Clinical Applications of Somatostatin Receptor (Agonist) PET Tracers beyond Neuroendocrine Tumors
Abstract
:1. Introduction
2. Materials and Methods
3. Results
Inflammatory Disease | Cohort Studies (Table 3) | Case Reports |
---|---|---|
Takayasu arteritis | 1 ([15]) | |
Graves ophthalmopathy | 2 ([16,17]) | |
IgG mediated lymphadenopathy | 1 ([18]) | |
Endometriosis | 1 ([19]) | |
Idiopathic pulmonary fibrosis | 1 ([20]) | |
Pulmonary tuberculosis | 1 ([21]) | |
Sarcoidosis | ||
| 2 ([13,22]) | |
| 4 ([23,24,25,26]) | 4 ([27,28,29,30]) |
| 1 ([31]) | |
Myocardial infarction associated inflammation | 2 ([32,33]) | |
Atherosclerosis | ||
| 1 ([34]) | |
| 2 ([35,36]) | |
Ischemia in postoperative stroke | 1 ([37]) | |
Neoplasia | Cohort Studies (Table 4) | Case Reports |
Benign | ||
Phosphaturic mesenchymal tumors | 13 ([14,38,39,40,41,42,43,44,45,46,47,48,49]) | 17 ([50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66]) |
Juvenile angiofibroma | 1 ([67]) | |
Enchondroma | 1 ([68]) | |
Vertebral hemangioma | 1 ([69]) | |
Uterine leiomyoma | 1 ([70]) | |
Malignant | ||
Multiple myeloma | 1 ([71]) | 1 ([72]) |
Epithelioid hemangioendothelioma | 2 ([73,74]) | |
Renal clear cell carcinoma | 3 ([75,76,77]) | |
Gastrointestinal stromal tumor | 1 ([78]) | |
Hepatocellular carcinoma | 1 ([79]) | |
Choroidal melanoma | 1 ([80]) | |
Osteosarcoma | 1 ([81]) | |
Oligodendroglioma | 1 ([82]) |
Author | Ref | Type of Study | Pt | Radiotracer Scanner, Injected Activity and Delay before Acquisition | Comments |
---|---|---|---|---|---|
Endometriosis | |||||
Fastrez, M. (2017) | [19] | Pilot study | 12 | [68Ga]Ga-DOTA-TATE PET/CT 2 MBq/kg, 60 min | DOTATATE showed uptake in rectovaginal deep infiltrating endometriosis and adenomyoma, but not in superficial peritoneal endometriosis or ovarian endometrioma. Immunohistochemistry used to confirm findings. |
Idiopathic pulmonary fibrosis | |||||
Ambrosini, V. (2010) | [20] | Prospective | 14 | [68Ga]Ga-DOTA-NOC PET/CT (GE discovery STE) 120–180 MBq, 60 min | DOTANOC uptake corresponded to areas of HRCT anomalies in patients with idiopathic pulmonary fibrosis, suggesting SSTR expression. |
Pulmonary tuberculosis | |||||
Naftalin, C. (2020) | [21] | Prospective | 14 | [68Ga]Ga-DOTA-NOC, PET/MR (Siemens biograph mMR) 191.7 ± 9.3 MBq, dynamic uptake image analysis on data after 60 min [18F]FDG | DOTANOC able to detect pulmonary tuberculosis lesions, but [18F]FDG was more sensitive for both active and sub-clinical lesions. |
Systemic sarcoidosis | |||||
Sharma, S. (2018) | [13] | Prospective | 39 | [68Ga]Ga-DOTA-NOC PET/CT (Siemens biograph mCT) 1110–1480 MBq, 30 min | 27/39 patients symptomatic sarcoidosis with thoracic involvement, increased DOTANOC uptake in 25/27. |
Nobashi, T. (2016) | [22] | Prospective | 20 | [68Ga]Ga-DOTA-TOC PET/CT (GE Discovery STE) 119.7 ± 29.3 MBq, 67.5 ± 8.5 min | SSTR PET positive in 19 patients, 67Ga-scintigraphy in 17. Suggests SSTR PET is superior in detecting sarcoidosis lesions. |
Cardiac sarcoidosis | |||||
Bravo, P. (2021) | [23] | Pilot study | 13 | [68Ga]Ga-DOTA-TATE, PET/CT (GE Discovery RX or Lightspeed VCT 64) 2 MBq/kg, 60 min [18F]FDG PET/CT | DOTATATE imaging less sensitive than [18F]FDG for detection of myocardial inflammation. |
Gormsen, L. (2016) | [24] | Prospective | 19 | [68Ga]Ga-DOTA-NOC PET/CT(Siemens Biograph 64), 3 MBq/kg, 90 min [18F]FDG, | Large proportion of [18F]FDG-PET images were inconclusive, better diagnostic accuracy with DOTANOC in known/suspected cardiac sarcoidosis. |
Pizarro, C. (2018) | [25] | Prospective | 17 | [68Ga]Ga-DOTA-TOC PET/CT(Siemens Biograph 2) 2 MBq/kg, 65 ± 28 min | Reported SSTR PET allowed for visualization of acute cardiac sarcoidosis and absent uptake correlated with use of immunosuppressants. SSTR PET may be useful in treatment response. |
Lapa, C. (2016) | [26] | Prospective | 15 | [68Ga]Ga-DOTA-NOC PET/CT (Siemens Biograph 2 or mCT 64) 124 ± 31 MBq, 60 min | SSTR PET in high concordance with cardiac MRI, in patients with systemic sarcoidosis and myocardial involvement. |
Myocardial infarction associated inflammation | |||||
Tarkin, J. (2019) | [32] | Prospective | 12 | [68Ga]Ga-DOTA-TATE As for Tarkin (2017) [34] | DOTATATE imaging detects myocardial inflammation post infarction, both in old and ischemic injury, possibly providing a biomarker for inflammation in heart failure. |
