anulus fibrosus: Experimental measurement and material model predictions. J. Biomech. Eng. 2001, 123, 256–263. [Google Scholar] [CrossRef]
- Setton, L.A.; Zhu, W.; Weidenbaum, M.; Ratcliffe, A.; Mow, V.C. Compressive properties of the cartilaginous end-plate of the baboon lumbar spine. J. Orthop. Res. 1993, 11, 228–239. [Google Scholar] [CrossRef]
- Quattrocchi, C.C.; Giona, A.; Di Martino, A.; Gaudino, F.; Mallio, C.A.; Errante, Y.; Occhicone, F.; Vitali, M.A.; Zobel, B.B.; Denaro, V. Lumbar subcutaneous edema and degenerative spinal disease in patients with low back pain: A retrospective MRI study. Musculoskelet. Surg. 2015, 99, 159–163. [Google Scholar] [CrossRef]
- Pfirrmann, C.W.; Metzdorf, A.; Zanetti, M.; Hodler, J.; Boos, N. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine 2001, 26, 1873–1878. [Google Scholar] [CrossRef]
- Griffith, J.F.; Wang, Y.X.; Antonio, G.E.; Choi, K.C.; Yu, A.; Ahuja, A.T.; Leung, P.C. Modified Pfirrmann grading system for lumbar intervertebral disc degeneration. Spine 2007, 32, E708–E712. [Google Scholar] [CrossRef]
- Aguila, L.A.; Piraino, D.W.; Modic, M.T.; Dudley, A.W.; Duchesneau, P.M.; Weinstein, M.A. The intranuclear cleft of the intervertebral disk: Magnetic resonance imaging. Radiology 1985, 155, 155–158. [Google Scholar] [CrossRef]
- Mittal, S.; Pradhan, G.; Singh, S.; Batra, R. T1 and T2 mapping of articular cartilage and menisci in early osteoarthritis of the knee using 3-Tesla magnetic resonance imaging. Pol. J. Radiol. 2019, 84, e549–e564. [Google Scholar] [CrossRef]
- de Mello, R.; Ma, Y.; Ji, Y.; Du, J.; Chang, E.Y. Quantitative MRI Musculoskeletal Techniques: An Update. AJR Am. J. Roentgenol. 2019, 213, 524–533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoon, M.A.; Hong, S.J.; Kang, C.H.; Ahn, K.S.; Kim, B.H. T1rho and T2 mapping of lumbar intervertebral disc: Correlation with degeneration and morphologic changes in different disc regions. Magn. Reson. Imaging 2016, 34, 932–939. [Google Scholar] [CrossRef]
- Boden, S.D.; Balderston, R.A.; Heller, J.G.; Hanley, E.N., Jr.; Zigler, J.E. An AOA critical issue. Disc replacements: This time will we really cure low-back and neck pain? J. Bone Joint Surg. Am. 2004, 86, 411–422. [Google Scholar] [CrossRef] [PubMed]
- Perri, M.; D’Elia, M.; Castorani, G.; Balzano, R.F.; Pennelli, A.; Al-Badayneh, B.; Russo, A.; Guglielmi, G.; Popolizio, T. Assessment of lumbar disc herniaton using fractional anisotropy in diffusion tensor imaging along with conventional T2-weighted imaging. Neuroradiol. J. 2019, 33, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Auerbach, J.D.; Johannessen, W.; Borthakur, A.; Wheaton, A.J.; Dolinskas, C.A.; Balderston, R.A.; Reddy, R.; Elliott, D.M. In vivo quantification of human lumbar disc degeneration using T(1rho)-weighted magnetic resonance imaging. Eur. Spine J. 2006, 15 (Suppl. 3), 338–344. [Google Scholar] [CrossRef] [Green Version]
- Gornet, M.G.; Peacock, J.; Claude, J.; Schranck, F.W.; Copay, A.G.; Eastlack, R.K.; Benz, R.; Olshen, A.; Lotz, J.C. Magnetic resonance spectroscopy (MRS) can identify painful lumbar discs and may facilitate improved clinical outcomes of lumbar surgeries for discogenic pain. Eur. Spine J. 2019, 28, 674–687. [Google Scholar] [CrossRef] [Green Version]
