Molecular Approaches in Fetal Malformations, Dynamic Anomalies and Soft Markers: Diagnostic Rates and Challenges—Systematic Review of the Literature and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chromosomal Microarray Analysis
- -
- Group A: advanced maternal age, no indication of any chromosomal analysis, soft markers (single, multiple, pooled), NT (isolated), structural anomalies (single, multiple, pooled), dynamic anomalies, specific isolated soft markers, isolated structural anomalies subcategories, and isolated dynamic anomalies.
- -
- Group B: soft markers (single, multiple, pooled), NT (pooled), structural anomalies (single, multiple, pooled), dynamic anomalies, specific isolated soft markers, isolated available structural anomalies subcategories, and isolated dynamic anomalies.
2.2. Exome Sequencing
- -
- Group A: the overall pooled anomalies and available subcategories.
- -
- Group B: specific anomalies for which at least >2 papers were available. The analyzed categories included isolated and non-isolated cases of non-immune hydrops fetalis (NIHF), skeletal anomalies, congenital heart anomalies and isolated NT. When a single or only two papers were available, the diagnostic rates were annotated but not included in the meta-analysis.
2.3. Whole Genome Sequencing
3. Results
3.1. Chromosomal Microarray
3.2. Exome Sequencing
3.3. Whole Genome Sequencing
4. Discussion
4.1. Before Molecular Testing
4.2. Chromosomal Microarray Analysis
4.3. Exome Sequencing
4.4. Whole Genome Sequencing
4.5. Diagnostic Yield Comparison: CMA and ES
4.6. VUS Rate Comparison: CMA and ES
4.7. Ethical Concerns
4.8. Non-Invasive Prenatal Testing: From Screening to Diagnosis
4.9. RNA Sequencing
4.10. Future Perspectives
4.11. Diagnostic Workflow Suggestions
4.12. Limitations
- -
- Non-homogeneous/standardized nomenclature of distinct molecular approaches in the literature, potentially limiting the efficiency of the search string in retrieving articles.
- -
- Theoretically non-excludable heterogeneity in inclusion criteria of the cases chosen by the individual authors;
- -
- Cases in which an associated malformation was not specified were considered to be affected by a single malformation;
- -
- Diagnostic and VUS yields for specific soft markers were less reliable than US anomalies’ rates, due to smaller cohorts;
- -
- Discrepancy of results explained by the different numerosity of the samples;
- -
- Heterogeneity in molecular platforms.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Crane, J.P.; LeFevre, M.L.; Winborn, R.C.; Evans, J.K.; Ewigman, B.G.; Bain, R.P.; Frigoletto, F.D.; McNellis, D. A randomized trial of prenatal ultrasonographic screening: Impact on the detection, management, and outcome of anomalous fetuses. ACOG Curr. J. Rev. 1995, 8, 15–16. [Google Scholar] [CrossRef]
- Grandjean, H.; Larroque, D.; Levi, S. The performance of routine ultrasonographic screening of pregnancies in the Eurofetus Study. Am. J. Obstet. Gynecol. 1999, 181, 446–454. [Google Scholar] [CrossRef]
- Rydberg, C.; Tunón, K. Detection of fetal abnormalities by second-trimester ultrasound screening in a non-selected population. Acta Obstet. Gynecol. Scand. 2017, 96, 176–182. [Google Scholar] [CrossRef] [Green Version]
- Rayburn, W.F.; Jolley, J.A.; Simpson, L.L. Advances in ultrasound imaging for congenital malformations during early gestation. Birth Defects Res. Part A Clin. Mol. Teratol. 2015, 103, 260–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whitworth, M.; Bricker, L.; Mullan, C. Ultrasound for fetal assessment in early pregnancy. Cochrane Database Syst. Rev. 2015, 2015, CD007058. [Google Scholar] [CrossRef] [PubMed]
- Lostchuck, E.; Hui, L. Should second-trimester hypoplastic nasal bone be sole indication for diagnostic testing with chromosomal microarray analysis? Ultrasound Obstet. Gynecol. 2019, 53, 848–850. [Google Scholar] [CrossRef]
- Rao, R.; Platt, L.D. Ultrasound screening: Status of markers and efficacy of screening for structural abnormalities. Semin. Perinatol. 2016, 40, 67–78. [Google Scholar] [CrossRef]
- Nyberg, D.A.; Souter, V.L.; El-Bastawissi, A.; Young, S.; Luthhardt, F.; Luthy, D.A. Isolated sonographic markers for detection of fetal Down syndrome in the second trimester of pregnancy. J. Ultrasound Med. 2001, 20, 1053–1063. [Google Scholar] [CrossRef] [Green Version]
- Van den Hof, M.C.; Wilson, R.D.; Bly, S.; Gagnon, R.; Lewthwaite, M.B.; Lim, K.; Morin, L.; Salem, S.; Allen, V.; Blight, C.; et al. Fetal Soft Markers in Obstetric Ultrasound. J. Obstet. Gynaecol. Can. 2005, 27, 592–612. [Google Scholar] [CrossRef]
- Agathokleous, M.; Chaveeva, P.; Poon, L.C.Y.; Kosinski, P.; Nicolaides, K.H. Meta-analysis of second-trimester markers for trisomy 21. Ultrasound Obstet. Gynecol. 2013, 41, 247–261. [Google Scholar] [CrossRef]
- Hu, T.; Tian, T.; Zhang, Z.; Wang, J.; Hu, R.; Xiao, L.; Zhu, H.; Lai, Y.; Wang, H.; Liu, S. Prenatal chromosomal microarray analysis in 2466 fetuses with ultrasonographic soft markers: A prospective cohort study. Am. J. Obstet. Gynecol. 2021, 224, 516.e1–516.e16. [Google Scholar] [CrossRef]
- Dashe, J.S. Aneuploidy screening in pregnancy. Obstet. Gynecol. 2016, 128, 181–194. [Google Scholar] [CrossRef]
- Normand, E.A.; Braxton, A.; Nassef, S.; Ward, P.A.; Vetrini, F.; He, W.; Patel, V.; Qu, C.; Westerfield, L.E.; Stover, S.; et al. Clinical exome sequencing for fetuses with ultrasound abnormalities and a suspected Mendelian disorder. Genome Med. 2018, 10, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Gardner, R.J.M.; Sutherland, G.R.; Shaffer, L.G. Chromosome Abnormalities and Genetic Counseling; Oxford University Press: Oxford, UK, 2011; ISBN 0195375335. [Google Scholar]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, 1–9. [Google Scholar]
- Ahn, J.W.; Bint, S.; Irving, M.D.; Kyle, P.M.; Akolekar, R.; Mohammed, S.N.; Ogilvie, C.M. A new direction for prenatal chromosome microarray testing: Software-targeting for detection of clinically significant chromosome imbalance without equivocal findings. PeerJ 2014, 2014, e354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Armengol, L.; Nevado, J.; Serra-Juhé, C.; Plaja, A.; Mediano, C.; García-Santiago, F.A.; García-Aragonés, M.; Villa, O.; Mansilla, E.; Preciado, C.; et al. Clinical utility of chromosomal microarray analysis in invasive prenatal diagnosis. Hum. Genet. 2012, 131, 513–523. [Google Scholar] [CrossRef] [Green Version]
- Brady, P.D.; Delle Chiaie, B.; Christenhusz, G.; Dierickx, K.; Van Den Bogaert, K.; Menten, B.; Janssens, S.; Defoort, P.; Roets, E.; Sleurs, E.; et al. A prospective study of the clinical utility of prenatal chromosomal microarray analysis in fetuses with ultrasound abnormalities and an exploration of a framework for reporting unclassified variants and risk factors. Genet. Med. 2014, 16, 469–476. [Google Scholar] [CrossRef] [Green Version]
- Breman, A.; Pursley, A.N.; Hixson, P.; Bi, W.; Ward, P.; Bacino, C.A.; Shaw, C.; Lupski, J.R.; Beaudet, A.; Patel, A.; et al. Prenatal chromosomal microarray analysis in a diagnostic laboratory; experience with >1000 cases and review of the literature. Prenat. Diagn. 2012, 32, 351–361. [Google Scholar] [CrossRef]
- Cai, M.; Lin, N.; Lin, Y.; Huang, H.; Xu, L. Evaluation of chromosomal abnormalities and copy number variations in late trimester pregnancy using cordocentesis. Aging 2020, 12, 15556–15565. [Google Scholar] [CrossRef]
- Chau, M.H.K.; Cao, Y.; Kwok, Y.K.Y.; Chan, S.; Chan, Y.M.; Wang, H.; Yang, Z.; Wong, H.K.; Leung, T.Y.; Choy, K.W. Characteristics and mode of inheritance of pathogenic copy number variants in prenatal diagnosis. Am. J. Obstet. Gynecol. 2019, 221, 493.e1–493.e11. [Google Scholar] [CrossRef]
- Cheng, S.S.W.; Chan, K.Y.K.; Leung, K.K.P.; Au, P.K.C.; Tam, W.K.; Li, S.K.M.; Luk, H.M.; Kan, A.S.Y.; Chung, B.H.Y.; Lo, I.F.M.; et al. Experience of chromosomal microarray applied in prenatal and postnatal settings in Hong Kong. Am. J. Med. Genet. Part C Semin. Med. Genet. 2019, 181, 196–207. [Google Scholar] [CrossRef]
- Chong, H.P.; Hamilton, S.; Mone, F.; Cheung, K.W.; Togneri, F.S.; Morris, R.K.; Quinlan-Jones, E.; Williams, D.; Allen, S.; McMullan, D.J.; et al. Prenatal chromosomal microarray testing of fetuses with ultrasound structural anomalies: A prospective cohort study of over 1000 consecutive cases. Prenat. Diagn. 2019, 39, 1064–1069. [Google Scholar] [CrossRef]
- D’Amours, G.; Kibar, Z.; Mathonnet, G.; Fetni, R.; Tihy, F.; Désilets, V.; Nizard, S.; Michaud, J.L.; Lemyre, E. Whole-genome array CGH identifies pathogenic copy number variations in fetuses with major malformations and a normal karyotype. Clin. Genet. 2012, 81, 128–141. [Google Scholar] [CrossRef]
- Donnelly, J.C.; Platt, L.D.; Rebarber, A.; Zachary, J.; Grobman, W.A.; Wapner, R.J. Association of Copy Number Variants With Specific Ultrasonographically Detected Fetal Anomalies. Obstet. Gynecol. 2014, 124, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Faas, B.H.; Feenstra, I.; Eggink, A.J.; Kooper, A.J.; Pfundt, R.; Van Vugt, J.M.; De Leeuw, N. Non-targeted whole genome 250K SNP array analysis as replacement for karyotyping in fetuses with structural ultrasound anomalies: Evaluation of a one-year experience. Prenat. Diagn. 2012, 32, 362–370. [Google Scholar] [CrossRef] [PubMed]
- Ganesamoorthy, D.; Bruno, D.L.; McGillivray, G.; Norris, F.; White, S.M.; Adroub, S.; Amor, D.J.; Yeung, A.; Oertel, R.; Pertile, M.D. Meeting the challenge of interpreting high-resolution single nucleotide polymorphism array data in prenatal diagnosis: Does increased diagnostic power outweigh the dilemma of rare variants? BJOG Int. J. Obstet. Gynaecol. 2013, 120, 594–606. [Google Scholar] [CrossRef] [PubMed]
- Grati, F.R.; Molina Gomes, D.; Ferreira, J.C.P.B.; Dupont, C.; Alesi, V.; Gouas, L.; Horelli-Kuitunen, N.; Choy, K.W.; García-Herrero, S.; de la Vega, A.G.; et al. Prevalence of recurrent pathogenic microdeletions and microduplications in over 9500 pregnancies. Prenat. Diagn. 2015, 35, 801–809. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Wang, Y.; Zhang, M.; Lin, N.; An, G.; He, D.; Chen, M.; Chen, L.; Xu, L. Diagnostic accuracy and value of chromosomal microarray analysis for chromosomal abnormalities in prenatal detection. Medicine 2021, 100, e25999. [Google Scholar] [CrossRef]