Lapa, C. (2015) | [33] | Prospective | 12 | [68Ga]Ga-DOTA-TOC PET/CT (Siemens Biograph mCT 64), 104 ± 30 MBq, 60 min | DOTATOC correlates with cardiac MRI when detecting myocardial infarction, less specific with myocarditis. |
Atherosclerosis | |||||
Tarkin, J. (2017) | [34] | Prospective | 42 | [68Ga]Ga-DOTA-TATE PET/CT (GE Discovery 690)147.8 ± 31.6 MBq, dynamic up to 90 min or static after 60 min [18F]FDG | DOTATATE provides quantifiable, cell-specific marker of atherosclerotic inflammation that outperforms [18F]FDG in coronary arteries. |
Lee, R. (2018) | [35] | Retrospective | 50 | [68Ga]Ga-DOTA-TOC PET/CT(Siemens Biograph mCT 40 or 64) 185 MBq, 60 min | DOTATOC findings in thoracic aorta correlates significantly with cardiovascular risk factors. |
Pedersen, S. (2015) | [36] | Prospective | 10 | [64Cu]Cu-DOTA-TATE PET/MR (Siemens Biograph mMR), 154 MBq, 85 & 299 min | DOTATATE accumulates in atherosclerotic plaques of the carotid artery. Potential for identifying vulnerable plaques. |
Author | Ref | Type of Study | Pt | Radiotracer Scanner, Injected Activity and Delay before Acquisition | Comments |
---|---|---|---|---|---|
Phosphaturic mesenchymal tumors (PMT) | |||||
John, J. (2019) | [38] | Retrospective | 16 | [68Ga]Ga-DOTA-TATE PET/CT(Siemens Biograph) 75–185 MBq, 30–45 min | Out of 16 patients with clinically suspected oncogenic osteomalacia 13 patients were found to be SSTR PET positive for a possible mesenchymal tumour. 10 patients underwent surgery, all of which biopsy confirmed PMT. |
Paquet, M. (2018) | [40] | Prospective | 15 | [68Ga]Ga-DOTA-TOC PET/CT(Siemens Biograph mCT, Phillips GeminiTF16), 1.6 MBq/kg, 60 min. | 9/15 identified suspect tumor, 8 removed surgically, all of them histologically proven to be PMT. |
Singh, D. (2017) | [49] | Prospective | 17 | [68Ga]Ga-DOTA-NOC PET/CT (Siemens mCT biograph 64), 111–148 MBq, 45 ± 15 min. | DOTANOC PET/CT revealed 52 lesions in 17 patients with elevated FGF-23 and hypophosphatemia, where 11 were highly suspicious for culprit lesions. Subsequent anatomical imaging with CT/MRI showed concordant results in 7 out of 9 patients. These lesions were excised and histologically verified PMTs. Multiple lesions make it difficult to identify the culprit lesion. |
Satyaraddi, A. (2017) | [41] | Retrospective | 13 | [68Ga]Ga-DOTA-TATE, [18F]FDG Scan details not given | DOTATATE revealed PMT in 9/9 patients, of whom 3 declined surgery. Other 6 had histologically verified PMTs. |
González, G. (2017) | [42] | Retrospective | 6 | [68Ga]Ga-DOTA-TATE Scan details not given | Two tumors located using DOTATATE |
El-Maouche, D. (2016) | [43] | Prospective | 11 | [68Ga]Ga-DOTA-TATE PET/CT(Siemens mCT), ca 185 MBq, 60 min [111In]In-OCT, [18F]FDG | 6/11 patients had tumor successfully identified. DOTATATE identified 6/6, [111In]In-OCT and [18F]FDG both with 4/6. |
Bhavani, N. (2016) | [44] | Retrospective | 10 | [68Ga]Ga-DOTA-NOC PET/CT (GE Discovery 609) 111–185 MBq, 60 min | DOTANOC detected PMT in 9/10 cases. 6/10 made full clinical recovery after complete resection. |
Zhang, J. (2015) | [45] | Retrospective | 54 | [68Ga]Ga-DOTA-TATE PET/CT(Siemens Biograph 64) 111–148 MBq, ca 45 min | DOTATATE positive in 44 patients, where 33 had surgery to remove lesions. 32 histologically confirmed PMT. 10 who were not positive responded well to conservative treatment and thus PMT can be ruled out. |
Agrawal, K. (2015) | [46] | Retrospective | 6 | [68Ga]Ga-DOTA-TATE PET/CT(GE Discovery STE-16) 1.5 MBq/kg, 45–60 min, [18F]FDG | [18F]FDG-PET identified PMT in 2/4 patients. DOTATATE identified PMT in 5/6 patients. |
Jadhav, S. (2014) | [47] | Retrospective | 16 | [68Ga]Ga-DOTA-TATE PET/CT (Discovery STE) 74–111 MBq, 60–90 min. [18F]FDG, [99Tc]Tc-HYNIC-TOC | 9/16 patients had tumor successfully identified. DOTATATE, HYNIC-TOC (tectrotyd) both identified 7/7, [18F]FDG 4/8. |
Breer, S. (2014) | [14] | Prospective | 5 | [68Ga]Ga-DOTA-TATE PET/CT(Siemens Biograph), 58–110 MBq, 20 min, [111In]In-OCT | [111In]In-OCT SPECT-CT identified 1/5 tumors, DOTATATE-PET 5/5. Histologically confirmed PMT. |
Clifton-Bligh, R. (2013) | [48] | Prospective | 6 | [68Ga]Ga-DOTA-TATE PET/CT, 103–226 MBq, 45–60 min | DOTATATE detected PMT in all 6 cases. 5/6 made full clinical recovery after resection. Patient with symptoms with residual on follow up PET. |
Juvenile angiofibroma | |||||