- Frenken, M.; Nebelung, S.; Schleich, C.; Muller-Lutz, A.; Radke, K.L.; Kamp, B.; Boschheidgen, M.; Wollschlager, L.; Bittersohl, B.; Antoch, G.; et al. Non-Specific Low Back Pain and Lumbar Radiculopathy: Comparison of Morphologic and Compositional MRI as Assessed by gagCEST Imaging at 3T. Diagnostics 2021, 11, 402. [Google Scholar] [CrossRef]
- Noebauer-Huhmann, I.M.; Juras, V.; Pfirrmann, C.W.; Szomolanyi, P.; Zbyn, S.; Messner, A.; Wimmer, J.; Weber, M.; Friedrich, K.M.; Stelzeneder, D.; et al. Sodium MR imaging of the lumbar intervertebral disk at 7 T: Correlation with T2 mapping and modified Pfirrmann score at 3 T--preliminary results. Radiology 2012, 265, 555–564. [Google Scholar] [CrossRef]
- Zobel, B.B.; Vadala, G.; Del Vescovo, R.; Battisti, S.; Martina, F.M.; Stellato, L.; Leoncini, E.; Borthakur, A.; Denaro, V. T1rho magnetic resonance imaging quantification of early lumbar intervertebral disc degeneration in healthy young adults. Spine 2012, 37, 1224–1230. [Google Scholar] [CrossRef] [Green Version]
- Shen, S.; Wang, H.; Zhang, J.; Wang, F.; Liu, S.R. Diffusion Weighted Imaging, Diffusion Tensor Imaging, and T2* Mapping of Lumbar Intervertebral Disc in Young Healthy Adults. Iran. J. Radiol. 2016, 13, e30069. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Witschey, W.; Goldberg, A.; Elliott, M.; Borthakur, A.; Reddy, R. Magnetization transfer ratio mapping of intervertebral disc degeneration. Magn. Reson. Med. 2010, 64, 1520–1528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schleich, C.; Miese, F.; Muller-Lutz, A.; Boos, J.; Aissa, J.; Nasca, A.; Zaucke, F.; Bostelmann, T.; Schimmoller, L.; Bittersohl, B.; et al. Value of delayed gadolinium-enhanced magnetic resonance imaging of cartilage for the pre-operative assessment of cervical intervertebral discs. J. Orthop. Res. 2017, 35, 1824–1830. [Google Scholar] [CrossRef] [PubMed]
- Berg-Johansen, B.; Han, M.; Fields, A.J.; Liebenberg, E.C.; Lim, B.J.; Larson, P.E.; Gunduz-Demir, C.; Kazakia, G.J.; Krug, R.; Lotz, J.C. Cartilage Endplate Thickness Variation Measured by Ultrashort Echo-Time MRI Is Associated with Adjacent Disc Degeneration. Spine 2018, 43, E592–E600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lotz, J.C.; Haughton, V.; Boden, S.D.; An, H.S.; Kang, J.D.; Masuda, K.; Freemont, A.; Berven, S.; Sengupta, D.K.; Tanenbaum, L.; et al. New treatments and imaging strategies in degenerative disease of the intervertebral disks. Radiology 2012, 264, 6–19. [Google Scholar] [CrossRef] [PubMed]
- Blumenkrantz, G.; Majumdar, S. Quantitative magnetic resonance imaging of articular cartilage in osteoarthritis. Eur. Cell. Mater. 2007, 13, 76–86. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, A.M.; Johannessen, W.; Yoder, J.H.; Wheaton, A.J.; Vresilovic, E.J.; Borthakur, A.; Elliott, D.M. Noninvasive quantification of human nucleus pulposus pressure with use of T1rho-weighted magnetic resonance imaging. J. Bone Joint Surg. Am. 2008, 90, 796–802. [Google Scholar] [CrossRef] [Green Version]