- Kan, A.S.Y.; Lau, E.T.; Tang, W.F.; Chan, S.S.Y.; Ding, S.C.K.; Chan, K.Y.K.; Lee, C.P.; Hui, P.W.; Chung, B.H.Y.; Leung, K.Y.; et al. Whole-genome array CGH evaluation for replacing prenatal karyotyping in Hong Kong. PLoS ONE 2014, 9, e87988. [Google Scholar] [CrossRef] [Green Version]
- Klugman, S.; Suskin, B.; Spencer, B.L.; Dar, P.; Bajaj, K.; Powers, J.; Reichling, J.; Wasserman, D.; Dolan, S.M.; Merkatz, I.R. Clinical utility of chromosomal microarray analysis in prenatal diagnosis: Report of first 6 months in clinical practice. J. Matern. Neonatal Med. 2014, 27, 1333–1338. [Google Scholar] [CrossRef]
- Lallar, M.; Srivastava, P.; Rai, A.; Saxena, D.; Mandal, K.; Phadke, S.R. Cytogenetic microarray in structurally normal and abnormal foetuses: A five years experience elucidating increasing acceptance and clinical utility. J. Genet. 2019, 98, 1–9. [Google Scholar] [CrossRef]
- Lee, C.-N.; Lin, S.-Y.; Lin, C.-H.; Shih, J.-C.; Lin, T.-H.; Su, Y.-N. Clinical Utility of Array Comparative Genomic Hybridisation for Prenatal Diagnosis. Obstet. Gynecol. Surv. 2012, 67, 461–463. [Google Scholar] [CrossRef]
- Li, L.; He, Z.; Huang, X.; Lin, S.; Wu, J.; Huang, L.; Wan, Y.; Fang, Q. Chromosomal Abnormalities Detected by Karyotyping and Microarray Analysis in Twins With Structural Anomalies. Obstet. Gynecol. Surv. 2020, 75, 535–537. [Google Scholar] [CrossRef]
- Lovrecic, L.; Remec, Z.I.; Volk, M.; Rudolf, G.; Writzl, K.; Peterlin, B. Clinical utility of array comparative genomic hybridisation in prenatal setting. BMC Med. Genet. 2016, 17, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Oneda, B.; Baldinger, R.; Reissmann, R.; Reshetnikova, I.; Krejci, P.; Masood, R.; Ochsenbein-Kölble, N.; Bartholdi, D.; Steindl, K.; Morotti, D.; et al. High-resolution chromosomal microarrays in prenatal diagnosis significantly increase diagnostic power. Prenat. Diagn. 2014, 34, 525–533. [Google Scholar] [CrossRef] [PubMed]
- Parchem, J.G.; Sparks, T.N.; Gosnell, K.; Norton, M.E. Utility of chromosomal microarray in anomalous fetuses. Prenat. Diagn. 2018, 38, 140–147. [Google Scholar] [CrossRef]
- Peng, H.H.; Lee, C.H.; Su, S.Y.; Chen, K.J.; Lee, Y.C.; You, S.H.; Lee, W.F.; Cheng, P.J. Prenatally diagnosed de novo segmental amplification or deletion by microarray-based comparative genomic hybridization: A retrospective study. Taiwan J. Obstet. Gynecol. 2019, 58, 662–666. [Google Scholar] [CrossRef]
- Pons, L.; Till, M.; Alix, E.; Abel, C.; Boggio, D.; Bordes, A.; Caloone, J.; Raskin, F.C.; Chatron, N.; Cordier, M.P.; et al. Prenatal microarray comparative genomic hybridization: Experience from the two first years of activity at the Lyon university-hospital. J. Gynecol. Obstet. Hum. Reprod. 2017, 46, 275–283. [Google Scholar] [CrossRef]
- Ridnõi, K.; Muru, K.; Keernik, M.; Pajusalu, S.; Ustav, E.L.; Tammur, P.; Mölter-Väär, T.; Kahre, T.; Šamarina, U.; Asser, K.; et al. A two-year prospective study assessing the performance of fetal chromosomal microarray analysis and next-generation sequencing in high-risk pregnancies. Mol. Genet. Genom. Med. 2021, 9, e1787. [Google Scholar] [CrossRef]
- Schmid, M.; Stary, S.; Springer, S.; Bettelheim, D.; Husslein, P.; Streubel, B. Prenatal microarray analysis as second-tier diagnostic test: Single-center prospective study. Ultrasound Obstet. Gynecol. 2013, 41, 267–273. [Google Scholar] [CrossRef]
- Shaffer, L.G.; Dabell, M.P.; Fisher, A.J.; Coppinger, J.; Bandholz, A.M.; Ellison, J.W.; Ravnan, J.B.; Torchia, B.S.; Ballif, B.C.; Rosenfeld, J.A. Experience With Microarray-Based Comparative Genomic Hybridization for Prenatal Diagnosis in Over 5000 Pregnancies. Obstet. Gynecol. Surv. 2013, 68, 93–95. [Google Scholar] [CrossRef] [Green Version]
- Srebniak, M.; Boter, M.; Oudesluijs, G.; Joosten, M.; Govaerts, L.; Van Opstal, D.; Galjaard, R.J.H. Application of SNP array for rapid prenatal diagnosis: Implementation, genetic counselling and diagnostic flow. Eur. J. Hum. Genet. 2011, 19, 1230–1237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srebniak, M.I.; Boter, M.; Oudesluijs, G.O.; Cohen-Overbeek, T.; Govaerts, L.C.P.; Diderich, K.E.M.; Oegema, R.; Knapen, M.F.C.M.; Van De Laar, I.M.B.H.; Joosten, M.; et al. Genomic SNP array as a gold standard for prenatal diagnosis of foetal ultrasound abnormalities. Mol. Cytogenet. 2012, 5, 1–4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srebniak, M.I.; Mout, L.; Van Opstal, D.; Galjaard, R.J.H. 0.5 Mb array as a first-line prenatal cytogenetic test in cases without ultrasound abnormalities and its implementation in clinical Practice. Hum. Mutat. 2013, 34, 1298–1303. [Google Scholar] [CrossRef]
- Srebniak, M.I.; Diderich, K.E.M.; Joosten, M.; Govaerts, L.C.P.; Knijnenburg, J.; De Vries, F.A.T.; Boter, M.; Lont, D.; Knapen, M.F.C.M.; De Wit, M.C.; et al. Prenatal SNP array testing in 1000 fetuses with ultrasound anomalies: Causative, unexpected and susceptibility CNVs. Eur. J. Hum. Genet. 2016, 24, 645–651. [Google Scholar] [CrossRef] [Green Version]
- Srebniak, M.I.; Knapen, M.F.C.M.; Polak, M.; Joosten, M.; Diderich, K.E.M.; Govaerts, L.C.P.; Boter, M.; Kromosoeto, J.N.R.; van Hassel, D.A.C.M.; Huijbregts, G.; et al. The influence of SNP-based chromosomal microarray and NIPT on the diagnostic yield in 10,000 fetuses with and without fetal ultrasound anomalies. Hum. Mutat. 2017, 38, 880–888. [Google Scholar] [CrossRef]
- Stern, S.; Hacohen, N.; Meiner, V.; Yagel, S.; Zenvirt, S.; Shkedi-Rafid, S.; Macarov, M.; Valsky, D.V.; Porat, S.; Yanai, N.; et al. Universal chromosomal microarray analysis reveals high proportion of copy-number variants in low-risk pregnancies. Ultrasound Obstet. Gynecol. 2021, 57, 813–820. [Google Scholar] [CrossRef]
- Vogel, I.; Petersen, O.B.; Christensen, R.; Hyett, J.; Lou, S.; Vestergaard, E.M. Chromosomal microarray as primary diagnostic genomic tool for pregnancies at increased risk within a population-based combined first-trimester screening program. Ultrasound Obstet. Gynecol. 2018, 51, 480–486. [Google Scholar] [CrossRef] [Green Version]
- Wright, D.; Carey, L.; Battersby, S.; Nguyen, T.; Clarke, M.; Nash, B.; Gulesserian, E.; Cross, J.; Darmanian, A. Validation of a Chromosomal Microarray for Prenatal Diagnosis Using a Prospective Cohort of Pregnancies with Increased Risk for Chromosome Abnormalities. Genet. Test. Mol. Biomark. 2016, 20, 791–798. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Li, Y.; Lin, N.; Xie, X.; Su, L.; Cai, M.; Lin, Y.; Wang, L.; Wang, M.; Xu, L.; et al. Chromosomal microarray analysis for pregnancies with abnormal maternal serum screening who undergo invasive prenatal testing. J. Cell. Mol. Med. 2021, 25, 6271–6279. [Google Scholar] [CrossRef] [PubMed]
- Xiang, J.; Ding, Y.; Song, X.; Mao, J.; Liu, M.; Liu, Y.; Huang, C.; Zhang, Q.; Wang, T. Clinical Utility of SNP Array Analysis in Prenatal Diagnosis: A Cohort Study of 5000 Pregnancies. Front. Genet. 2020, 11, 1401. [Google Scholar] [CrossRef]
- Yakut, S.; Cetin, Z.; Simsek, M.; Mendicioglu, I.I.; Toru, H.S.; Karauzum, S.B.; Luleci, G. Rare structural chromosomal abnormalities in prenatal diagnosis; clinical and cytogenetic findings on 10,125 prenatal cases. Turk. J. Pathol. 2014, 31, 36–44. [Google Scholar] [CrossRef] [Green Version]
- Yatsenko, S.; Davis, S.; Hendrix, N.; Surti, U.; Emery, S.; Canavan, T.; Speer, P.; Hill, L.; Clemens, M.; Rajkovic, A. Application of chromosomal microarray in the evaluation of abnormal prenatal findings. Clin. Genet. 2013, 84, 47–54. [Google Scholar] [CrossRef]
- Žilina, O.; Teek, R.; Tammur, P.; Kuuse, K.; Yakoreva, M.; Vaidla, E.; Mölter-Väär, T.; Reimand, T.; Kurg, A.; Õunap, K. Chromosomal microarray analysis as a first-tier clinical diagnostic test: Estonian experience. Mol. Genet. Genom. Med. 2014, 2, 166–175. [Google Scholar] [CrossRef] [PubMed]
- Bardin, R.; Hadar, E.; Haizler-Cohen, L.; Gabbay-Benziv, R.; Meizner, I.; Kahana, S.; Yeshaya, J.; Yacobson, S.; Cohen-Vig, L.; Agmon-Fishman, I.; et al. Cytogenetic analysis in fetuses with late onset abnormal sonographic findings. J. Perinat. Med. 2018, 46, 975–982. [Google Scholar] [CrossRef]
- Bornstein, E.; Berger, S.; Cheung, S.; Maliszewski, K.; Patel, A.; Pursley, A.; Lenchner, E.; Bacino, C.; Beaudet, A.; Divon, M. Universal Prenatal Chromosomal Microarray Analysis: Additive Value and Clinical Dilemmas in Fetuses with a Normal Karyotype. Am. J. Perinatol. 2016, 34, 340–348. [Google Scholar] [CrossRef] [PubMed]
- Brabbing-Goldstein, D.; Reches, A.; Svirsky, R.; Bar-Shira, A.; Yaron, Y. Dilemmas in genetic counseling for low-penetrance neuro-susceptibility loci detected on prenatal chromosomal microarray analysis. Am. J. Obstet. Gynecol. 2018, 218, 247.e1–247.e12. [Google Scholar] [CrossRef]
- Cai, M.; Lin, N.; Su, L.; Wu, X.; Xie, X.; Li, Y.; Lin, Y.; Xu, L.; Huang, H. Copy number variations in ultrasonically abnormal late pregnancy fetuses with normal karyotypes. Sci. Rep. 2020, 10, 1–9. [Google Scholar] [CrossRef]
- Cai, M.; Lin, N.; Chen, X.; Fu, M.; Guo, N.; Xu, L.; Huang, H. Evaluation of chromosomal abnormalities and copy number variations in fetuses with ultrasonic soft markers. BMC Med. Genom. 2021, 14, 1–9. [Google Scholar] [CrossRef]
- Charan, P.; Woodrow, N.; Walker, S.P.; Ganesamoorthy, D.; McGillivray, G.; Palma-Dias, R. High-resolution microarray in the assessment of fetal anomalies detected by ultrasound. Aust. N. Z. J. Obstet. Gynaecol. 2014, 54, 46–52. [Google Scholar] [CrossRef]
- Fiorentino, F.; Napoletano, S.; Caiazzo, F.; Sessa, M.; Bono, S.; Spizzichino, L.; Gordon, A.; Nuccitelli, A.; Rizzo, G.; Baldi, M. Chromosomal microarray analysis as a first-line test in pregnancies with a priori low risk for the detection of submicroscopic chromosomal abnormalities. Eur. J. Hum. Genet. 2013, 21, 725–730. [Google Scholar] [CrossRef]
- Hillman, S.C.; McMullan, D.J.; Hall, G.; Togneri, F.S.; James, N.; Maher, E.J.; Meller, C.H.; Williams, D.; Wapner, R.J.; Maher, E.R.; et al. Use of prenatal chromosomal microarray: Prospective cohort study and systematic review and meta-analysis. Ultrasound Obstet. Gynecol. 2013, 41, 610–620. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.M.; Li, L.L.; Zhang, H.; Zhang, H.G.; Liu, R.Z.; Yu, Y. Clinical application of chromosomal microarray analysis in pregnant women with advanced maternal age and fetuses with ultrasonographic soft markers. Med. Sci. Monit. 2021, 27, e929074-1. [Google Scholar] [CrossRef]