Gronkiewicz, Z. (2016) | [67] | Prospective | 6 | [68Ga]Ga-DOTA-TATE PET/CT (Siemens Biograph 64) 120–160 MBq, 60 min | DOTATATE showed uptake in areas matching the pathologic tissue in juvenile angiofibroma. |
Multiple myeloma | |||||
Sonmezoglu, K. (2017) | [71] | Prospective | 21 | [68Ga]Ga-DOTA-TATE PET/CT (Siemens Biograph 6 or GE Discovery V710), 100–150 MBq, 45–60 min. [18F]FDG | No significant difference was found between the two modalities in terms of lesion numbers detected in multiple myoma. However, diffuse bone marrow uptake of DOTATATE seems to be a predicting factor for overall survival. |
4. Discussion
4.1. Inflammation
4.1.1. Diverse Inflammatory Processes
4.1.2. Sarcoidosis
4.1.3. Other Causes of Myocardial Inflammation
4.1.4. Atherosclerosis
4.1.5. Neuroinflammation
4.2. Benign Neoplasia
4.2.1. Tumor-Induced Osteomalacia and Phosphaturic Mesenchymal Tumors
4.2.2. Other Benign Tumors
4.3. Malignant Disease
4.3.1. Multiple Myeloma (MM)
4.3.2. Epithelioid Hemangioendothelioma (EHE)
4.3.3. Renal Cell Carcinoma Metastases
4.3.4. Various Malignancies Reported as Case Reports
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Patel, Y.C.; Reichlin, S. Somatostatin in Hypothalamus, Extrahypothalamic Brain, and Peripheral Tissues of the Rat. Endocrinology 1978, 102, 523–530. [Google Scholar] [CrossRef]
- Ando, H. Chapter 5-Somatostatin. In Handbook of Hormones; Takei, Y., Ando, H., Tsutsui, K., Eds.; Academic Press: San Diego, CA, USA, 2016; p. 36-e5. [Google Scholar]
- Narayanan, S.; Kunz, P.L. Role of Somatostatin Analogues in the Treatment of Neuroendocrine Tumors. J. Natl. Compr. Cancer Netw. 2015, 13, 109–117. [Google Scholar] [CrossRef] [Green Version]
- Bhanat, E.; Koch, C.A.; Parmar, R.; Garla, V.; Vijayakumar, V. Somatostatin Receptor Expression in Non-Classical Locations–Clinical Relevance? Rev. Endocr. Metab. Disord. 2018, 19, 123–132. [Google Scholar] [CrossRef]
- Pauwels, E.; Cleeren, F.; Bormans, G.; Deroose, C.M. Somatostatin Receptor PET Ligands—The Next Generation for Clinical Practice. Am. J. Nucl. Med. Mol. Imaging 2018, 8, 311–331. [Google Scholar] [PubMed]
- Volante, M.; Bozzalla-Cassione, F.; Papotti, M. Somatostatin Receptors and Their Interest in Diagnostic Pathology. Endocr. Pathol. 2004, 15, 275–292. [Google Scholar] [CrossRef]
- Reubi, J.C.; Schaer, J.C.; Markwalder, R.; Waser, B.; Horisberger, U.; Laissue, J. Distribution of Somatostatin Receptors in Normal and Neoplastic Human Tissues: Recent Advances and Potential Relevance. Yale J. Biol. Med. 1998, 70, 471–479. [Google Scholar]
- Cascini, G.L.; Cuccurullo, V.; Tamburrini, O.; Rotondo, A.; Mansi, L. Peptide Imaging with Somatostatin Analogues: More than Cancer Probes. Curr. Radiopharm. 2013, 6, 36–40. [Google Scholar] [CrossRef] [PubMed]
- Bozkurt, M.F.; Virgolini, I.; Balogova, S.; Beheshti, M.; Rubello, D.; Decristoforo, C.; Ambrosini, V.; Kjaer, A.; Delgado-Bolton, R.; Kunikowska, J.; et al. Guideline for PET/CT Imaging of Neuroendocrine Neoplasms with 68Ga-DOTA-Conjugated Somatostatin Receptor Targeting Peptides and 18F-DOPA. Eur. J. Nucl. Med. Mol. Imaging 2017, 44, 1588–1601, Erratum in Eur. J. Nucl. Med. Mol. Imaging 2017, 44, 2150–2151. [Google Scholar] [CrossRef]
- Laudicella, R.; Albano, D.; Annunziata, S.; Calabrò, D.; Argiroffi, G.; Abenavoli, E.; Linguanti, F.; Vento, A.; Bruno, A.; Alongi, P.; et al. Theragnostic Use of Radiolabelled Dota-Peptides in Meningioma: From Clinical Demand to Future Applications. Cancers 2019, 11, 1412. [Google Scholar] [CrossRef] [Green Version]
- Galldiks, N.; Albert, N.L.; Sommerauer, M.; Grosu, A.L.; Ganswindt, U.; Law, I.; Preusser, M.; Le Rhun, E.; Vogelbaum, M.A.; Zadeh, G.; et al. PET Imaging in Patients with Meningioma—Report of the RANO/PET Group. Neuro-Oncol. 2017, 19, 1576–1587. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Singh, A.; Sharma, S.K.; Tripathi, M.; Das, C.J.; Kumar, R. Gallium-68 DOTA-NOC PET/CT as an Alternate Predictor of Disease Activity in Sarcoidosis. Nucl. Med. Commun. 2018, 39, 768–778. [Google Scholar] [CrossRef] [PubMed]
- Breer, S.; Brunkhorst, T.; Beil, F.T.; Peldschus, K.; Heiland, M.; Klutmann, S.; Barvencik, F.; Zustin, J.; Gratz, K.-F.; Amling, M. 68Ga DOTA-TATE PET/CT Allows Tumor Localization in Patients with Tumor-Induced Osteomalacia but Negative 111In-Octreotide SPECT/CT. Bone 2014, 64, 222–227. [Google Scholar] [CrossRef]