- Johannessen, W.; Auerbach, J.D.; Wheaton, A.J.; Kurji, A.; Borthakur, A.; Reddy, R.; Elliott, D.M. Assessment of human disc degeneration and proteoglycan content using T1rho-weighted magnetic resonance imaging. Spine 2006, 31, 1253–1257. [Google Scholar] [CrossRef]
- Wang, Y.X.; Zhang, Q.; Li, X.; Chen, W.; Ahuja, A.; Yuan, J. T1rho magnetic resonance: Basic physics principles and applications in knee and intervertebral disc imaging. Quant. Imaging Med. Surg. 2015, 5, 858–885. [Google Scholar] [CrossRef] [PubMed]
- Ellingson, A.M.; Mehta, H.; Polly, D.W.; Ellermann, J.; Nuckley, D.J. Disc degeneration assessed by quantitative T2* (T2 star) correlated with functional lumbar mechanics. Spine 2013, 38, E1533–E1540. [Google Scholar] [CrossRef] [Green Version]
- Hoppe, S.; Quirbach, S.; Mamisch, T.C.; Krause, F.G.; Werlen, S.; Benneker, L.M. Axial T2 mapping in intervertebral discs: A new technique for assessment of intervertebral disc degeneration. Eur. Radiol. 2012, 22, 2013–2019. [Google Scholar] [CrossRef] [Green Version]
- Welsch, G.H.; Trattnig, S.; Paternostro-Sluga, T.; Bohndorf, K.; Goed, S.; Stelzeneder, D.; Mamisch, T.C. Parametric T2 and T2* mapping techniques to visualize intervertebral disc degeneration in patients with low back pain: Initial results on the clinical use of 3.0 Tesla MRI. Skeletal Radiol. 2011, 40, 543–551. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Liu, Y.; Ding, Y.; Wu, X.; Zhang, N.; Lai, Q.; Zeng, X.; Wan, Z.; Dai, M.; Zhang, B. Quantitative evaluation of lumbar intervertebral disc degeneration by axial T2* mapping. Medicine 2017, 96, e9393. [Google Scholar] [CrossRef] [PubMed]
- Wu, N.; Liu, H.; Chen, J.; Zhao, L.; Zuo, W.; Ming, Y.; Liu, S.; Liu, J.; Su, X.; Gao, B.; et al. Comparison of apparent diffusion coefficient and T2 relaxation time variation patterns in assessment of age and disc level related intervertebral disc changes. PLoS ONE 2013, 8, e69052. [Google Scholar] [CrossRef]
- Kealey, S.M.; Aho, T.; Delong, D.; Barboriak, D.P.; Provenzale, J.M.; Eastwood, J.D. Assessment of apparent diffusion coefficient in normal and degenerated intervertebral lumbar disks: Initial experience. Radiology 2005, 235, 569–574. [Google Scholar] [CrossRef] [PubMed]
- Zaric, O.; Juras, V.; Szomolanyi, P.; Schreiner, M.; Raudner, M.; Giraudo, C.; Trattnig, S. Frontiers of Sodium MRI Revisited: From Cartilage to Brain Imaging. J. Magn. Reson. Imaging 2021, 54, 58–75. [Google Scholar] [CrossRef]
- Schleich, C.; Lutz, A.; Schmitt, B.; Wittsack, H.-J.; Miese, F.R. Magnetic Resonance gagCEST Imaging of the Human Lumbar Intervertebral Disc: Age Dependency of Glycosaminoglycan Content. In Proceedings of the Radiological Society of North America 2014 Scientific Assembly and Annual Meeting, Chicago, IL, USA, 30 November–5 December 2014. [Google Scholar]
- Brinkhof, S.; Nizak, R.; Khlebnikov, V.; Prompers, J.J.; Klomp, D.W.J.; Saris, D.B.F. Detection of early cartilage damage: Feasibility and potential of gagCEST imaging at 7T. Eur. Radiol. 2018, 28, 2874–2881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banjar, M.; Horiuchi, S.; Gedeon, D.N.; Yoshioka, H. Review of Quantitative Knee Articular Cartilage MR Imaging. Magn. Reson. Med. Sci. 2021. [Google Scholar] [CrossRef]