- Hui, A.S.; Chau, M.H.K.; Chan, Y.M.; Cao, Y.; Kwan, A.H.; Zhu, X.; Kwok, Y.K.; Chen, Z.; Lao, T.T.; Choy, K.W.; et al. The role of chromosomal microarray analysis among fetuses with normal karyotype and single system anomaly or nonspecific sonographic findings. Acta Obstet. Gynecol. Scand. 2021, 100, 235–243. [Google Scholar] [CrossRef]
- Bajaj Lall, M.; Agarwal, S.; Paliwal, P.; Saviour, P.; Joshi, A.; Joshi, A.; Mahajan, S.; Bijarnia-Mahay, S.; Dua Puri, R.; Verma, I.C. Prenatal Diagnosis by Chromosome Microarray Analysis, An Indian Experience. J. Obstet. Gynecol. India 2021, 71, 156–167. [Google Scholar] [CrossRef] [PubMed]
- Li, D.-Z.; Tang, H.-S. Chromosomal microarray analysis in pregnancies at risk for a molecular disorder. J. Matern. Neonatal Med. 2021, 34, 159–162. [Google Scholar] [CrossRef]
- Li, S.; Han, X.; Ye, M.; Chen, S.; Shen, Y.; Niu, J.; Wang, Y.; Xu, C. Should chromosomal microarray be offered to fetuses with ultrasonographic soft markers in second trimester: A prospective cohort study and meta-analysis. Prenat. Diagn. 2020, 40, 1569–1577. [Google Scholar] [CrossRef]
- Liao, C.; Fu, F.; Li, R.; Xie, G.E.; Zhang, Y.L.; Li, J.; Li, D.Z. Implementation of high-resolution SNP arrays in the investigation of fetuses with ultrasound malformations: 5 years of clinical experience. Clin. Genet. 2014, 86, 264–269. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.H.; Jong, Y.J.; Huang, P.C.; Tsai, C. Detection of copy number variants with chromosomal microarray in 10,377 pregnancies at a single laboratory. Acta Obstet. Gynecol. Scand. 2020, 99, 775–782. [Google Scholar] [CrossRef]
- Luo, X.; Zhu, H.; Wang, L.; Xiao, B.; Fan, Y.; Ye, H.; Ying, X.; Qiu, W.; Zhang, H.; Han, L.; et al. Chromosomal microarray analysis in fetuses with high-risk prenatal indications: A retrospective study in China. Taiwan. J. Obstet. Gynecol. 2021, 60, 299–304. [Google Scholar] [CrossRef]
- Moshonov, R.; Hod, K.; Azaria, B.; Abadi-Korek, I.; Berger, R.; Shohat, M. Benefit versus risk of chromosomal microarray analysis performed in pregnancies with normal and positive prenatal screening results: A retrospective study. PLoS ONE 2021, 16, e0250734. [Google Scholar] [CrossRef] [PubMed]
- Muys, J.; Blaumeiser, B.; Jacquemyn, Y.; Bandelier, C.; Brison, N.; Bulk, S.; Chiarappa, P.; Courtens, W.; De Leener, A.; De Rademaeker, M.; et al. The Belgian MicroArray Prenatal (BEMAPRE) database: A systematic nationwide repository of fetal genomic aberrations. Prenat. Diagn. 2018, 38, 1120–1128. [Google Scholar] [CrossRef] [PubMed]
- Papoulidis, I.; Sotiriadis, A.; Siomou, E.; Papageorgiou, E.; Eleftheriades, M.; Papadopoulos, V.; Oikonomidou, E.; Orru, S.; Manolakos, E.; Athanasiadis, A. Routine use of array comparative genomic hybridization (aCGH) as standard approach for prenatal diagnosis of chromosomal abnormalities. Clinical experience of 1763 prenatal cases. Prenat. Diagn. 2015, 35, 1269–1277. [Google Scholar] [CrossRef] [PubMed]
- Qi, Q.; Jiang, Y.; Zhou, X.; Meng, H.; Hao, N.; Chang, J.; Bai, J.; Wang, C.; Wang, M.; Guo, J.; et al. Simultaneous detection of cnvs and snvs improves the diagnostic yield of fetuses with ultrasound anomalies and normal karyotypes. Genes 2020, 11, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Revenga, L.; Madrigal, I.; Borrell, A.; Martinez, J.M.; Sabria, J.; Martin, L.; Jimenez, W.; Mira, A.; Badenas, C.; Milà, M. Chromosome microarray analysis should be offered to all invasive prenatal diagnostic testing following a normal rapid aneuploidy test result. Clin. Genet. 2020, 98, 379–383. [Google Scholar] [CrossRef]
- Rooryck, C.; Toutain, J.Ô.; Cailley, D.; Bouron, J.; Horovitz, J.; Lacombe, D.; Arveiler, B.; Saura, R. Prenatal diagnosis using array-CGH: A French experience. Eur. J. Med. Genet. 2013, 56, 341–345. [Google Scholar] [CrossRef]
- Sagi-Dain, L.; Maya, I.; Reches, A.; Frumkin, A.; Grinshpun-Cohen, J.; Segel, R.; Manor, E.; Khayat, M.; Tenne, T.; Banne, E. Chromosomal microarray analysis results from pregnancies with various ultrasonographic anomalies. Obstet. Gynecol. 2018, 132, 1368–1375. [Google Scholar] [CrossRef]
- Sagi-Dain, L.; Vig, L.C.; Kahana, S.; Yacobson, S.; Tenne, T.; Agmon-Fishman, I.; Klein, C.; Matar, R.; Basel-Salmon, L.; Maya, I. Chromosomal Microarray vs. NIPS: Analysis of 5541 Low-Risk Pregnancies. Obstet. Gynecol. Surv. 2020, 75, 222–224. [Google Scholar] [CrossRef]
- Shaffer, L.G.; Rosenfeld, J.A.; Dabell, M.P.; Coppinger, J.; Bandholz, A.M.; Ellison, J.W.; Ravnan, J.B.; Torchia, B.S.; Ballif, B.C.; Fisher, A.J. Detection rates of clinically significant genomic alterations by microarray analysis for specific anomalies detected by ultrasound. Prenat. Diagn. 2012, 32, 986–995. [Google Scholar] [CrossRef] [Green Version]
- Van Opstal, D.; de Vries, F.; Govaerts, L.; Boter, M.; Lont, D.; van Veen, S.; Joosten, M.; Diderich, K.; Galjaard, R.J.; Srebniak, M.I. Benefits and burdens of using a SNP Array in pregnancies at increased risk for the common aneuploidies. Hum. Mutat. 2015, 36, 319–326. [Google Scholar] [CrossRef]
- Wapner, R.J.; Martin, C.L.; Levy, B.; Ballif, B.C.; Eng, C.M.; Zachary, J.M.; Savage, M.; Platt, L.D.; Saltzman, D.; Grobman, W.A.; et al. Chromosomal Microarray Versus Karyotyping for Prenatal Diagnosis. Obstet. Gynecol. Surv. 2013, 68, 276–278. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; An, G.; Xie, X.; Su, L.; Cai, M.; Chen, X.; Li, Y.; Lin, N.; He, D.; Wang, M.; et al. Chromosomal microarray analysis for pregnancies with or without ultrasound abnormalities in women of advanced maternal age. J. Clin. Lab. Anal. 2020, 34, e23117. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Wang, Y.; Tao, J.; Han, X.; Zhao, X.; Liu, C.; Gao, L.; Cheng, W. The clinical use of chromosomal microarray analysis in detection of fetal chromosomal rearrangements: A study from China Mainland. Eur. J. Obstet. Gynecol. Reprod. Biol. 2017, 212, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Xia, M.; Yang, X.; Fu, J.; Teng, Z.; Lv, Y.; Yu, L. Application of chromosome microarray analysis in prenatal diagnosis. BMC Pregnancy Childbirth 2020, 20, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Brady, P.D.; DeKoninck, P.; Fryns, J.P.; Devriendt, K.; Deprest, J.A.; Vermeesch, J.R. Identification of dosage-sensitive genes in fetuses referred with severe isolated congenital diaphragmatic hernia. Prenat. Diagn. 2013, 33, 1283–1292. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Li, Z.; Rosenfeld, J.A.; Pursley, A.N.; Patel, A.; Huang, J.; Wang, H.; Chen, M.; Sun, X.; Leung, T.Y.; et al. Contribution of genomic copy-number variations in prenatal oral clefts: A multicenter cohort study. Genet. Med. 2016, 18, 1052–1055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, Q.; Huang, L.; Liu, J.; Fang, F.; Liu, Z.; Zhang, Y.; Li, F.; Liao, C. Prenatal diagnosis of submicroscopic chromosomal aberrations in fetuses with congenital cystic adenomatoid malformation by chromosomal microarray analysis. J. Matern. Neonatal Med. 2021, 34, 2623–2629. [Google Scholar] [CrossRef]
- Du, L.; Xie, H.N.; Huang, L.H.; Xie, Y.J.; Wu, L.H. Prenatal diagnosis of submicroscopic chromosomal aberrations in fetuses with ventricular septal defects by chromosomal microarray-based analysis. Prenat. Diagn. 2016, 36, 1178–1184. [Google Scholar] [CrossRef]
- Fu, F.; Chen, F.; Li, R.; Zhang, Y.; Pan, M.; Li, D.; Liao, C. Prenatal diagnosis of fetal multicystic dysplastic kidney via high-resolution whole-genome array. Nephrol. Dial. Transplant. 2016, 31, 1693–1698. [Google Scholar] [CrossRef] [Green Version]
- Fu, F.; Deng, Q.; Lei, T.Y.; Li, R.; Jing, X.Y.; Yang, X.; Liao, C. Clinical application of SNP array analysis in fetuses with ventricular septal defects and normal karyotypes. Arch. Gynecol. Obstet. 2017, 296, 929–940. [Google Scholar] [CrossRef]
- Jin, H.; Yingqiu, C.; Zequn, L.; Yanjun, H.; Yunyan, Z.; Shufan, Z.; Yiyang, C.; Ru, L.; Li, Z.; Yongling, Z.; et al. Chromosomal microarray analysis in the prenatal diagnosis of orofacial clefts: Experience from a single medical center in mainland China. Medicine 2018, 97, e12057. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.Y.; Won, H.S.; Han, Y.J.; Ryu, H.M.; Lee, D.E.; Jeong, B. Da Clinical value of chromosomal microarray analysis in prenatally diagnosed dextro-transposition of the great arteries. J. Matern. Neonatal Med. 2020, 33, 1480–1485. [Google Scholar] [CrossRef] [PubMed]
- de Wit, M.C.; Boekhorst, F.; Mancini, G.M.; Smit, L.S.; Groenenberg, I.A.L.; Dudink, J.; de Vries, F.A.T.; Go, A.T.J.I.; Galjaard, R.J.H. Advanced genomic testing may aid in counseling of isolated agenesis of the corpus callosum on prenatal ultrasound. Prenat. Diagn. 2017, 37, 1191–1197. [Google Scholar] [CrossRef] [PubMed]
- Cai, M.; Huang, H.; Su, L.; Lin, N.; Wu, X.; Xie, X.; An, G.; Li, Y.; Lin, Y.; Xu, L.; et al. Chromosomal abnormalities and copy number variations in fetal ventricular septal defects. Mol. Cytogenet. 2018, 11, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lei, T.; Feng, J.L.; Xie, Y.J.; Xie, H.N.; Zheng, J.; Lin, M.F. Chromosomal aneuploidies and copy number variations in posterior fossa abnormalities diagnosed by prenatal ultrasonography. Prenat. Diagn. 2017, 37, 1160–1168. [Google Scholar] [CrossRef]
- Lemire, G.T.; Beauregard-Lacroix, É.; Campeau, P.M.; Parent, S.; Roy-Beaudry, M.; Soglio, D.D.; Grignon, A.; Rypens, F.; Wavrant, S.; Laberge, A.M.; et al. Retrospective analysis of fetal vertebral defects: Associated anomalies, etiologies, and outcome. Am. J. Med. Genet. Part A 2020, 182, 664–672. [Google Scholar] [CrossRef]
- Li, L.; Fu, F.; Li, R.; Xiao, W.; Yu, Q.; Wang, D.; Jing, X.; Zhang, Y.; Yang, X.; Pan, M.; et al. Genetic tests aid in counseling of fetuses with cerebellar vermis defects. Prenat. Diagn. 2020, 40, 1228–1238. [Google Scholar] [CrossRef]
- Maya, I.; Singer, A.; Yonath, H.; Reches, A.; Rienstein, S.; Zeligson, S.; Ben Shachar, S.; Sagi-Dain, L. What have we learned from 691 prenatal chromosomal microarrays for ventricular septal defects? Acta Obstet. Gynecol. Scand. 2020, 99, 757–764. [Google Scholar] [CrossRef]
- Lin, M.; Zheng, J.; Peng, R.; Du, L.; Zheng, Q.; Lei, T.; Xie, H. Prenatal diagnosis of chromosomal aberrations in fetuses with conotruncal heart defects by genome-wide high-resolution SNP array. J. Matern. Neonatal Med. 2020, 33, 1211–1217. [Google Scholar] [CrossRef]
- Maya, I.; Singer, A.; Baris, H.N.; Goldberg, Y.; Shalata, A.; Khayat, M.; Ben-Shachar, S.; Sagi-Dain, L. Prenatal microarray analysis in right aortic arch—A retrospective cohort study and review of the literature. J. Perinatol. 2018, 38, 468–473. [Google Scholar] [CrossRef]