- Tarkin, J.M.; Wall, C.; Gopalan, D.; Aloj, L.; Manavaki, R.; Fryer, T.D.; Aboagye, E.; Bennett, M.R.; Peters, J.E.; Rudd, J.H.; et al. Novel Approach to Imaging Active Takayasu Arteritis Using Somatostatin Receptor Positron Emission Tomography/Magnetic Resonance Imaging. Circ. Cardiovasc. Imaging 2020, 13, e010389. [Google Scholar] [CrossRef]
- Damle, N.A.; Arora, S.; Meel, R.; Lata, K.; Tandon, N.; Sharma, S.; Bal, C. Graves’ Ophthalmopathy on68Ga-DOTANOC Positron Emission Tomography/Computed Tomography. Indian J. Nucl. Med. 2019, 34, 338–340. [Google Scholar] [CrossRef]
- Pichler, R.; Sonnberger, M.; Dorninger, C.; Assar, H.; Stojakovic, T. Ga-68-DOTA-NOC PET/CT Reveals Active Graves’ Orbitopathy in a Single Extraorbital Muscle. Clin. Nucl. Med. 2011, 36, 910–911. [Google Scholar] [CrossRef]
- Cheng, Z.; Song, S.; Han, Y.; Zou, S.; Zhu, X. Elevated 68Ga-DOTATATE Activity in IgG4-Related Lymphadenopathy. Clin. Nucl. Med. 2018, 43, 773–776. [Google Scholar] [CrossRef]
- Fastrez, M.; Artigas, C.; Sirtaine, N.; Wimana, Z.; Caillet, M.; Rozenberg, S.; Flamen, P. Value of the 68 Ga-DOTATATE PET-CT in the Diagnosis of Endometriosis. A Pilot Study. Eur. J. Obstet. Gynecol. Reprod. Biol. 2017, 212, 69–74. [Google Scholar] [CrossRef]
- Ambrosini, V.; Zompatori, M.; De Luca, F.; Antonia, D.; Allegri, V.; Nanni, C.; Malvi, D.; Tonveronachi, E.; Fasano, L.; Fabbri, M.; et al. 68Ga-DOTANOC PET/CT Allows Somatostatin Receptor Imaging in Idiopathic Pulmonary Fibrosis: Preliminary Results. J. Nucl. Med. 2010, 51, 1950–1955. [Google Scholar] [CrossRef] [Green Version]
- Naftalin, C.M.; Leek, F.; Hallinan, J.T.P.D.; Khor, L.K.; Totman, J.J.; Wang, J.; Wang, Y.T.; Paton, N.I. Comparison of 68Ga-DOTANOC with 18F-FDG Using PET/MRI Imaging in Patients with Pulmonary Tuberculosis. Sci. Rep. 2020, 10, 1–9. [Google Scholar] [CrossRef]
- Nobashi, T.; Nakamoto, Y.; Kubo, T.; Ishimori, T.; Handa, T.; Tanizawa, K.; Sano, K.; Mishima, M.; Togashi, K. The Utility of PET/CT with 68Ga-DOTATOC in Sarcoidosis: Comparison with 67Ga-Scintigraphy. Ann. Nucl. Med. 2016, 30, 544–552. [Google Scholar] [CrossRef] [PubMed]
- Bravo, P.E.; Bajaj, N.; Padera, R.F.; Morgan, V.; Hainer, J.; Bibbo, C.F.; Harrington, M.; Park, M.-A.; Hyun, H.; Robertson, M.; et al. Feasibility of Somatostatin Receptor-Targeted Imaging for Detection of Myocardial Inflammation: A Pilot Study. J. Nucl. Cardiol. 2019, 28, 1089–1099. [Google Scholar] [CrossRef] [PubMed]
- Gormsen, L.C.; Haraldsen, A.; Kramer, S.; Dias, A.H.; Kim, W.Y.; Borghammer, P. A Dual Tracer 68Ga-DOTANOC PET/CT and 18F-FDG PET/CT Pilot Study for Detection of Cardiac Sarcoidosis. EJNMMI Res. 2016, 6, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pizarro, C.; Kluenker, F.; Dabir, D.; Thomas, D.; Gaertner, F.C.; Essler, M.; Grohé, C.; Nickenig, G.; Skowasch, D. Cardiovascular Magnetic Resonance Imaging and Clinical Performance of Somatostatin Receptor Positron Emission Tomography in Cardiac Sarcoidosis. ESC Heart Fail. 2017, 5, 249–261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lapa, C.; Reiter, T.; Kircher, M.; Schirbel, A.; Werner, R.A.; Pelzer, T.; Pizarro, C.; Skowasch, D.; Thomas, L.; Schlesinger-Irsch, U.; et al. Somatostatin Receptor Based PET/CT in Patients with the Suspicion of Cardiac Sarcoidosis: An Initial Comparison to Cardiac MRI. Oncotarget 2016, 7, 77807–77814. [Google Scholar] [CrossRef] [PubMed]
- Vachatimanont, S.; Kunawudhi, A.; Promteangtrong, C.; Chotipanich, C. Benefits of [68Ga]-DOTATATE PET-CT Comparable to [18F]-FDG in Patient with Suspected Cardiac Sarcoidosis. J. Nucl. Cardiol. 2020, 1–3. [Google Scholar] [CrossRef]
- Imperiale, A.; Poindron, V.; Martinez, M.; Ohlmann, P.; Schindler, T.H.; El Ghannudi, S. 68Ga-DOTATOC PET for Treatment Efficacy Evaluation of Cardiac Sarcoidosis. Clin. Nucl. Med. 2020, 45, e416–e418. [Google Scholar] [CrossRef]
- Passah, A.; Kaushik, P.; Patel, C.; Parakh, N. Gallium-68 DOTANOC Scan in a Patient with Suspected Cardiac Sarcoidosis. J. Nucl. Cardiol. 2018, 25, 2177–2178. [Google Scholar] [CrossRef]
- Reiter, T.; Werner, R.A.; Bauer, W.; Lapa, C. Detection of Cardiac Sarcoidosis by Macrophage-Directed Somatostatin Receptor 2-Based Positron Emission Tomography/Computed Tomography. Eur. Heart J. 2015, 36, 2404. [Google Scholar] [CrossRef] [Green Version]