- Ogon, I.; Takebayashi, T.; Takashima, H.; Morita, T.; Terashima, Y.; Yoshimoto, M.; Yamashita, T. Imaging diagnosis for intervertebral disc. JOR Spine 2020, 3, e1066. [Google Scholar] [CrossRef]
- Chen, K.C.; Tran, B.; Biswas, R.; Statum, S.; Masuda, K.; Chung, C.B.; Bae, W.C. Evaluation of the disco-vertebral junction using ultrashort time-to-echo magnetic resonance imaging: Inter-reader agreement and association with vertebral endplate lesions. Skeletal. Radiol. 2016, 45, 1249–1256. [Google Scholar] [CrossRef] [Green Version]
- Siriwanarangsun, P.; Statum, S.; Biswas, R.; Bae, W.C.; Chung, C.B. Ultrashort time to echo magnetic resonance techniques for the musculoskeletal system. Quant. Imaging Med. Surg. 2016, 6, 731–743. [Google Scholar] [CrossRef] [Green Version]
- Mallio, C.A.; Rovira, A.; Parizel, P.M.; Quattrocchi, C.C. Exposure to gadolinium and neurotoxicity: Current status of preclinical and clinical studies. Neuroradiology 2020, 62, 925–934. [Google Scholar] [CrossRef] [PubMed]
- Mallio, C.A.; Lo Vullo, G.; Messina, L.; Beomonte Zobel, B.; Parizel, P.M.; Quattrocchi, C.C. Increased T1 Signal Intensity of the Anterior Pituitary Gland on Unenhanced Magnetic Resonance Images After Chronic Exposure to Gadodiamide. Invest. Radiol. 2020, 55, 25–29. [Google Scholar] [CrossRef] [PubMed]
- Martin Noguerol, T.; Raya, J.G.; Wessell, D.E.; Vilanova, J.C.; Rossi, I.; Luna, A. Functional MRI for evaluation of hyaline cartilage extracelullar matrix, a physiopathological-based approach. Br. J. Radiol. 2019, 92, 20190443. [Google Scholar] [CrossRef]
- Paajanen, H.; Komu, M.; Lehto, I.; Laato, M.; Haapasalo, H. Magnetization transfer imaging of lumbar disc degeneration. Correlation of relaxation parameters with biochemistry. Spine 1994, 19, 2833–2837. [Google Scholar] [CrossRef] [PubMed]
- Lewandrowski, K.U.; Muraleedharan, N.; Eddy, S.A.; Sobti, V.; Reece, B.D.; Ramirez Leon, J.F.; Shah, S. Artificial Intelligence Comparison of the Radiologist Report With Endoscopic Predictors of Successful Transforaminal Decompression for Painful Conditions of the Lumber Spine: Application of Deep Learning Algorithm Interpretation of Routine Lumbar Magnetic Resonance Imaging Scan. Int. J. Spine Surg. 2020, 14, S75–S85. [Google Scholar] [CrossRef]
- Azimi, P.; Yazdanian, T.; Benzel, E.C.; Aghaei, H.N.; Azhari, S.; Sadeghi, S.; Montazeri, A. A Review on the Use of Artificial Intelligence in Spinal Diseases. Asian Spine J. 2020, 14, 543–571. [Google Scholar] [CrossRef]
- Mallio, C.A.; Napolitano, A.; Castiello, G.; Giordano, F.M.; D’Alessio, P.; Iozzino, M.; Sun, Y.; Angeletti, S.; Russano, M.; Santini, D.; et al. Deep Learning Algorithm Trained with COVID-19 Pneumonia Also Identifies Immune Checkpoint Inhibitor Therapy-Related Pneumonitis. Cancers 2021, 13, 652. [Google Scholar] [CrossRef]
- Lewandrowsk, I.K.; Muraleedharan, N.; Eddy, S.A.; Sobti, V.; Reece, B.D.; Ramirez Leon, J.F.; Shah, S. Feasibility of Deep Learning Algorithms for Reporting in Routine Spine Magnetic Resonance Imaging. Int. J. Spine Surg. 2020, 14, S86–S97. [Google Scholar] [CrossRef]