- O’Mahony, E.F.; Hutchinson, D.P.; McGillivray, G.; Nisbet, D.L.; Palma-Dias, R. Right-sided aortic arch in the age of microarray. Prenat. Diagn. 2017, 37, 440–445. [Google Scholar] [CrossRef] [PubMed]
- Peng, R.; Zheng, J.; Xie, H.N.; He, M.; Lin, M.F. Genetic anomalies in fetuses with tetralogy of Fallot by using high-definition chromosomal microarray analysis. Cardiovasc. Ultrasound 2019, 17, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, R.; Xie, H.N.; Zheng, J.; Zhou, Y.; Lin, M.F. Fetal right aortic arch: Associated anomalies, genetic anomalies with chromosomal microarray analysis, and postnatal outcome. Prenat. Diagn. 2017, 37, 329–335. [Google Scholar] [CrossRef]
- Sagi-Dain, L.; Singer, A.; Frumkin, A.; Shalata, A.; Koifman, A.; Segel, R.; Benyamini, L.; Rienstein, S.; Kahyat, M.; Sharony, R.; et al. Chromosomal microarray findings in pregnancies with an isolated pelvic kidney. J. Perinat. Med. 2019, 47, 30–34. [Google Scholar] [CrossRef]
- Sagi-Dain, L.; Singer, A.; Josefsberg, S.; Peleg, A.; Lev, D.; Samra, N.N.; Bar-Shira, A.; Zeligson, S.; Maya, I.; Ben-Shachar, S. Microarray analysis has no additional value in fetal aberrant right subclavian artery: Description of 268 pregnancies and systematic literature review. Ultrasound Obstet. Gynecol. 2019, 53, 810–815. [Google Scholar] [CrossRef] [PubMed]
- Sagi-Dain, L.; Maya, I.; Falik-Zaccai, T.; Feingold-Zadok, M.; Lev, D.; Yonath, H.; Kaliner, E.; Frumkin, A.; Ben Shachar, S.; Singer, A. Isolated fetal horseshoe kidney does not seem to increase the risk for abnormal chromosomal microarray results. Eur. J. Obstet. Gynecol. Reprod. Biol. 2018, 222, 80–83. [Google Scholar] [CrossRef]
- Sagi-Dain, L.; Maya, I.; Peleg, A.; Reches, A.; Banne, E.; Baris, H.N.; Tenne, T.; Singer, A.; Ben-Shachar, S. Microarray analysis in pregnancies with isolated unilateral kidney agenesis. Pediatr. Res. 2018, 83, 825–828. [Google Scholar] [CrossRef]
- Singer, A.; Maya, I.; Frumkin, A.; Zeligson, S.; Josefsberg, S.B.Y.; Berger, R.; Ben Shachar, S.; Sagi-Dain, L. Is fetal isolated double renal collecting system an indication for chromosomal microarray? J. Matern. Neonatal Med. 2021, 34, 696–700. [Google Scholar] [CrossRef]
- Maya, I.; Kahana, S.; Yeshaya, J.; Tenne, T.; Yacobson, S.; Agmon-Fishman, I.; Cohen-Vig, L.; Levi, A.; Reinstein, E.; Basel-Vanagaite, L.; et al. Chromosomal microarray analysis in fetuses with aberrant right subclavian artery. Ultrasound Obstet. Gynecol. 2017, 49, 337–341. [Google Scholar] [CrossRef] [Green Version]
- Vedel, C.; Rode, L.; Jørgensen, F.S.; Petersen, O.B.; Sundberg, K.; Tabor, A.; Ekelund, C.K. Prenatally detected isolated ventricular septum defects and the association with chromosomal aberrations—A nationwide register-based study from Denmark. Prenat. Diagn. 2021, 41, 347–353. [Google Scholar] [CrossRef]
- Wu, X.; Li, Y.; Su, L.; Xie, X.; Cai, M.; Lin, N.; Huang, H.; Lin, Y.; Xu, L. Chromosomal Microarray Analysis for the Fetuses with Aortic Arch Abnormalities and Normal Karyotype. Mol. Diagn. Ther. 2020, 24, 611–619. [Google Scholar] [CrossRef] [PubMed]
- Xi, Q.; Zhu, X.; Wang, Y.; Ru, T.; Dai, C.; Wang, Z.; Li, J.; Hu, Y. Copy number variations in multicystic dysplastic kidney: Update for prenatal diagnosis and genetic counseling. Prenat. Diagn. 2016, 36, 463–468. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Lei, T.; Fu, F.; Deng, Q.; Li, R.; Wang, D.; Yang, X.; Li, D.; Liao, C. Microarray analysis in fetuses with duodenal obstruction: It is not just trisomy 21. Prenat. Diagn. 2021, 41, 316–322. [Google Scholar] [CrossRef] [PubMed]
- Zou, Z.; Huang, L.; Lin, S.; He, Z.; Zhu, H.; Zhang, Y.; Fang, Q.; Luo, Y. Prenatal diagnosis of posterior fossa anomalies: Additional value of chromosomal microarray analysis in fetuses with cerebellar hypoplasia. Prenat. Diagn. 2018, 38, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Tang, H.; Lu, J.; Yang, X.; Ding, H.; Wu, J. Prenatal genetic diagnosis of omphalocele by karyotyping, chromosomal microarray analysis and exome sequencing. Ann. Med. 2021, 53, 1285–1291. [Google Scholar] [CrossRef]
- Svirsky, R.; Brabbing-Goldstein, D.; Rozovski, U.; Kapusta, L.; Reches, A.; Yaron, Y. The genetic and clinical outcome of isolated fetal muscular ventricular septal defect (VSD). J. Matern. Neonatal Med. 2019, 32, 2837–2841. [Google Scholar] [CrossRef]
- Svirsky, R.; Reches, A.; Brabbing-Goldstein, D.; Bar-Shira, A.; Yaron, Y. Association of aberrant right subclavian artery with abnormal karyotype and microarray results. Prenat. Diagn. 2017, 37, 808–811. [Google Scholar] [CrossRef]
- Singer, A.; Maya, I.; Banne, E.; Baris Feldman, H.; Vinkler, C.; Ben Shachar, S.; Sagi-Dain, L. Prenatal clubfoot increases the risk for clinically significant chromosomal microarray results—Analysis of 269 singleton pregnancies. Early Hum. Dev. 2020, 145, 105047. [Google Scholar] [CrossRef]
- des Portes, V.; Rolland, A.; Velazquez-Dominguez, J.; Peyric, E.; Cordier, M.P.; Gaucherand, P.; Massardier, J.; Massoud, M.; Curie, A.; Pellot, A.S.; et al. Outcome of isolated agenesis of the corpus callosum: A population-based prospective study. Eur. J. Paediatr. Neurol. 2018, 22, 82–92. [Google Scholar] [CrossRef]
- van Nisselrooij, A.E.L.; Lugthart, M.A.; Clur, S.A.; Linskens, I.H.; Pajkrt, E.; Rammeloo, L.A.; Rozendaal, L.; Blom, N.A.; van Lith, J.M.M.; Knegt, A.C.; et al. The prevalence of genetic diagnoses in fetuses with severe congenital heart defects. Genet. Med. 2020, 22, 1206–1214. [Google Scholar] [CrossRef]
- Huang, J.; Poon, L.C.; Akolekar, R.; Choy, K.W.; Leung, T.Y.; Nicolaides, K.H. Is high fetal nuchal translucency associated with submicroscopic chromosomal abnormalities on array CGH? Ultrasound Obstet. Gynecol. 2014, 43, 620–624. [Google Scholar] [CrossRef] [PubMed]
- Krutzke, S.K.; Engels, H.; Hofmann, A.; Schumann, M.M.; Cremer, K.; Zink, A.M.; Hilger, A.; Ludwig, M.; Gembruch, U.; Reutter, H.; et al. Array-based molecular karyotyping in fetal brain malformations: Identification of novel candidate genes and chromosomal regions. Birth Defects Res. Part A Clin. Mol. Teratol. 2016, 106, 16–26. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Liu, H.; Tang, J.; Riaz Khan, M.; Wang, B.; Bukhari, I. Identification of minor chromosomal defects causing abnormal foetus and spontaneous abortions. Br. J. Biomed. Sci. 2016, 73, 67–73. [Google Scholar] [CrossRef]
- Cicatiello, R.; Pignataro, P.; Izzo, A.; Mollo, N.; Pezone, L.; Maruotti, G.M.; Sarno, L.; Sglavo, G.; Conti, A.; Genesio, R.; et al. Chromosomal Microarray Analysis versus Karyotyping in Fetuses with Increased Nuchal Translucency. Med. Sci. 2019, 7, 40. [Google Scholar] [CrossRef] [Green Version]
- Yi, J.L.; Zhang, W.; Meng, D.H.; Ren, L.J.; Yu, J.; Wei, Y.L. Epidemiology of fetal cerebral ventriculomegaly and evaluation of chromosomal microarray analysis versus karyotyping for prenatal diagnosis in a Chinese hospital. J. Int. Med. Res. 2019, 47, 5508–5517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Hu, T.; Wang, J.; Li, Q.; Wang, H.; Liu, S. Prenatal Diagnostic Value of Chromosomal Microarray in Fetuses with Nuchal Translucency Greater than 2.5 mm. BioMed Res. Int. 2019, 2019, 6504159. [Google Scholar] [CrossRef] [Green Version]
- Sukenik-Halevy, R.; Sukenik, S.; Koifman, A.; Alpert, Y.; Hershkovitz, R.; Levi, A.; Biron-Shental, T. Clinical aspects of prenatally detected congenital heart malformations and the yield of chromosomal microarray analysis. Prenat. Diagn. 2016, 36, 1185–1191. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, L.; Huang, X.; He, Z.; Lin, S.; Wang, Y.; Li, L.; Luo, Y.; Fang, Q. Chromosomal aberrations and CNVs in twin fetuses with cardiovascular anomalies: Comparison between monochorionic diamniotic and dichorionic diamniotic twins. Prenat. Diagn. 2018, 38, 318–327. [Google Scholar] [CrossRef]
- Zhu, H.; Lin, S.; Huang, L.; He, Z.; Huang, X.; Zhou, Y.; Fang, Q.; Luo, Y. Application of chromosomal microarray analysis in prenatal diagnosis of fetal growth restriction. Prenat. Diagn. 2016, 36, 686–692. [Google Scholar] [CrossRef]
- An, G.; Lin, Y.; Xu, L.P.; Huang, H.L.; Liu, S.P.; Yu, Y.H.; Yang, F. Application of chromosomal microarray to investigate genetic causes of isolated fetal growth restriction. Mol. Cytogenet. 2018, 11, 33. [Google Scholar] [CrossRef] [Green Version]
- Bao, B.; Wang, Y.; Hu, H.; Yao, H.; Li, Y.; Tang, S.; Zheng, L.; Xu, Y.; Liang, Z. Karyotypic and Molecular Genetic Changes Associated With Fetal Cardiovascular Abnormalities: Results of a Retrospective 4-Year Ultrasonic Diagnosis Study. Int. J. Biol. Sci. 2013, 9, 463–471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borrell, A.; Grande, M.; Meler, E.; Sabrià, J.; Mazarico, E.; Muñoz, A.; Rodriguez-Revenga, L.; Badenas, C.; Figueras, F. Genomic Microarray in Fetuses With Early Growth Restriction: A Multicenter Study. Obstet. Gynecol. Surv. 2018, 73, 73–74. [Google Scholar] [CrossRef]
- Brun, S.; Pennamen, P.; Mattuizzi, A.; Coatleven, F.; Vuillaume, M.L.; Lacombe, D.; Arveiler, B.; Toutain, J.; Rooryck, C. Interest of chromosomal microarray analysis in the prenatal diagnosis of fetal intrauterine growth restriction. Prenat. Diagn. 2018, 38, 1111–1119. [Google Scholar] [CrossRef] [PubMed]
- Cai, M.; Huang, H.; Su, L.; Lin, N.; Wu, X.; Xie, X.; An, G.; Li, Y.; Lin, Y.; Xu, L. Fetal congenital heart disease: Associated anomalies, identification of genetic anomalies by single-nucleotide polymorphism array analysis, and postnatal outcome. Medicine 2018, 97. [Google Scholar] [CrossRef] [PubMed]
- Cai, M.; Lin, N.; Su, L.; Wu, X.; Xie, X.; Li, Y.; Chen, X.; Lin, Y.; Huang, H.; Xu, L. Copy number variations associated with fetal congenital kidney malformations. Mol. Cytogenet. 2020, 13, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Cai, M.; Lin, N.; Su, L.; Wu, X.; Xie, X.; Li, Y.; Chen, X.; Dai, Y.; Lin, Y.; Huang, H.; et al. Detection of copy number disorders associated with congenital anomalies of the kidney and urinary tract in fetuses via single nucleotide polymorphism arrays. J. Clin. Lab. Anal. 2020, 34, e23025. [Google Scholar] [CrossRef]
- Cai, M.; Huang, H.; Su, L.; Wu, X.; Xie, X.; Xu, L.; Lin, N. Choroid Plexus Cysts: Single Nucleotide Polymorphism Array Analysis of Associated Genetic Anomalies and Resulting Obstetrical Outcomes. Risk Manag. Healthc. Policy 2021, 14, 2491–2497. [Google Scholar] [CrossRef]