- Unterrainer, M.; Ruf, V.; Ilhan, H.; Vettermann, F.; Holzgreve, A.; Cyran, C.C.; Tonn, J.-C.; Bartenstein, P.; Albert, N.L. Teaching NeuroImages: Advanced Imaging of Neurosarcoidosis with 68Ga-DOTATATE PET/CT. Neurology 2019, 92, e2512–e2513. [Google Scholar] [CrossRef]
- Tarkin, J.M.; Calcagno, C.; Dweck, M.R.; Evans, N.R.; Chowdhury, M.M.; Gopalan, D.; Newby, D.E.; Fayad, Z.A.; Bennett, M.R.; Rudd, J.H. 68Ga-DOTATATE PET Identifies Residual Myocardial Inflammation and Bone Marrow Activation After Myocardial Infarction. J. Am. Coll. Cardiol. 2019, 73, 2489–2491. [Google Scholar] [CrossRef] [PubMed]
- Lapa, C.; Reiter, T.; Li, X.; Werner, R.A.; Samnick, S.; Jahns, R.; Buck, A.; Ertl, G.; Bauer, W. Imaging of Myocardial Inflammation with Somatostatin Receptor Based PET/CT—A Comparison to Cardiac MRI. Int. J. Cardiol. 2015, 194, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Tarkin, J.; Joshi, F.R.; Evans, N.R.; Chowdhury, M.M.; Figg, N.L.; Shah, A.V.; Starks, L.T.; Martin-Garrido, A.; Manavaki, R.; Yu, E.; et al. Detection of Atherosclerotic Inflammation by 68 Ga-DOTATATE PET Compared to [18 F]FDG PET Imaging. J. Am. Coll. Cardiol. 2017, 69, 1774–1791. [Google Scholar] [CrossRef] [PubMed]
- Lee, R.; Kim, J.; Paeng, J.C.; Byun, J.W.; Cheon, G.J.; Lee, D.S.; Chung, J.-K.; Kang, K.W. Measurement of 68Ga-DOTATOC Uptake in the Thoracic Aorta and Its Correlation with Cardiovascular Risk. Nucl. Med. Mol. Imaging 2018, 52, 279–286. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, S.F.; Sandholt, B.V.; Keller, S.H.; Hansen, A.E.; Clemmensen, A.E.; Sillesen, H.; Højgaard, L.; Ripa, R.S.; Kjær, A. 64 Cu-DOTATATE PET/MRI for Detection of Activated Macrophages in Carotid Atherosclerotic Plaques. Arter. Thromb. Vasc. Biol. 2015, 35, 1696–1703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dundar, A.; Bold, M.S.; Agac, B.; Kendi, A.T.; Friedman, S.N. Stroke Detection with 3 Different PET Tracers. Radiol. Case Rep. 2019, 14, 1447–1451. [Google Scholar] [CrossRef] [PubMed]
- Hephzibah, J.; John, J.R.; Oommen, R.; Shanthly, N.; Mathew, D. Ga-68 DOTATATE Positron Emission Tomography-Computed Tomography Imaging in Oncogenic Osteomalacia: Experience from a Tertiary Level Hospital in South India. Indian J. Nucl. Med. 2019, 34, 188–193. [Google Scholar] [CrossRef]
- Broski, S.M.; Folpe, A.L.; Wenger, D.E. Imaging Features of Phosphaturic Mesenchymal Tumors. Skelet. Radiol. 2018, 48, 119–127. [Google Scholar] [CrossRef]
- Paquet, M.; Gauthé, M.; Yin, J.Z.; Nataf, V.; Bélissant, O.; Orcel, P.; Roux, C.; Talbot, J.-N.; Montravers, F. Diagnostic Performance and Impact on Patient Management of 68Ga-DOTA-TOC PET/CT for Detecting Osteomalacia-Associated Tumours. Eur. J. Pediatrics 2018, 45, 1710–1720. [Google Scholar] [CrossRef]
- Satyaraddi, A.; Cherian, K.E.; Shetty, S.; Kapoor, N.; Jebasingh, F.K.; Cherian, V.M.; Hephzibah, J.; Prabhu, A.J.; Thomas, N.; Paul, T.V. Musculoskeletal Oncogenic Osteomalacia–An Experience from a Single Centre in South India. J. Orthop. 2017, 14, 184–188. [Google Scholar] [CrossRef] [Green Version]
- González, G.; Baudrand, R.; Sepúlveda, M.F.; Vucetich, N.; Guarda, F.J.; Villanueva, P.; Contreras, O.; Villa, A.; Salech, F.; Toro, L.; et al. Tumor-Induced Osteomalacia: Experience from a South American Academic Center. Osteoporos. Int. 2017, 28, 2187–2193. [Google Scholar] [CrossRef] [PubMed]
- El-Maouche, D.; Sadowski, S.M.; Papadakis, G.Z.; Guthrie, L.; Cottle-Delisle, C.; Merkel, R.; Millo, C.; Chen, C.C.; Kebebew, E.; Collins, M.T. 68Ga-DOTATATE for Tumor Localization in Tumor-Induced Osteomalacia. J. Clin. Endocrinol. Metab. 2016, 101, 3575–3581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhavani, N.; Asirvatham, A.R.; Kallur, K.; Menon, A.S.; Pavithran, P.V.; Nair, V.; Vasukutty, J.R.; Menon, U.; Kumar, H. Utility of Gallium-68 DOTANOC PET/CT in the Localization of Tumour-Induced Osteomalacia. Clin. Endocrinol. 2015, 84, 134–140. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhu, Z.; Zhong, D.; Dang, Y.; Xing, H.; Du, Y.; Jing, H.; Qiao, Z.; Xing, X.; Zhuang, H.; et al. 68Ga DOTATATE PET/CT Is an Accurate Imaging Modality in the Detection of Culprit Tumors Causing Osteomalacia. Clin. Nucl. Med. 2015, 40, 642–646. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, K.; Bhadada, S.; Mittal, B.R.; Shukla, J.; Sood, A.; Bhattacharya, A.; Bhansali, A. Comparison of 18F-FDG and 68Ga DOTATATE PET/CT in Localization of Tumor Causing Oncogenic Osteomalacia. Clin. Nucl. Med. 2015, 40, e6–e10. [Google Scholar] [CrossRef] [PubMed]