- Zhu, X.; He, X.; Wang, P.; He, Q.; Gao, D.; Cheng, J.; Wu, B. A method of localization and segmentation of intervertebral discs in spine MRI based on Gabor filter bank. Biomed. Eng. Online 2016, 15, 32. [Google Scholar] [CrossRef] [Green Version]
- Galbusera, F.; Casaroli, G.; Bassani, T. Artificial intelligence and machine learning in spine research. JOR Spine 2019, 2, e1044. [Google Scholar] [CrossRef] [Green Version]
- D’Antoni, F.; Russo, F.; Ambrosio, L.; Vollero, L.; Vadala, G.; Merone, M.; Papalia, R.; Denaro, V. Artificial Intelligence and Computer Vision in Low Back Pain: A Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 10909. [Google Scholar] [CrossRef]
- Oktay, A.B.; Albayrak, N.B.; Akgul, Y.S. Computer aided diagnosis of degenerative intervertebral disc diseases from lumbar MR images. Comput. Med. Imaging Graph. 2014, 38, 613–619. [Google Scholar] [CrossRef] [PubMed]
- Vadala, G.; Russo, F.; Ambrosio, L.; Di Martino, A.; Papalia, R.; Denaro, V. Biotechnologies and Biomaterials in Spine Surgery. J. Biol. Regul. Homeost Agents 2015, 29, 137–147. [Google Scholar] [PubMed]
- Gonçalves, R.M.; Barbosa, M.A. Gene and Cell Delivery for Intervertebral Disc Degeneration; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar] [CrossRef]
- Rustenburg, C.M.E.; Faraj, S.S.A.; Ket, J.C.F.; Emanuel, K.S.; Smit, T.H. Prognostic factors in the progression of intervertebral disc degeneration: Which patient should be targeted with regenerative therapies? JOR Spine 2019, 2, e1063. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Manchikanti, L.; Kaye, A.D.; Abd-Elsayed, A. Treatment of Discogenic Low Back Pain: Current Treatment Strategies and Future Options-a Literature Review. Curr. Pain Headache Rep. 2019, 23, 86. [Google Scholar] [CrossRef]
- Vadala, G.; Ambrosio, L.; Russo, F.; Papalia, R.; Denaro, V. Stem Cells and Intervertebral Disc Regeneration Overview-What They Can and Can’t Do. Int. J. Spine Surg. 2021, 15, 40–53. [Google Scholar] [CrossRef]
- Orozco, L.; Soler, R.; Morera, C.; Alberca, M.; Sanchez, A.; Garcia-Sancho, J. Intervertebral disc repair by autologous mesenchymal bone marrow cells: A pilot study. Transplantation 2011, 92, 822–828. [Google Scholar] [CrossRef] [Green Version]
- Pettine, K.A.; Murphy, M.B.; Suzuki, R.K.; Sand, T.T. Percutaneous injection of autologous bone marrow concentrate cells significantly reduces lumbar discogenic pain through 12 months. Stem Cells 2015, 33, 146–156. [Google Scholar] [CrossRef]
- Pettine, K.; Suzuki, R.; Sand, T.; Murphy, M. Treatment of discogenic back pain with autologous bone marrow concentrate injection with minimum two year follow-up. Int. Orthop. 2016, 40, 135–140. [Google Scholar] [CrossRef]
- Kumar, H.; Ha, D.H.; Lee, E.J.; Park, J.H.; Shim, J.H.; Ahn, T.K.; Kim, K.T.; Ropper, A.E.; Sohn, S.; Kim, C.H.; et al. Safety and tolerability of intradiscal implantation of combined autologous adipose-derived mesenchymal stem cells and hyaluronic acid in patients with chronic discogenic low back pain: 1-year follow-up of a phase I study. Stem Cell Res. Ther. 2017, 8, 262. [Google Scholar] [CrossRef] [Green Version]