- Cai, M.; Huang, H.; Xu, L.; Lin, N. Clinical Utility and the Yield of Single Nucleotide Polymorphism Array in Prenatal Diagnosis of Fetal Central Nervous System Abnormalities. Front. Mol. Biosci. 2021, 8, 452. [Google Scholar] [CrossRef]
- Chang, Q.; Yang, Y.; Peng, Y.; Liu, S.; Li, L.; Deng, X.; Yang, M.; Lan, Y. Prenatal detection of chromosomal abnormalities and copy number variants in fetuses with ventriculomegaly. Eur. J. Paediatr. Neurol. 2020, 25, 106–112. [Google Scholar] [CrossRef]
- de Wit, M.C.; Srebniak, M.I.; Joosten, M.; Govaerts, L.C.P.; Kornelisse, R.F.; Papatsonis, D.N.M.; de Graaff, K.; Knapen, M.F.C.M.; Bruggenwirth, H.T.; de Vries, F.A.T.; et al. Prenatal and postnatal findings in small-for-gestational-age fetuses without structural ultrasound anomalies at 18–24 weeks. Ultrasound Obstet. Gynecol. 2017, 49, 342–348. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Xie, Y.; Jiang, Y.; Luo, Q.; Shi, L.; Zeng, S.; Zhuang, J.; Lyu, G. The Genetic Etiology Diagnosis of Fetal Growth Restriction Using Single-Nucleotide Polymorphism-Based Chromosomal Microarray Analysis. Front. Pediatr. 2021, 9. [Google Scholar] [CrossRef] [PubMed]
- Duan, H.-L.; Zhu, X.-Y.; Zhu, Y.-J.; Wu, X.; Zhao, G.-F.; Wang, W.-J.; Li, J. The application of chromosomal microarray analysis to the prenatal diagnosis of isolated mild ventriculomegaly. Taiwan. J. Obstet. Gynecol. 2019, 58, 251–254. [Google Scholar] [CrossRef] [PubMed]
- Egloff, M.; Hervé, B.; Quibel, T.; Jaillard, S.; Le Bouar, G.; Uguen, K.; Saliou, A.H.; Valduga, M.; Perdriolle, E.; Coutton, C.; et al. Diagnostic yield of chromosomal microarray analysis in fetuses with isolated increased nuchal translucency: A French multicenter study. Ultrasound Obstet. Gynecol. 2018, 52, 715–721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, X.; Huang, H.; Lin, X.; Xue, H.; Cai, M.; Lin, N.; Xu, L. Performance of chromosomal microarray analysis for detection of copy number variations in fetal echogenic bowel. Risk Manag. Healthc. Policy 2021, 14, 1431–1438. [Google Scholar] [CrossRef]
- Fantasia, I.; Stampalija, T.; Sirchia, F.; Della Pietà, I.; Ottaviani Giammarco, C.; Guidolin, F.; Quadrifoglio, M.; Barresi, V.; Travan, L.; Faletra, F. First-trimester absent nasal bone: Is it a predictive factor for pathogenic CNVs in the low-risk population? Prenat. Diagn. 2020, 40, 1563–1568. [Google Scholar] [CrossRef]
- Gu, Y.Z.; Nisbet, D.L.; Reidy, K.L.; Palma-Dias, R. Hypoplastic nasal bone: A potential marker for facial dysmorphism associated with pathogenic copy number variants on microarray. Prenat. Diagn. 2019, 39, 116–123. [Google Scholar] [CrossRef]
- He, M.; Zhang, Z.; Hu, T.; Liu, S. Chromosomal microarray analysis for the detection of chromosome abnormalities in fetuses with echogenic intracardiac focus in women without high-risk factors. Medicine 2020, 99, e19014. [Google Scholar] [CrossRef] [Green Version]
- Hu, P.; Wang, Y.; Sun, R.; Cao, L.; Chen, X.; Liu, C.; Luo, C.; Ma, D.; Wang, W.; Fu, X.; et al. Copy Number Variations with Isolated Fetal Ventriculomegaly. Curr. Mol. Med. 2017, 17, 133–139. [Google Scholar] [CrossRef]
- Huang, H.; Cai, M.; Wang, Y.; Liang, B.; Lin, N.; Xu, L. Snp array as a tool for prenatal diagnosis of congenital heart disease screened by echocardiography: Implications for precision assessment of fetal prognosis. Risk Manag. Healthc. Policy 2021, 14, 345–355. [Google Scholar] [CrossRef]
- Huang, H.; Cai, M.; Ma, W.; Lin, N.; Xu, L. Chromosomal microarray analysis for the prenatal diagnosis in fetuses with nasal bone hypoplasia: A retrospective cohort study. Risk Manag. Healthc. Policy 2021, 14, 1533–1540. [Google Scholar] [CrossRef]
- Huang, R.N.; Chen, J.Y.; Pan, H.; Liu, Q.Q. Correlation between mild fetal ventriculomegaly, chromosomal abnormalities, and copy number variations. J. Matern. Neonatal Med. 2020, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Cai, M.; Liu, L.; Xu, L.; Lin, N. Effectiveness of chromosomal microarray analysis for prenatal diagnosis of fetal echogenic intracardiac focus: A single-center experience. Int. J. Gen. Med. 2021, 14, 1991–1997. [Google Scholar] [CrossRef] [PubMed]
- Hureaux, M.; Guterman, S.; Hervé, B.; Till, M.; Jaillard, S.; Redon, S.; Valduga, M.; Coutton, C.; Missirian, C.; Prieur, F.; et al. Chromosomal microarray analysis in fetuses with an isolated congenital heart defect: A retrospective, nationwide, multicenter study in France. Prenat. Diagn. 2019, 39, 464–470. [Google Scholar] [CrossRef] [PubMed]
- Lazier, J.; Fruitman, D.; Lauzon, J.; Bernier, F.; Argiropoulos, B.; Chernos, J.; Caluseriu, O.; Simrose, R.; Thomas, M.A. Prenatal Array Comparative Genomic Hybridization in Fetuses With Structural Cardiac Anomalies. J. Obstet. Gynaecol. Can. 2016, 38, 619–626. [Google Scholar] [CrossRef]
- Jin, H.; Wang, J.; Zhang, G.; Jiao, H.; Zhu, J.; Li, Z.; Chen, C.; Zhang, X.P.; Huang, H.; Wang, J.Y. A Chinese multicenter retrospective study of isolated increased nuchal translucency associated chromosome anomaly and prenatal diagnostic suggestions. Sci. Rep. 2021, 11, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Leung, T.Y.; Au Yeung, K.C.; Leung, W.C.; Leung, K.Y.; Lo, T.K.; To, W.W.K.; Lau, W.L.; Chan, L.W.; Sahota, D.S.; Choy, R.K.W. Prenatal diagnosis of pathogenic genomic imbalance in fetuses with increased nuchal translucency but normal karyotyping using chromosomal microarray. Hong Kong Med. J. 2019, 25, 30–32. [Google Scholar]
- Li, S.; Han, X.; Wang, Y.; Chen, S.; Niu, J.; Qian, Z.; Li, P.; Jin, L.; Xu, C. Chromosomal microarray analysis in fetuses with congenital anomalies of the kidney and urinary tract: A prospective cohort study and meta-analysis. Prenat. Diagn. 2019, 39, 165–174. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, Z.; Wang, J.; Zhang, H.; Zhu, H.; Lai, Y.; Liu, S.; Wang, H.; Hu, T. Prenatal diagnosis of genetic aberrations in fetuses with short femur detected by ultrasound: A prospective cohort study. Prenat. Diagn. 2021, 41, 1153–1163. [Google Scholar] [CrossRef]
- Liao, C.; Li, R.; Fu, F.; Xie, G.; Zhang, Y.; Pan, M.; Li, J.; Li, D. Prenatal diagnosis of congenital heart defect by genome-wide high-resolution SNP array. Prenat. Diagn. 2014, 34, 858–863. [Google Scholar] [CrossRef]
- Lin, S.; Shi, S.; Huang, L.; Lei, T.; Cai, D.; Hu, W.; Zhou, Y.; Luo, Y. Is an analysis of copy number variants necessary for various types of kidney ultrasound anomalies in fetuses? Mol. Cytogenet. 2019, 12, 1–11. [Google Scholar] [CrossRef]
- Liu, J.; Huang, L.; He, Z.; Lin, S.; Wang, Y.; Luo, Y. Clinical value of genetic analysis in prenatal diagnosis of short femur. Mol. Genet. Genom. Med. 2019, 7, e978. [Google Scholar] [CrossRef]
- Lund, I.C.B.; Christensen, R.; Petersen, O.B.; Vogel, I.; Vestergaard, E.M. Chromosomal microarray in fetuses with increased nuchal translucency. Ultrasound Obstet. Gynecol. 2015, 45, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Luo, S.; Meng, D.; Li, Q.; Hu, X.; Chen, Y.; He, C.; Xie, B.; She, S.; Li, Y.; Fu, C. Genetic testing and pregnancy outcome analysis of 362 fetuses with congenital heart disease identified by prenatal ultrasound. Arq. Bras. Cardiol. 2018, 111, 571–577. [Google Scholar] [CrossRef] [PubMed]
- Mademont-Soler, I.; Morales, C.; Soler, A.; Martínez-Crespo, J.M.; Shen, Y.; Margarit, E.; Clusellas, N.; Obon, M.; Wu, B.; Sanchez, A. Prenatal diagnosis of chromosomal abnormalities in fetuses with abnormal cardiac ultrasound findings: Evaluation of chromosomal microarray-based analysis. Ultrasound Obstet. Gynecol. 2013, 41, 375–382. [Google Scholar] [CrossRef]
- Maya, I.; Yacobson, S.; Kahana, S.; Yeshaya, J.; Tenne, T.; Agmon-Fishman, I.; Cohen-Vig, L.; Shohat, M.; Basel-Vanagaite, L.; Sharony, R. Cut-off value of nuchal translucency as indication for chromosomal microarray analysis. Ultrasound Obstet. Gynecol. 2017, 50, 332–335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monier, I.; Receveur, A.; Houfflin-Debarge, V.; Goua, V.; Castaigne, V.; Jouannic, J.M.; Mousty, E.; Saliou, A.H.; Bouchghoul, H.; Rousseau, T.; et al. Should prenatal chromosomal microarray analysis be offered for isolated fetal growth restriction? A French multicenter study. Am. J. Obstet. Gynecol. 2021, 225, 676.e1–676.e15. [Google Scholar] [CrossRef]
- Mustafa, H.J.; Jacobs, K.M.; Tessier, K.M.; Narasimhan, S.L.; Tofte, A.N.; McCarter, A.R.; Cross, S.N. Chromosomal microarray analysis in the investigation of prenatally diagnosed congenital heart disease. Am. J. Obstet. Gynecol. MFM 2020, 2, 100078. [Google Scholar] [CrossRef]
- Pan, M.; Han, J.; Zhen, L.; Yang, X.; Li, R.; Liao, C.; Li, D.Z. Prenatal diagnosis of fetuses with increased nuchal translucency using an approach based on quantitative fluorescent polymerase chain reaction and genomic microarray. Eur. J. Obstet. Gynecol. Reprod. Biol. 2016, 197, 164–167. [Google Scholar] [CrossRef] [PubMed]
- Peng, R.; Zhou, Y.; Xie, H.N.; Lin, M.F.; Zheng, J. Chromosomal and subchromosomal anomalies associated to small for gestational age fetuses with no additional structural anomalies. Prenat. Diagn. 2017, 37, 1219–1224. [Google Scholar] [CrossRef]
- Petersen, O.B.; Smith, E.; Van Opstal, D.; Polak, M.; Knapen, M.F.C.M.; Diderich, K.E.M.; Bilardo, C.M.; Arends, L.R.; Vogel, I.; Srebniak, M.I. Nuchal translucency of 3.0-3.4 mm an indication for NIPT or microarray? Cohort analysis and literature review. Acta Obstet. Gynecol. Scand. 2020, 99, 765–774. [Google Scholar] [CrossRef]
- Qiao, F.; Wang, Y.; Zhang, C.; Zhou, R.; Wu, Y.; Wang, C.; Meng, L.; Mao, P.; Cheng, Q.; Luo, C.; et al. Comprehensive evaluation of genetic variants using chromosomal microarray analysis and exome sequencing in fetuses with congenital heart defect. Ultrasound Obstet. Gynecol. 2021, 58, 377–387. [Google Scholar] [CrossRef] [PubMed]
- Sagi-Dain, L.; Singer, A.; Falik-Zaccai, T.; Peleg, A.; Bar-Shira, A.; Feingold-Zadok, M.; Ben Shachar, S.; Maya, I. The effect of polyhydramnios degree on chromosomal microarray results: A retrospective cohort analysis of 742 singleton pregnancies. Arch. Gynecol. Obstet. 2021, 304, 649–656. [Google Scholar] [CrossRef] [PubMed]
- Sagi-Dain, L.; Singer, A.; Ben Shachar, S.; Josefsberg Ben Yehoshua, S.; Feingold-Zadok, M.; Greenbaum, L.; Maya, I. Risk of Clinically Significant Chromosomal Microarray Analysis Findings in Fetuses With Nuchal Translucency From 3.0 mm Through 3.4 mm. Obstet. Gynecol. 2021, 137, 126–131. [Google Scholar] [CrossRef] [PubMed]