- Jadhav, S.; Kasaliwal, R.; Lele, V.; Rangarajan, V.; Chandra, P.; Shah, H.; Malhotra, G.; Jagtap, V.S.; Budyal, S.; Lila, A.R.; et al. Functional Imaging in Primary Tumour-Induced Osteomalacia: Relative Performance of FDG PET/CT vs. Somatostatin Receptor-Based Functional Scans: A Series of Nine Patients. Clin. Endocrinol. 2014, 81, 31–37. [Google Scholar] [CrossRef]
- Clifton-Bligh, R.; Hofman, M.S.; Duncan, E.; Sim, I.-W.; Darnell, D.; Clarkson, A.; Wong, T.; Walsh, J.; Gill, A.J.; Ebeling, P.R.; et al. Improving Diagnosis of Tumor-Induced Osteomalacia with Gallium-68 DOTATATE PET/CT. J. Clin. Endocrinol. Metab. 2013, 98, 687–694. [Google Scholar] [CrossRef]
- Singh, D.; Chopra, A.; Ravina, M.; Kongara, S.; Bhatia, E.; Kumar, N.; Gupta, S.; Yadav, S.; Dabadghao, P.; Yadav, R.; et al. Oncogenic Osteomalacia: Role of Ga-68 DOTANOC PET/CT Scan in Identifying the Culprit Lesion and Its Management. Br. J. Radiol. 2017, 90, 20160811. [Google Scholar] [CrossRef] [Green Version]
- Then, C.; Asbach, E.; Bartsch, H.; Thon, N.; Betz, C.; Reincke, M.; Schmidmaier, R. Fibroblast Growth Factor 23-Producing Phosphaturic Mesenchymal Tumor with Extraordinary Morphology Causing Oncogenic Osteomalacia. Medicina 2020, 56, 34. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Diamond, T. Lessons Learnt from Delayed Diagnosis of FGF-23-Producing Tumour-Induced Osteomalacia and Post-Operative Hungry Bone Syndrome. Bone Rep. 2020, 12, 100276. [Google Scholar] [CrossRef]
- Kaur, T.; Rush, E.T.; Bhattacharya, R.K. Phosphaturic Mesenchymal Heel Tumor Presenting with Tumor-Induced Osteomalacia. AACE Clin. Case Rep. 2019, 5, e138–e141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, C.; Shao, F.; Yang, M.; Qin, C.; Lan, X. Giant Cell Tumor of Tendon Sheath Revealed on 68Ga-DOTA-TATE PET/CT in a Patient with Suspicious Tumor-Induced Osteomalacia. Clin. Nucl. Med. 2019, 44, 496–498. [Google Scholar] [CrossRef] [PubMed]
- Araujo, C.S.R.; Seguro, L.P.C.; Duarte, P.S.; Buchpiguel, C.; Pereira, R.M.R. Intramastoid Phosphaturic Mesenchymal Tumor Causing Hypophosphatemic Osteomalacia Detected on 68Ga-DOTATATE PET/CT But Not on 99mTc-Sestamibi and 18F-FDG Scans. Nucl. Med. Mol. Imaging 2019, 53, 436–441. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Xu, Z.; Zhang, B.; Hu, W.; Zhang, X. Tumor-Induced Osteomalacia Caused by a Parotid Basal Cell Adenoma Detected by 68Ga-DOTANOC PET/CT. Clin. Nucl. Med. 2018, 43, e198–e199. [Google Scholar] [CrossRef] [PubMed]
- Ha, S.; Park, S.; Kim, H.; Go, H.; Lee, S.H.; Choi, J.Y.; Hong, J.Y.; Ryu, J.-S. Successful Localization Using 68Ga-DOTATOC PET/CT of a Phosphaturic Mesenchymal Tumor Causing Osteomalacia in a Patient with Concurrent Follicular Lymphoma. Nucl. Med. Mol. Imaging 2018, 52, 462–467. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Wang, L.; Zhang, S.; Li, F.; Huo, L. Recurrent/Residual Intracranial Phosphaturic Mesenchymal Tumor Revealed on 68Ga-DOTATATE PET/CT. Clin. Nucl. Med. 2018, 43, 674–675. [Google Scholar] [CrossRef]
- Kawai, S.; Ariyasu, H.; Furukawa, Y.; Yamamoto, R.; Uraki, S.; Takeshima, K.; Warigaya, K.; Nakamoto, Y.; Akamizu, T. Effective Localization in Tumor-Induced Osteomalacia Using 68Ga-DOTATOC-PET/CT, Venous Sampling and 3T-MRI. Endocrinol. Diabetes Metab. Case Rep. 2017, 2017. [Google Scholar] [CrossRef] [Green Version]
- Chanukya, G.V.; Mengade, M.; Goud, J.; Rao, I.S.; Jain, A. Tumor-Induced Osteomalacia: A Sherlock Holmes Approach to Diagnosis and Management. Ann. Maxillofac. Surg. 2017, 7, 143–147. [Google Scholar] [CrossRef]
- Maybody, M.; Grewal, R.K.; Healey, J.H.; Antonescu, C.R.; Fanchon, L.; Hwang, S.; Carrasquillo, J.A.; Kirov, A.; Farooki, A. Ga-68 DOTATOC PET/CT-Guided Biopsy and Cryoablation with Autoradiography of Biopsy Specimen for Treatment of Tumor-Induced Osteomalacia. Cardiovasc. Interv. Radiol. 2016, 39, 1352–1357. [Google Scholar] [CrossRef] [Green Version]
- Maehara, J.; Yamashita, K.; Hiwatashi, A.; Togao, O.; Kikuchi, K.; Matsumoto, Y.; Iura, K.; Oda, Y.; Ichino, I.; Nakamoto, Y.; et al. Primary Phosphaturic Mesenchymal Tumour of the Lumbar Spine: Utility of 68Ga-DOTATOC PET/CT Findings. BJR Case Rep. 2016, 2, 20150497. [Google Scholar] [CrossRef]