- Noriega, D.C.; Ardura, F.; Hernandez-Ramajo, R.; Martin-Ferrero, M.A.; Sanchez-Lite, I.; Toribio, B.; Alberca, M.; Garcia, V.; Moraleda, J.M.; Sanchez, A.; et al. Intervertebral Disc Repair by Allogeneic Mesenchymal Bone Marrow Cells: A Randomized Controlled Trial. Transplantation 2017, 101, 1945–1951. [Google Scholar] [CrossRef] [PubMed]
- Amirdelfan, K.; Bae, H.; McJunkin, T.; DePalma, M.; Kim, K.; Beckworth, W.J.; Ghiselli, G.; Bainbridge, J.S.; Dryer, R.; Deer, T.R.; et al. Allogeneic mesenchymal precursor cells treatment for chronic low back pain associated with degenerative disc disease: A prospective randomized, placebo-controlled 36-month study of safety and efficacy. Spine J. 2021, 21, 212–230. [Google Scholar] [CrossRef] [PubMed]
Technique | Biochemical Changes Evaluated | Normal IVD Intensity | Degenerated IVD Signal Intensity |
---|---|---|---|
T1ρ relaxation mapping | PG and water count, collagen anisotropy | High | Low |
T2 relaxation mapping | PG and water content | High | Low |
Quantitative T2* mapping | Macromolecule architecture and water mobility | High | Low |
DWI with ADC and DTI with FA | Water diffusion, tissue composition and organization | High ADC Low FA | Low ADC High FA |
23Na-MRI | Na+ concentration, GAG/PG content indirectly | High | Low |
GagCEST | Exchange of hydroxyl-protons between GAG and bulk water, GAG content | High | Low |
Ultrashort TE (and zero-TE sequences) | Tissue composition and organization | Intermediate/high High GAG/collagen | Low Low GAG/collagen |
MRS | Levels of metabolites: lactate, alanine, GAG | High GAG/collagen High GAG/lactate Low lactate/collagen ratio | Low GAG/collagen Low GAG/lactate High lactate/collagen ratio |
dGEMRIC | Diffusion rate, GAG content indirectly | High or low | Low or high |
MT and MTR | Exchange process between free and macromolecule-bound water protons, collagen content and structural integrity of the matrix | MT high | MT high |
Authors | Country | Aim/Rationale | No. of Patients | MRI | Sequence | Main Conclusion |
---|---|---|---|---|---|---|
Perri et al. [34] | Italy | Evaluate the adequacy of DTI/FA mapping and T2-WI in the assessment of anisotropic water diffusion variations of AF fibers | 75 | 3 T scanner | T2-WI FA/DTI | DTI and FA mapping can be useful in detecting AF fissures and lumbar disc herniation |
Auerbach et al. [35] | USA | Assess the feasibility of T1ρ imaging to detect DDD | 10 | 1.5 T scanner | T2-WI T1ρ-WI | T1ρ can be used as a non-invasive biomarker of proteoglycan loss and early DDD |
Gornet et al. [36] | USA | Determine MRS usefulness in quantifying DDD severity and predict surgical outcomes | 139 | 3 T and 1.5 T scanners | MRS | MRS correlates with Pfirrmann grade |
Frenken et al. [37] | Germany | Evaluate gagCEST ability to detect GAG content in patients with LBP and lumbar radiculopathy | 18 | 3 T scanner | GagCEST | GagCEST imaging is useful in detecting pre-morphological DDD |