- Sagi-Dain, L.; Singer, A.; Segel, R.; Berger, R.; Kanengisser-Pines, B.; Maya, I. The yield of chromosomal microarray in pregnancies with congenital cardiac defects and normal noninvasive prenatal screening. Am. J. Obstet. Gynecol. 2021, 225, 333.e1–333.e14. [Google Scholar] [CrossRef]
- Schmid, M.; Stary, S.; Blaicher, W.; Gollinger, M.; Husslein, P.; Streubel, B. Prenatal genetic diagnosis using microarray analysis in fetuses with congenital heart defects. Prenat. Diagn. 2012, 32, 376–382. [Google Scholar] [CrossRef]
- Sinajon, P.; Chitayat, D.; Roifman, M.; Wasim, S.; Carmona, S.; Ryan, G.; Noor, A.; Kolomietz, E.; Chong, K. Microarray and RASopathy-disorder testing in fetuses with increased nuchal translucency. Ultrasound Obstet. Gynecol. 2020, 55, 383–390. [Google Scholar] [CrossRef]
- Singer, A.; Maya, I.; Koifman, A.; Samra, N.N.; Baris, H.N.; Falik-Zaccai, T.; Ben Shachar, S.; Sagi-Dain, L. Microarray analysis in pregnancies with isolated echogenic bowel. Early Hum. Dev. 2018, 119, 25–28. [Google Scholar] [CrossRef]
- Singer, A.; Maya, I.; Sukenik-Halevy, R.; Tenne, T.; Lev, D.; Ben Shachar, S.; Sagi-Dain, L. Microarray findings in pregnancies with oligohydramnios—A retrospective cohort study and literature review. J. Perinat. Med. 2019, 48, 53–58. [Google Scholar] [CrossRef]
- Song, T.; Wan, S.; Li, Y.; Xu, Y.; Dang, Y.; Zheng, Y.; Li, C.; Zheng, J.; Chen, B.; Zhang, J. Detection of copy number variants using chromosomal microarray analysis for the prenatal diagnosis of congenital heart defects with normal karyotype. J. Clin. Lab. Anal. 2019, 33, e22630. [Google Scholar] [CrossRef] [Green Version]
- Song, T.; Xu, Y.; Li, Y.; Jia, L.; Zheng, J.; Dang, Y.; Wan, S.; Zheng, Y.; Zhang, J.; Yang, H. Detection of submicroscopic chromosomal aberrations by chromosomal microarray analysis for the prenatal diagnosis of central nervous system abnormalities. J. Clin. Lab. Anal. 2020, 34, e23434. [Google Scholar] [CrossRef]
- Stuurman, K.E.; van der Mespel-Brouwer, M.H.; Engels, M.A.J.; Elting, M.W.; Bhola, S.L.; Meijers-Heijboer, H. Isolated Increased Nuchal Translucency in First Trimester Ultrasound Scan: Diagnostic Yield of Prenatal Microarray and Outcome of Pregnancy. Front. Med. 2021, 8, 1784. [Google Scholar] [CrossRef]
- Su, L.; Huang, H.; An, G.; Cai, M.; Wu, X.; Li, Y.; Xie, X.; Lin, Y.; Wang, M.; Xu, L. Clinical application of chromosomal microarray analysis in fetuses with increased nuchal translucency and normal karyotype. Mol. Genet. Genom. Med. 2019, 7, e811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, J.; Qin, Z.; Fu, H.; Luo, J.; Huang, Y.; Huang, P.; Zhang, S.; Liu, T.; Lu, W.; Li, W.; et al. The correlations of prenatal renal ultrasound abnormalities with pathogenic CNVs in a large Chinese cohort. Ultrasound Obstet. Gynecol. 2021, 59, 226–233. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Wu, Q.; Jiang, S.W.; Yan, Y.; Wang, X.; Zhang, J.; Liu, Y.; Yao, L.; Ma, Y.; Wang, L. Prenatal diagnosis of central nervous system anomalies by high-resolution chromosomal microarray analysis. BioMed Res. Int. 2015, 2015, 426379. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; Lv, J.; Chen, X.; Bai, L.; Li, H.; Chen, C.; Wang, P.; Xu, X.; Lu, J. Prenatal Diagnosis of DNA Copy Number Variations by Genomic Single-Nucleotide Polymorphism Array in Fetuses with Congenital Heart Defects. Fetal Diagn. Ther. 2016, 39, 64–73. [Google Scholar] [CrossRef]
- Toren, A.; Alpern, S.; Berkenstadt, M.; Bar-Yosef, O.; Pras, E.; Katorza, E. Chromosomal microarray evaluation of fetal ventriculomegaly. Isr. Med. Assoc. J. 2020, 22, 573–578. [Google Scholar]
- Turan, S.; Asoglu, M.R.; Benziv, R.G.; Doyle, L.; Harman, C.; Turan, O.M. Yield rate of chromosomal microarray analysis in fetuses with congenital heart defects. Eur. J. Obstet. Gynecol. Reprod. Biol. 2018, 221, 172–176. [Google Scholar] [CrossRef]
- Tzadikevitch Geffen, K.; Singer, A.; Maya, I.; Sagi-Dain, L.; Khayat, M.; Ben-Shachar, S.; Daum, H.; Michaelson-Cohen, R.; Feingold-Zadok, M.; Sukenik Halevy, R. Chromosomal microarray should be performed for cases of fetal short long bones detected prenatally. Arch. Gynecol. Obstet. 2021, 303, 85–92. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Z.; Li, Q.; Zhu, H.; Lai, Y.; Luo, W.; Liu, S.; Wang, H.; Hu, T. Prenatal diagnosis of chromosomal aberrations by chromosomal microarray analysis in foetuses with ventriculomegaly. Sci. Rep. 2020, 10, 1–11. [Google Scholar] [CrossRef]
- Yang, X.; Li, R.; Fu, F.; Zhang, Y.; Li, D.; Liao, C. Submicroscopic chromosomal abnormalities in fetuses with increased nuchal translucency and normal karyotype. J. Matern. Neonatal Med. 2017, 30, 194–198. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Cao, L.; Liang, D.; Meng, L.; Wu, Y.; Qiao, F.; Ji, X.; Luo, C.; Zhang, J.; Xu, T.; et al. Prenatal chromosomal microarray analysis in fetuses with congenital heart disease: A prospective cohort study. Am. J. Obstet. Gynecol. 2018, 218, 244.e1–244.e17. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Yang, Y.; Huang, S.; Wu, Y.; Li, P.; Zhuang, J. Clinical application of chromosomal microarray analysis for the prenatal diagnosis of chromosomal abnormalities and copy number variations in fetuses with congenital heart disease. Prenat. Diagn. 2018, 38, 406–413. [Google Scholar] [CrossRef]
- Xie, X.; Wu, X.; Su, L.; Cai, M.; Li, Y.; Huang, H.; Xu, L. Application of single nucleotide polymorphism microarray in prenatal diagnosis of fetuses with central nervous system abnormalities. Int. J. Gen. Med. 2021, 14, 4239–4246. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Xiang, Y.; Xu, X.; Zhou, L.; Li, H.; Dong, X.; Tang, S. Clinical application of chromosomal microarray analysis for fetuses with craniofacial malformations. Mol. Cytogenet. 2020, 13, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Xue, S.; Yan, H.; Chen, J.; Li, N.; Wang, J.; Liu, Y.; Zhang, H.; Li, S.; Zhang, W.; Chen, D.; et al. Genetic Examination for Fetuses with Increased Fetal Nuchal Translucency by Genomic Technology. Cytogenet. Genome Res. 2020, 160, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Xue, H.; Yu, A.; Lin, N.; Chen, X.; Lin, M.; Wang, Y.; Huang, H.; Xu, L. Detection of copy number variation associated with ventriculomegaly in fetuses using single nucleotide polymorphism arrays. Sci. Rep. 2021, 11, 1–12. [Google Scholar] [CrossRef]
- Zhao, X.R.; Gao, L.; Wu, Y.; Wang, Y.L. Application of chromosomal microarray in fetuses with increased nuchal translucency. J. Matern. Neonatal Med. 2020, 33, 1749–1754. [Google Scholar] [CrossRef]
- Zhu, X.; Li, J.; Ru, T.; Wang, Y.; Xu, Y.; Yang, Y.; Wu, X.; Cram, D.S.; Hu, Y. Identification of copy number variations associated with congenital heart disease by chromosomal microarray analysis and next-generation sequencing. Prenat. Diagn. 2016, 36, 321–327. [Google Scholar] [CrossRef]
- He, M.; Du, L.; Xie, H.; Zhang, L.; Gu, Y.; Lei, T.; Zheng, J.; Chen, D. The Added Value of Whole-Exome Sequencing for Anomalous Fetuses With Detailed Prenatal Ultrasound and Postnatal Phenotype. Front. Genet. 2021, 12, 627204. [Google Scholar] [CrossRef]
- Lord, J.; McMullan, D.J.; Eberhardt, R.Y.; Rinck, G.; Hamilton, S.J.; Quinlan-Jones, E.; Prigmore, E.; Keelagher, R.; Best, S.K.; Carey, G.K. Prenatal Assessment of Genomes and Exomes Consortium. Prenatal exome sequencing analysis in fetal structural anomalies detected by ultrasonography (PAGE): A cohort study. Lancet 2019, 393, 747–757. [Google Scholar] [CrossRef] [Green Version]
- Petrovski, S.; Aggarwal, V.; Giordano, J.L.; Stosic, M.; Wou, K.; Bier, L.; Spiegel, E.; Brennan, K.; Stong, N.; Jobanputra, V.; et al. Whole-exome sequencing in the evaluation of fetal structural anomalies: A prospective cohort study. Lancet 2019, 393, 758–767. [Google Scholar] [CrossRef]
- Fu, F.; Li, R.; Li, Y.; Nie, Z.Q.; Lei, T.; Wang, D.; Yang, X.; Han, J.; Pan, M.; Zhen, L.; et al. Whole exome sequencing as a diagnostic adjunct to clinical testing in fetuses with structural abnormalities. Ultrasound Obstet. Gynecol. 2018, 51, 493–502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, M.; Chen, J.; Wang, C.; Chen, F.; Xie, Y.; Li, Y.; Li, N.; Wang, J.; Zhang, V.W.; Chen, D. Clinical application of medical exome sequencing for prenatal diagnosis of fetal structural anomalies. Eur. J. Obstet. Gynecol. Reprod. Biol. 2020, 251, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Lei, L.; Zhou, L.; Xiong, J. jiao Whole-exome sequencing increases the diagnostic rate for prenatal fetal structural anomalies. Eur. J. Med. Genet. 2021, 64, 104288. [Google Scholar] [CrossRef] [PubMed]
- Pauta, M.; Campos, B.; Segura-Puimedon, M.; Arca, G.; Nadal, A.; Tubau, A.; Perez, S.P.; Marimon, E.; Martín, L.; López-Quesada, E.; et al. Next-Generation Sequencing Gene Panels and “Solo” Clinical Exome Sequencing Applied in Structurally Abnormal Fetuses. Fetal Diagn. Ther. 2021, 48, 746–756. [Google Scholar] [CrossRef]
- Pangalos, C.; Hagnefelt, B.; Lilakos, K.; Konialis, C. First applications of a targeted exome sequencing approach in fetuses with ultrasound abnormalities reveals an important fraction of cases with associated gene defects. PeerJ 2016, 2016, e1955. [Google Scholar] [CrossRef] [Green Version]
- Vora, N.L.; Powell, B.; Brandt, A.; Strande, N.; Hardisty, E.; Gilmore, K.; Foreman, A.K.M.; Wilhelmsen, K.; Bizon, C.; Reilly, J.; et al. Prenatal exome sequencing in anomalous fetuses: New opportunities and challenges. Genet. Med. 2017, 19, 1207–1216. [Google Scholar] [CrossRef] [Green Version]
- Boissel, S.; Fallet-Bianco, C.; Chitayat, D.; Kremer, V.; Nassif, C.; Rypens, F.; Delrue, M.-A.; Soglio, D.D.; Oligny, L.L.; Patey, N.; et al. Genomic Study of Severe Fetal Anomalies and Discovery of GREB1L Mutations in Renal Agenesis. Obstet. Gynecol. Surv. 2018, 73, 677–679. [Google Scholar] [CrossRef]
- Leung, G.K.C.; Mak, C.C.Y.; Fung, J.L.F.; Wong, W.H.S.; Tsang, M.H.Y.; Yu, M.H.C.; Pei, S.L.C.; Yeung, K.S.; Mok, G.T.K.; Lee, C.P.; et al. Identifying the genetic causes for prenatally diagnosed structural congenital anomalies (SCAs) by whole-exome sequencing (WES) 06 Biological Sciences 0604 Genetics 11 Medical and Health Sciences 1114 Paediatrics and Reproductive Medicine. BMC Med. Genom. 2018, 11, 1–10. [Google Scholar] [CrossRef]