- Ho, C.L. Ga68-DOTA Peptide PET/CT to Detect Occult Mesenchymal Tumor-Inducing Osteomalacia: A Case Series of Three Patients. Nucl. Med. Mol. Imaging 2015, 49, 231–236. [Google Scholar] [CrossRef] [PubMed]
- Naswa, N.; Sharma, P.; Kumar, R.; Malhotra, A.; Bal, C. Successful Localization of Residual Culprit Tumor in a Case of Tumor-Induced Osteomalacia Using 68Ga-DOTANOC PET/CT. Clin. Nucl. Med. 2013, 38, 639–640. [Google Scholar] [CrossRef] [PubMed]
- Haeusler, G.; Freilinger, M.; Dominkus, M.; Egerbacher, M.; Amann, G.; Kolb, A.; Schlegel, W.; Raimann, A.; Staudenherz, A. Tumor-Induced Hypophosphatemic Rickets in an Adolescent Boy—Clinical Presentation, Diagnosis, and Histological Findings in Growth Plate and Muscle Tissue. J. Clin. Endocrinol. Metab. 2010, 95, 4511–4517. [Google Scholar] [CrossRef] [Green Version]
- Von Falck, C.; Rodt, T.; Rosenthal, H.; Länger, F.; Goesling, T.; Knapp, W.H.; Galanski, M. 68Ga-DOTANOC PET/CT for the Detection of a Mesenchymal Tumor Causing Oncogenic Osteomalacia. Eur. J. Pediatrics 2008, 35, 1034. [Google Scholar] [CrossRef] [Green Version]
- Hesse, E.; Moessinger, E.; Rosenthal, H.; Laenger, F.; Brabant, G.; Petrich, T.; Gratz, K.F.; Bastian, L. Oncogenic Osteomalacia: Exact Tumor Localization by Co-Registration of Positron Emission and Computed Tomography. J. Bone Miner. Res. 2006, 22, 158–162. [Google Scholar] [CrossRef]
- Gronkiewicz, Z.; Kukwa, W.; Krolicki, L.; Cyran-Chlebicka, A.; Pawlak, D.; Stankiewicz, C.; Krzeski, A.; Górnicka, B.; Wolosz, D.; Kunikowska, J. 68Ga-DOTATATE PET in Juvenile Angiofibroma. Futur. Oncol. 2016, 12, 1483–1491. [Google Scholar] [CrossRef] [PubMed]
- Mahajan, S.; Bodei, L.; Castellanos, S.H.; Grewal, R.K. Enchondroma of Tibia as Potential False-positive Finding on 68Ga-DOTATOC PET/CT Scan. Clin. Nucl. Med. 2019, 44, e57–e59. [Google Scholar] [CrossRef]
- Vertenten, B.; Goethals, L.; De Geeter, F. 68Ga DOTATATE Uptake in Hemangioma Simulating Metastasis on PET Imaging. J. Belg. Soc. Radiol. 2019, 103, 38. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, W.; Chen, Y. Incidental 68Ga-DOTATATE Uptake in Uterine Leiomyoma. Endocrine 2020, 68, 233–234. [Google Scholar] [CrossRef]
- Sonmezoglu, K.; Vatankulu, B.; Elverdi, T.; Akyel, R.; Erkan, M.E.; Halac, M.; Ocak, M.; Demirci, E.; Aydin, Y. The Role of 68Ga-DOTA-TATE PET/CT Scanning in the Evaluation of Patients with Multiple Myeloma. Nucl. Med. Commun. 2017, 38, 76–83. [Google Scholar] [CrossRef]
- Sharma, P.; Dhull, V.S.; Kc, S.S.; Bal, C.; Malhotra, A.; Kumar, R. 68Ga-DOTANOC Somatostatin Receptor PET-CT Imaging in Multiple Myeloma. Clin. Nucl. Med. 2014, 39, 374–375. [Google Scholar] [CrossRef] [PubMed]
- Long, Y.; Shao, F.; Lan, X. Mediastinal Epithelioid Hemangioendothelioma Revealed on 68Ga-DOTATATE PET/CT. Clin. Nucl. Med. 2020, 45, 414–416. [Google Scholar] [CrossRef] [PubMed]
- Derlin, T.; Hueper, K.; Soudah, B. 68Ga-DOTA-TATE PET/CT for Molecular Imaging of Somatostatin Receptor Expression in Metastasizing Epithelioid Hemangioendothelioma. Clin. Nucl. Med. 2017, 42, e478–e479. [Google Scholar] [CrossRef]
- Vamadevan, S.; Le, K.; Shen, L.; Loh, H.; Mansberg, R. 68Ga-DOTATATE Uptake in Solitary Pancreatic Metastasis from Clear Cell Renal Cancer. Clin. Nucl. Med. 2017, 42, 700–701. [Google Scholar] [CrossRef] [PubMed]
- Vamadevan, S.; Le, K.; Shen, L.; Stevanovic, A.; Loh, H.; Mansberg, R. 68Ga-DOTATATE Uptake in a Soft Tissue Metastasis from Clear Cell Renal Cell Cancer. Clin. Nucl. Med. 2018, 43, 44–45. [Google Scholar] [CrossRef]
- Höög, A.; Kjellman, M.; Mattsson, P.; Juhlin, C.C.; Shabo, I. Somatostatin Receptor Expression in Renal Cell Carcinoma—A New Front in the Diagnostics and Treatment of Renal Cell Carcinoma. Clin. Genitourin. Cancer 2018, 16, e517–e520. [Google Scholar] [CrossRef] [PubMed]
- Braat, A.J.A.T.; Goldschmeding, R.; Brosens, L.A.A.; Vriens, M.R.; de Keizer, B. Gastrointestinal Stromal Tumour Detection with Somatostatin Receptor Imaging, 68Ga-HA-DOTATATE PET–CT. Lancet Oncol. 2017, 18, e185. [Google Scholar] [CrossRef]
- Freesmeyer, M.; Schulz, S.; Knösel, T.; Settmacher, U. Imaging of Somatostatin Receptor Subtype 2 in Advanced Hepatocellular Carcinoma by 68Ga-DOTATOC PET. Nukl.-Nucl. 2009, 48, N17–N18. [Google Scholar] [CrossRef]
- Shamim, S.A.; Tripathy, S.; Rastogi, S.; Barwad, A.; Prakash, S. Isolated Pancreatic Metastasis from Choroidal Melanoma after 10 Years of Enucleation Mimicking Neuroendocine Tumor on 68Ga-DOTANOC PET/CT. Clin. Nucl. Med. 2020, 46, e21–e22. [Google Scholar] [CrossRef]