Vadapalli et al. [12] | India | Assess FA maps and T2 values ability to predict DDD | 118 | 3 T scanner | T2-WI FA/DTI | FA maps and T2 values are potential biomarkers of DDD and predict disc health |
Noebauer-Huhmann et al. [38] | Austria | Compare 7 T 23Na-MRI with T2 mapping and morphologic scoring at 3 T in the evaluation of lumbar IVDs | 10 | 7 T and 3 T scanners | T2-WI 23Na-MRI | 23Na-MRI and T2 mapping can help characterize biochemical changes in IVDs and are related to the Pfirrmann score |
Yoon et al. [32] | South Korea | Assess T1ρ and T2 values correlation with Pfirrmann grades and morphologic changes | 22 | 3 T scanner | T2-WI T1ρ-WI | T1ρ and T2 values present a correlation with DDD and morphologic changes in the IVD |
Zobel et al. [39] | Italy | Evaluate T1ρ- and T2-WI for early degeneration assessment and correlate T1ρ value with Pfirrmann grade, sex, and BMI | 63 | 1.5 T scanner | T2-WI T1ρ-WI | T1ρ values correlate with Pfirrmann grade and can be used to identify early DDD |
Shen et al. [40] | China | Assess the capability of DWI, DTI, and T2* mapping to depict microstructural changes of early DDD | 40 | 1.5 T scanner | ADC FA T2*-WI | ADC, FA, and T2* values may quantitatively reflect the microstructural characteristics of the NP |
Wang et al. [41] | USA | Validate MTR as a noninvasive method for spatial quantification of IVD collagen content | 4 | 1.5 T scanner | T2-WI MTR | MTR may serve as a noninvasive diagnostic tool for the diagnosis of early DDD |
Schleich et al. [42] | Germany | Assess dGEMRIC feasibility as a biomarker for DDD | 9 | 3 T scanner | dGEMRIC | Significantly lower dGEMRIC index suggested GAG depletion in DDD |
Berg-Johansen et al. [43] | USA | Investigate the association between cartilage endplate thickness and DDD | 6 | 3 T scanner | UTE T1ρ | UTE and T1ρ are associated with DDD |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mallio, C.A.; Vadalà, G.; Russo, F.; Bernetti, C.; Ambrosio, L.; Zobel, B.B.; Quattrocchi, C.C.; Papalia, R.; Denaro, V. Novel Magnetic Resonance Imaging Tools for the Diagnosis of Degenerative Disc Disease: A Narrative Review. Diagnostics 2022, 12, 420. https://doi.org/10.3390/diagnostics12020420
Mallio CA, Vadalà G, Russo F, Bernetti C, Ambrosio L, Zobel BB, Quattrocchi CC, Papalia R, Denaro V. Novel Magnetic Resonance Imaging Tools for the Diagnosis of Degenerative Disc Disease: A Narrative Review. Diagnostics. 2022; 12(2):420. https://doi.org/10.3390/diagnostics12020420
Chicago/Turabian StyleMallio, Carlo A., Gianluca Vadalà, Fabrizio Russo, Caterina Bernetti, Luca Ambrosio, Bruno Beomonte Zobel, Carlo C. Quattrocchi, Rocco Papalia, and Vincenzo Denaro. 2022. "Novel Magnetic Resonance Imaging Tools for the Diagnosis of Degenerative Disc Disease: A Narrative Review" Diagnostics 12, no. 2: 420. https://doi.org/10.3390/diagnostics12020420
APA StyleMallio, C. A., Vadalà, G., Russo, F., Bernetti, C., Ambrosio, L., Zobel, B. B., Quattrocchi, C. C., Papalia, R., & Denaro, V. (2022). Novel Magnetic Resonance Imaging Tools for the Diagnosis of Degenerative Disc Disease: A Narrative Review. Diagnostics, 12(2), 420. https://doi.org/10.3390/diagnostics12020420