- Daum, H.; Meiner, V.; Elpeleg, O.; Harel, T.; Bar-Or, L.; Eilat, A.; Fahham, D.; Gur, M.; Hacohen, N.; Kimchi, A.; et al. Fetal exome sequencing: Yield and limitations in a tertiary referral center. Ultrasound Obstet. Gynecol. 2019, 53, 80–86. [Google Scholar] [CrossRef] [Green Version]
- de Koning, M.A.; Haak, M.C.; Adama van Scheltema, P.N.; Peeters-Scholte, C.M.P.C.D.; Koopmann, T.T.; Nibbeling, E.A.R.; Aten, E.; den Hollander, N.S.; Ruivenkamp, C.A.L.; Hoffer, M.J.V.; et al. From diagnostic yield to clinical impact: A pilot study on the implementation of prenatal exome sequencing in routine care. Genet. Med. 2019, 21, 2303–2310. [Google Scholar] [CrossRef] [PubMed]
- Becher, N.; Andreasen, L.; Sandager, P.; Lou, S.; Petersen, O.B.; Christensen, R.; Vogel, I. Implementation of exome sequencing in fetal diagnostics—Data and experiences from a tertiary center in Denmark. Acta Obstet. Gynecol. Scand. 2020, 99, 783–790. [Google Scholar] [CrossRef] [PubMed]
- Dempsey, E.; Haworth, A.; Ive, L.; Dubis, R.; Savage, H.; Serra, E.; Kenny, J.; Elmslie, F.; Greco, E.; Thilaganathan, B.; et al. A report on the impact of rapid prenatal exome sequencing on the clinical management of 52 ongoing pregnancies: A retrospective review. BJOG Int. J. Obstet. Gynaecol. 2021, 128, 1012–1019. [Google Scholar] [CrossRef]
- Al-Kouatly, H.B.; Makhamreh, M.M.; Rice, S.M.; Smith, K.; Harman, C.; Quinn, A.; Valcarcel, B.N.; Firman, B.; Liu, R.; Hegde, M.; et al. High diagnosis rate for nonimmune hydrops fetalis with prenatal clinical exome from the Hydrops-Yielding Diagnostic Results of Prenatal Sequencing (HYDROPS) Study. Genet. Med. 2021, 23, 1325–1333. [Google Scholar] [CrossRef]
- Mone, F.; Eberhardt, R.Y.; Hurles, M.E.; Mcmullan, D.J.; Maher, E.R.; Lord, J.; Chitty, L.S.; Dempsey, E.; Homfray, T.; Giordano, J.L.; et al. Fetal hydrops and the Incremental yield of Next-generation sequencing over standard prenatal Diagnostic testing (FIND) study: Prospective cohort study and meta-analysis. Ultrasound Obstet. Gynecol. 2021, 58, 509–518. [Google Scholar] [CrossRef] [PubMed]
- Sparks, T.N.; Lianoglou, B.R.; Adami, R.R.; Pluym, I.D.; Holliman, K.; Duffy, J.; Downum, S.L.; Patel, S.; Faubel, A.; Boe, N.M.; et al. Exome Sequencing for Prenatal Diagnosis in Nonimmune Hydrops Fetalis. Obstet. Gynecol. Surv. 2021, 76, 139–141. [Google Scholar] [CrossRef]
- Kucińska-Chahwan, A.; Roszkowski, T.; Nowakowska, B.; Geremek, M.; Paczkowska, M.; Bijok, J.; Massalska, D. Genetic causes of the skeletal system abnormalities diagnosed by prenatal sonography with the use of exome sequencing: Single institution experience. Ultrasound Obstet. Gynecol. 2021. [Google Scholar] [CrossRef]
- Peng, Y.; Yang, S.; Huang, X.; Pang, J.; Liu, J.; Hu, J.; Shen, X.; Tang, C.; Wang, H. Whole Exome Sequencing Analysis in Fetal Skeletal Dysplasia Detected by Ultrasonography: An Analysis of 38 Cases. Front. Genet. 2021, 12, 728544. [Google Scholar] [CrossRef]
- Yang, K.; Shen, M.; Yan, Y.; Tan, Y.; Zhang, J.; Wu, J.; Yang, G.; Li, S.; Wang, J.; Ren, Z.; et al. Genetic Analysis in Fetal Skeletal Dysplasias by Trio Whole-Exome Sequencing. BioMed Res. Int. 2019, 2019, 2492590. [Google Scholar] [CrossRef]
- Zhang, L.; Pan, L.; Teng, Y.; Liang, D.; Li, Z.; Wu, L. Molecular diagnosis for 55 fetuses with skeletal dysplasias by whole-exome sequencing: A retrospective cohort study. Clin. Genet. 2021, 100, 219–226. [Google Scholar] [CrossRef]
- Han, J.; Yang, Y.D.; He, Y.; Liu, W.J.; Zhen, L.; Pan, M.; Yang, X.; Zhang, V.W.; Liao, C.; Li, D.Z. Rapid prenatal diagnosis of skeletal dysplasia using medical trio exome sequencing: Benefit for prenatal counseling and pregnancy management. Prenat. Diagn. 2020, 40, 577–584. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Zhou, C.; Shi, H.; Mo, Y.; Tan, W.; Sun, T.; Zhu, J.; Li, Q.; Li, H.; Li, Y. Prenatal diagnosis of skeletal dysplasias using whole exome sequencing in China. Clin. Chim. Acta 2020, 507, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Mellis, R.; Eberhardt, R.Y.; Hamilton, S.J.; McMullan, D.J.; Kilby, M.D.; Maher, E.R.; Hurles, M.E.; Giordano, J.L.; Aggarwal, V.; Goldstein, D.B.; et al. Fetal exome sequencing for isolated increased nuchal translucency: Should we be doing it? BJOG Int. J. Obstet. Gynaecol. 2021, 129, 52–61. [Google Scholar] [CrossRef]
- Yang, X.; Huang, L.Y.; Pan, M.; Xu, L.L.; Zhen, L.; Han, J.; Li, D.Z. Exome sequencing improves genetic diagnosis of fetal increased nuchal translucency. Prenat. Diagn. 2020, 40, 1426–1431. [Google Scholar] [CrossRef]
- Schwab, M.E.; Dong, S.; Lianoglou, B.R.; Aguilar Lucero, A.F.; Schwartz, G.B.; Norton, M.E.; MacKenzie, T.C.; Sanders, S.J. Exome sequencing of fetuses with congenital diaphragmatic hernia supports a causal role for NR2F2, PTPN11, and WT1 variants. Am. J. Surg. 2021, 223, 182–186. [Google Scholar] [CrossRef] [PubMed]
- She, Q.; Tang, E.; Peng, C.; Wang, L.; Wang, D.; Tan, W. Prenatal genetic testing in 19 fetuses with corpus callosum abnormality. J. Clin. Lab. Anal. 2021, 35, e23971. [Google Scholar] [CrossRef] [PubMed]
- Heide, S.; Spentchian, M.; Valence, S.; Buratti, J.; Mach, C.; Lejeune, E.; Olin, V.; Massimello, M.; Lehalle, D.; Mouthon, L.; et al. Prenatal exome sequencing in 65 fetuses with abnormality of the corpus callosum: Contribution to further diagnostic delineation. Genet. Med. 2020, 22, 1887–1891. [Google Scholar] [CrossRef]
- Zhen, L.; Yang, Y.-D.; Xu, L.-L.; Cao, Q.; Li, D.-Z. Fetal micrognathia in the first trimester: An ominous finding even after a normal array. Eur. J. Obstet. Gynecol. Reprod. Biol. 2021, 263, 176–180. [Google Scholar] [CrossRef] [PubMed]
- Weitensteiner, V.; Zhang, R.; Bungenberg, J.; Marks, M.; Gehlen, J.; Ralser, D.J.; Hilger, A.C.; Sharma, A.; Schumacher, J.; Gembruch, U.; et al. Exome sequencing in syndromic brain malformations identifies novel mutations in ACTB, and SLC9A6, and suggests BAZ1A as a new candidate gene. Birth Defects Res. 2018, 110, 587–597. [Google Scholar] [CrossRef] [Green Version]
- Westphal, D.S.; Leszinski, G.S.; Rieger-Fackeldey, E.; Graf, E.; Weirich, G.; Meitinger, T.; Ostermayer, E.; Oberhoffer, R.; Wagner, M. Lessons from exome sequencing in prenatally diagnosed heart defects: A basis for prenatal testing. Clin. Genet. 2019, 95, 582–589. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Fu, F.; Yu, Q.; Wang, D.; Jing, X.; Zhang, Y.; Li, F.; Li, F.; Han, J.; Pan, M.; et al. Prenatal exome sequencing in fetuses with congenital heart defects. Clin. Genet. 2020, 98, 215–230. [Google Scholar] [CrossRef]
- Mone, F.; Eberhardt, R.Y.; Morris, R.K.; Hurles, M.E.; McMullan, D.J.; Maher, E.R.; Lord, J.; Chitty, L.S.; Giordano, J.L.; Wapner, R.J.; et al. COngenital heart disease and the Diagnostic yield with Exome sequencing (CODE) study: Prospective cohort study and systematic review. Ultrasound Obstet. Gynecol. 2021, 57, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Yi, T.; Hao, X.; Yan, H.; Wang, J.; Li, Q.; Gu, X.; Zhou, X.; Wang, S.; Wang, X.; et al. Contribution of single-gene defects to congenital cardiac left-sided lesions in the prenatal setting. Ultrasound Obstet. Gynecol. 2020, 56, 225–232. [Google Scholar] [CrossRef]
- Lei, T.Y.; Fu, F.; Li, R.; Yu, Q.X.; Du, K.; Zhang, W.W.; Deng, Q.; Li, L.S.; Wang, D.; Yang, X.; et al. Whole-exome sequencing in the evaluation of fetal congenital anomalies of the kidney and urinary tract detected by ultrasonography. Prenat. Diagn. 2020, 40, 1290–1299. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.; Xie, Y.; Chen, F.; Chen, M.; Yu, L.; Chen, D.; Chen, J. Novel and recurrent variants identified in fetuses with central nervous system abnormalities by trios-medical exome sequencing. Clin. Chim. Acta 2020, 510, 599–604. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Wang, Y.; Shao, B.; Wang, C.; Hu, P.; Qiao, F.; Xu, Z. Molecular diagnostic in fetuses with isolated congenital anomalies of the kidney and urinary tract by whole-exome sequencing. J. Clin. Lab. Anal. 2020, 34, e23480. [Google Scholar] [CrossRef]
- Akalın, A.; Taskiran, E.Z.; Şimşek-Kiper, P.Ö.; Utine, E.; Alanay, Y.; Özçelik, U.; Boduroğlu, K. Spondyloepimetaphyseal dysplasia EXTL3-deficient type: Long-term follow-up and review of the literature. Am. J. Med. Genet. Part A 2021, 185, 3104–3110. [Google Scholar] [CrossRef]
- Aoi, H.; Mizuguchi, T.; Suzuki, T.; Makino, S.; Yamamoto, Y.; Takeda, J.; Maruyama, Y.; Seyama, R.; Takeuchi, S.; Uchiyama, Y. Whole exome sequencing of fetal structural anomalies detected by ultrasonography. J. Hum. Genet. 2021, 66, 499–507. [Google Scholar] [CrossRef]
- Biard, J.M.; Payrat, S.; Clapuyt, P.; Barrea, C.; Benoit, V.; Baldin, P.; Bernard, P.; Van Grambezen, B.; Sznajer, Y. Antenatal diagnosis of CHARGE syndrome: Prenatal ultrasound findings and crucial role of fetal dysmorphic signs. About a series of 10 cases and review of literature. Eur. J. Med. Genet. 2021, 64, 104189. [Google Scholar] [CrossRef]
- Cao, Q.; Yang, Y.; Pan, M.; Han, J.; Yang, X.; Li, D.Z. Fetal akinesia: The application of clinical exome sequencing in cases with decreased fetal movement. Eur. J. Obstet. Gynecol. Reprod. Biol. 2021, 260, 59–63. [Google Scholar] [CrossRef]
- Lefebvre, M.; Bruel, A.L.; Tisserant, E.; Bourgon, N.; Duffourd, Y.; Collardeau-Frachon, S.; Attie-Bitach, T.; Kuentz, P.; Assoum, M.; Schaefer, E.; et al. Genotype-first in a cohort of 95 fetuses with multiple congenital abnormalities: When exome sequencing reveals unexpected fetal phenotype-genotype correlations. J. Med. Genet. 2021, 58, 400–413. [Google Scholar] [CrossRef] [PubMed]
- Lerman-Sagie, T.; Pogledic, I.; Leibovitz, Z.; Malinger, G. A practical approach to prenatal diagnosis of malformations of cortical development. Eur. J. Paediatr. Neurol. 2021, 34, 50–61. [Google Scholar] [CrossRef]
- Lv, S.; Zhao, J.; Xi, L.; Lin, X.; Wang, C.; Yue, H.; Gu, J.; Hu, W.; Fu, W.; Wei, Z.; et al. Genetics Evaluation of Targeted Exome Sequencing in 223 Chinese Probands With Genetic Skeletal Dysplasias. Front. Cell Dev. Biol. 2021, 9, 2469. [Google Scholar] [CrossRef] [PubMed]
- Norton, M.E.; Van Ziffle, J.; Lianoglou, B.R.; Hodoglugil, U.; Devine, W.P.; Sparks, T.N. Exome sequencing vs targeted gene panels for the evaluation of nonimmune hydrops fetalis. Am. J. Obstet. Gynecol. 2021, 226, 128.e1–128.e11. [Google Scholar] [CrossRef] [PubMed]