- Qin, C.; Shao, F.; Lan, X. Diffuse Increased 68Ga-DOTATATE but Unimpressive 18F-FDG Osseous Activity in a Patient with Rapid-Progressing Synchronous Multifocal Osteosarcoma. Clin. Nucl. Med. 2020, 45, 824–826. [Google Scholar] [CrossRef]
- Savelli, G.; Muni, A. Somatostatin Receptors in an Anaplastic Oligodendroglioma Relapse Evidenced By 68Ga DOTANOC PET/CT. Clin. Nucl. Med. 2015, 40, e363–e365. [Google Scholar] [CrossRef] [PubMed]
- Dejaco, C.; Ramiro, S.; Duftner, C.; Besson, F.L.; Bley, T.A.; Blockmans, D.; Brouwer, E.; Cimmino, M.A.; Clark, E.; Dasgupta, B.; et al. EULAR Recommendations for the Use of Imaging in Large Vessel Vasculitis in Clinical Practice. Ann. Rheum. Dis. 2018, 77, 636–643. [Google Scholar] [CrossRef] [PubMed]
- Birnie, D.H.; Sauer, W.H.; Bogun, F.; Cooper, J.M.; Culver, D.A.; Duvernoy, C.S.; Judson, M.A.; Kron, J.; Mehta, D.; Nielsen, J.C.; et al. HRS Expert Consensus Statement on the Diagnosis and Management of Arrhythmias Associated with Cardiac Sarcoidosis. Heart Rhythm 2014, 11, 1304–1323. [Google Scholar] [CrossRef]
- Folpe, A.L.; Fanburg-Smith, J.C.; Billings, S.D.; Bisceglia, M.; Bertoni, F.; Cho, J.Y.; Econs, M.J.; Inwards, C.Y.; de Beur, S.M.J.; Mentzel, T.; et al. Most Osteomalacia-Associated Mesenchymal Tumors Are a Single Histopathologic Entity. Am. J. Surg. Pathol. 2004, 28, 1–30. [Google Scholar] [CrossRef] [PubMed]
- de Beur, S.M.J.; Streeten, E.A.; Civelek, A.C.; McCarthy, E.F.; Uribe, L.; Marx, S.J.; Onobrakpeya, O.; Raisz, L.G.; Watts, N.B.; Sharon, M.; et al. Localisation of Mesenchymal Tumours by Somatostatin Receptor Imaging. Lancet 2002, 359, 761–763. [Google Scholar] [CrossRef]
- Dahir, K.; Zanchetta, M.B.; Stanciu, I.; Robinson, C.; Lee, J.Y.; Dhaliwal, R.; Charles, J.; Civitelli, R.; Roberts, M.S.; Krolczyk, S.; et al. Diagnosis and Management of Tumor-Induced Osteomalacia: Perspectives from Clinical Experience. J. Endocr. Soc. 2021, 5, bvab099. [Google Scholar] [CrossRef]
- van de Donk, N.W.C.J.; Pawlyn, C.; Yong, K.L. Multiple Myeloma. Lancet 2021, 397, 410–427. [Google Scholar] [CrossRef]
- Stacchiotti, S.; Miah, A.; Frezza, A.; Messiou, C.; Morosi, C.; Caraceni, A.; Antonescu, C.; Bajpai, J.; Baldini, E.; Bauer, S.; et al. Epithelioid Hemangioendothelioma, an Ultra-Rare Cancer: A Consensus Paper from the Community of Experts. ESMO Open 2021, 6, 100170. [Google Scholar] [CrossRef]
Tissue | Localization | Receptor Subtype |
---|---|---|
Lymphatic: | SST2 (probable) | |
Lymph nodes | Germinal centers | |
Peyers Patches | Germinal centers | |
Solitary follicles (colon) | Germinal centers | |
Appendix | Germinal centers | |
Spleen | Red pulp | SST2-3 |
Thymus | Medulla | SST1-3 |
Immune cells: | ||
Macrophages | SST2 | |
Dendritic cells | SST2 | |
B lymphocytes | SST3 | |
T lymphocytes | SST1-5 | |
Kidneys: | SST2 (probable) | |
Cortex | Proximal tubules | |
Medulla | Vasa recta | |
Prostate | Smooth muscle | SST2 |
Thyroid gland | Epithelial cells | SST2 |
GI-tract: | ||
Stomach | SST1-4 | |
Small intestine | SST1, SST5 | |
Liver | SST3 | |
Pancreas | β cells | SST2 |
α cells | SST3 | |
δ cells | SST5 | |
Adrenal glands | SST2 | |
Lung | SST4 | |
Heart | SST4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Helgebostad, R.; Revheim, M.-E.; Johnsrud, K.; Amlie, K.; Alavi, A.; Connelly, J.P. Clinical Applications of Somatostatin Receptor (Agonist) PET Tracers beyond Neuroendocrine Tumors. Diagnostics 2022, 12, 528. https://doi.org/10.3390/diagnostics12020528
Helgebostad R, Revheim M-E, Johnsrud K, Amlie K, Alavi A, Connelly JP. Clinical Applications of Somatostatin Receptor (Agonist) PET Tracers beyond Neuroendocrine Tumors. Diagnostics. 2022; 12(2):528. https://doi.org/10.3390/diagnostics12020528
Chicago/Turabian StyleHelgebostad, Rasmus, Mona-Elisabeth Revheim, Kjersti Johnsrud, Kristine Amlie, Abass Alavi, and James Patrick Connelly. 2022. "Clinical Applications of Somatostatin Receptor (Agonist) PET Tracers beyond Neuroendocrine Tumors" Diagnostics 12, no. 2: 528. https://doi.org/10.3390/diagnostics12020528
APA StyleHelgebostad, R., Revheim, M. -E., Johnsrud, K., Amlie, K., Alavi, A., & Connelly, J. P. (2022). Clinical Applications of Somatostatin Receptor (Agonist) PET Tracers beyond Neuroendocrine Tumors. Diagnostics, 12(2), 528. https://doi.org/10.3390/diagnostics12020528