- Santoro, C.; Gaudino, G.; Torella, A.; Piluso, G.; Perrotta, S.; Miraglia del Giudice, E.; Nigro, V.; Grandone, A. Intermittent macrothrombocytopenia in a novel patient with Takenouchi-Kosaki syndrome and review of literature. Eur. J. Med. Genet. 2021, 64, 104358. [Google Scholar] [CrossRef]
- Shi, L.; Li, M.; Qi, H.; Zhu, J.; Yang, J.; Tang, J.; Wang, L. Whole-exome sequencing analysis to identify novel potential pathogenetic mutations in fetuses with abnormal brain structure. Ann. Transl. Med. 2021, 9, 807. [Google Scholar] [CrossRef] [PubMed]
- So, P.L.; Luk, H.M.; Cheung, K.W.; Hui, W.; Chung, M.Y.; Mak, A.S.L.; Lok, W.Y.; Yu, K.P.T.; Cheng, S.S.W.; Hau, E.W.L.; et al. Prenatal phenotype of Kabuki syndrome: A case series and literature review. Prenat. Diagn. 2021, 41, 1089–1100. [Google Scholar] [CrossRef] [PubMed]
- Stutterd, C.A.; Brock, S.; Stouffs, K.; Fanjul-Fernandez, M.; Lockhart, P.J.; McGillivray, G.; Mandelstam, S.; Pope, K.; Delatycki, M.B.; Jansen, A.; et al. Genetic heterogeneity of polymicrogyria: Study of 123 patients using deep sequencing. Brain Commun. 2021, 3, fcaa221. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Hao, X.; Wang, X.; Zhou, X.; Zhang, Y.; Liu, X.; Han, J.; Gu, X.; Sun, L.; Zhao, Y.; et al. Genetics and Clinical Features of Noncompaction Cardiomyopathy in the Fetal Population. Front. Cardiovasc. Med. 2021, 7, 397. [Google Scholar] [CrossRef]
- Tang, H.; Zhang, Q.; Xiang, J.; Yin, L.; Wang, J.; Wang, T. Whole Exome Sequencing Aids the Diagnosis of Fetal Skeletal Dysplasia. Front. Genet. 2021, 12, 178. [Google Scholar] [CrossRef]
- Wu, W.J.; Ma, G.C.; Chang, T.Y.; Lee, M.H.; Chen, Y.N.; Chen, M. Hydrops in first trimester as unreported prenatal finding of dyssegmental dysplasia confirmed by exome sequencing. Ultrasound Obstet. Gynecol. 2021, 58, 318–320. [Google Scholar] [CrossRef] [PubMed]
- Zhai, Y.; Zhang, Z.; Shi, P.; Martin, D.M.; Kong, X. Incorporation of exome-based CNV analysis makes trio-WES a more powerful tool for clinical diagnosis in neurodevelopmental disorders: A retrospective study. Hum. Mutat. 2021, 42, 990–1004. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Ren, Y.; Song, R.; Wang, L.; Xu, H.; Xie, X.; Zhou, H.; Sun, P.; Zhang, M.; Zhao, Q.; et al. Combined exome sequencing and deep phenotyping in highly selected fetuses with skeletal dysplasia during the first and second trimesters improves diagnostic yield. Prenat. Diagn. 2021, 41, 1401–1413. [Google Scholar] [CrossRef]
- Zhou, X.; Zhou, J.; Wei, X.; Yao, R.; Yang, Y.; Deng, L.; Zou, G.; Wang, X.; Yang, Y.; Duan, T.; et al. Value of Exome Sequencing in Diagnosis and Management of Recurrent Non-immune Hydrops Fetalis: A Retrospective Analysis. Front. Genet. 2021, 12, 379. [Google Scholar] [CrossRef] [PubMed]
- Yates, C.L.; Monaghan, K.G.; Copenheaver, D.; Retterer, K.; Scuffins, J.; Kucera, C.R.; Friedman, B.; Richard, G.; Juusola, J. Whole-exome sequencing on deceased fetuses with ultrasound anomalies: Expanding our knowledge of genetic disease during fetal development. Genet. Med. 2017, 19, 1171–1178. [Google Scholar] [CrossRef] [Green Version]
- Quinlan-Jones, E.; Lord, J.; Williams, D.; Hamilton, S.; Marton, T.; Eberhardt, R.Y.; Rinck, G.; Prigmore, E.; Keelagher, R.; McMullan, D.J.; et al. Molecular autopsy by trio exome sequencing (ES) and postmortem examination in fetuses and neonates with prenatally identified structural anomalies. Genet. Med. 2019, 21, 1065–1073. [Google Scholar] [CrossRef] [Green Version]
- Meier, N.; Bruder, E.; Lapaire, O.; Hoesli, I.; Kang, A.; Hench, J.; Hoeller, S.; De Geyter, J.; Miny, P.; Heinimann, K.; et al. Exome sequencing of fetal anomaly syndromes: Novel phenotype-genotype discoveries. Eur. J. Hum. Genet. 2019, 27, 730–737. [Google Scholar] [CrossRef] [Green Version]
- Carss, K.J.; Hillman, S.C.; Parthiban, V.; McMullan, D.J.; Maher, E.R.; Kilby, M.D.; Hurles, M.E. Exome sequencing improves genetic diagnosis of structural fetal abnormalities revealed by ultrasound. Hum. Mol. Genet. 2014, 23, 3269–3277. [Google Scholar] [CrossRef] [Green Version]
- Mackie, F.; Carss, K.; Hillman, S.; Hurles, M.; Kilby, M. Exome Sequencing in Fetuses with Structural Malformations. J. Clin. Med. 2014, 3, 747–762. [Google Scholar] [CrossRef]
- Yauy, K.; Mau-Them, F.T.; Willems, M.; Coubes, C.; Blanchet, P.; Herlin, C.; Arrada, I.T.; Sanchez, E.; Faure, J.-M.; Le Gac, M.-P. B3GAT3-related disorder with craniosynostosis and bone fragility due to a unique mutation. Genet. Med. 2018, 20, 269–274. [Google Scholar] [CrossRef] [Green Version]
- Quaio, C.R.D.C.; Moreira, C.M.; Novo-Filho, G.M.; Sacramento-Bobotis, P.R.; Groenner Penna, M.; Perazzio, S.F.; Dutra, A.P.; da Silva, R.A.; Santos, M.N.P.; de Arruda, V.Y.N. Diagnostic power and clinical impact of exome sequencing in a cohort of 500 patients with rare diseases. Am. J. Med. Genet. Part C Semin. Med. Genet. 2020, 184, 955–964. [Google Scholar] [CrossRef] [PubMed]
- De Tomasi, L.; David, P.; Humbert, C.; Silbermann, F.; Arrondel, C.; Tores, F.; Fouquet, S.; Desgrange, A.; Niel, O.; Bole-Feysot, C. Mutations in GREB1L cause bilateral kidney agenesis in humans and mice. Am. J. Hum. Genet. 2017, 101, 803–814. [Google Scholar] [CrossRef] [Green Version]
- Westerfield, L.E.; Stover, S.R.; Mathur, V.S.; Nassef, S.A.; Carter, T.G.; Yang, Y.; Eng, C.M.; Van den Veyver, I.B. Reproductive genetic counseling challenges associated with diagnostic exome sequencing in a large academic private reproductive genetic counseling practice. Prenat. Diagn. 2015, 35, 1022–1029. [Google Scholar] [CrossRef] [PubMed]
- Alamillo, C.L.; Powis, Z.; Farwell, K.; Shahmirzadi, L.; Weltmer, E.C.; Turocy, J.; Lowe, T.; Kobelka, C.; Chen, E.; Basel, D.; et al. Exome sequencing positively identified relevant alterations in more than half of cases with an indication of prenatal ultrasound anomalies. Prenat. Diagn. 2015, 35, 1073–1078. [Google Scholar] [CrossRef]
- Shamseldin, H.E.; Kurdi, W.; Almusafri, F.; Alnemer, M.; Alkaff, A.; Babay, Z.; Alhashem, A.; Tulbah, M.; Alsahan, N.; Khan, R.; et al. Molecular autopsy in maternal-fetal medicine. Genet. Med. 2018, 20, 420–427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stals, K.L.; Wakeling, M.; Baptista, J.; Caswell, R.; Parrish, A.; Rankin, J.; Tysoe, C.; Jones, G.; Gunning, A.C.; Lango Allen, H.; et al. Diagnosis of lethal or prenatal-onset autosomal recessive disorders by parental exome sequencing. Prenat. Diagn. 2018, 38, 33–43. [Google Scholar] [CrossRef] [Green Version]
- Harris, S.; Gilmore, K.; Hardisty, E.; Lyerly, A.D.; Vora, N.L. Ethical and counseling challenges in prenatal exome sequencing. Prenat. Diagn. 2018, 38, 897–903. [Google Scholar] [CrossRef]
- Aarabi, M.; Sniezek, O.; Jiang, H.; Saller, D.N.; Bellissimo, D.; Yatsenko, S.A.; Rajkovic, A. Importance of complete phenotyping in prenatal whole exome sequencing. Hum. Genet. 2018, 137, 175–181. [Google Scholar] [CrossRef]
- Greenbaum, L.; Pode-Shakked, B.; Eisenberg-Barzilai, S.; Dicastro-Keidar, M.; Bar-Ziv, A.; Goldstein, N.; Reznik-Wolf, H.; Poran, H.; Rigbi, A.; Barel, O. Evaluation of diagnostic yield in fetal whole-exome sequencing: A report on 45 consecutive families. Front. Genet. 2019, 10, 425. [Google Scholar] [CrossRef] [Green Version]
- Vora, N.L.; Gilmore, K.; Brandt, A.; Gustafson, C.; Strande, N.; Ramkissoon, L.; Hardisty, E.; Foreman, A.K.M.; Wilhelmsen, K.; Owen, P. An approach to integrating exome sequencing for fetal structural anomalies into clinical practice. Genet. Med. 2020, 22, 954–961. [Google Scholar] [CrossRef]
- Lei, T.; Fu, F.; Li, R.; Wang, D.; Wang, R.; Jing, X.; Deng, Q.; Li, Z.; Liu, Z.; Yang, X. Whole-exome sequencing for prenatal diagnosis of fetuses with congenital anomalies of the kidney and urinary tract. Nephrol. Dial. Transplant. 2017, 32, 1665–1675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rasmussen, M.; Sunde, L.; Nielsen, M.L.; Ramsing, M.; Petersen, A.; Hjortshøj, T.D.; Olsen, T.E.; Tabor, A.; Hertz, J.M.; Johnsen, I. Targeted gene sequencing and whole-exome sequencing in autopsied fetuses with prenatally diagnosed kidney anomalies. Clin. Genet. 2018, 93, 860–869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mary, L.; Chennen, K.; Stoetzel, C.; Antin, M.; Leuvrey, A.; Nourisson, E.; Alanio-Detton, E.; Antal, M.C.; Attié-Bitach, T.; Bouvagnet, P. Bardet-Biedl syndrome: Antenatal presentation of forty-five fetuses with biallelic pathogenic variants in known Bardet-Biedl syndrome genes. Clin. Genet. 2019, 95, 384–397. [Google Scholar] [CrossRef] [PubMed]
- Chandler, N.; Best, S.; Hayward, J.; Faravelli, F.; Mansour, S.; Kivuva, E.; Tapon, D.; Male, A.; DeVile, C.; Chitty, L.S. Rapid prenatal diagnosis using targeted exome sequencing: A cohort study to assess feasibility and potential impact on prenatal counseling and pregnancy management. Genet. Med. 2018, 20, 1430–1437. [Google Scholar] [CrossRef] [Green Version]
- Reches, A.; Hiersch, L.; Simchoni, S.; Barel, D.; Greenberg, R.; Ben Sira, L.; Malinger, G.; Yaron, Y. Whole-exome sequencing in fetuses with central nervous system abnormalities. J. Perinatol. 2018, 38, 1301–1308. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Long, W.; Zhou, Q.; Wang, J.; Shi, Y.; Liu, J.; Wang, Q. Is Prenatal Diagnosis Necessary for Fetal Isolated Nasal Bone Absence or Hypoplasia? Int. J. Gen. Med. 2021, 14, 4435. [Google Scholar] [CrossRef]
- Wang, H.; Dong, Z.; Zhang, R.; Chau, M.H.K.; Yang, Z.; Tsang, K.Y.C.; Wong, H.K.; Gui, B.; Meng, Z.; Xiao, K.; et al. Low-pass genome sequencing versus chromosomal microarray analysis: Implementation in prenatal diagnosis. Genet. Med. 2020, 22, 500–510. [Google Scholar] [CrossRef]
- Chau, M.H.K.; Wang, H.; Lai, Y.; Zhang, Y.; Xu, F.; Tang, Y.; Wang, Y.; Chen, Z.; Leung, T.Y.; Chung, J.P.W.; et al. Low-pass genome sequencing: A validated method in clinical cytogenetics. Hum. Genet. 2020, 139, 1403–1415. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, X.; Jiang, Y.; Qi, Q.; Hao, N.; Liu, C.; Xu, M.; Cram, D.S.; Liu, J. A rapid PCR-free next-generation sequencing method for the detection of copy number variations in prenatal samples. Life 2021, 11, 1–14. [Google Scholar] [CrossRef]
- Dan, S.; Chen, F.; Choy, K.W.; Jiang, F.; Lin, J.; Xuan, Z.; Wang, W.; Chen, S.; Li, X.; Jiang, H.; et al. Prenatal detection of aneuploidy and imbalanced chromosomal arrangements by massively parallel sequencing. PLoS ONE 2012, 7, e27835. [Google Scholar] [CrossRef] [Green Version]
- Shi, P.; Xia, Y.; Li, Q.; Kong, X. Usefulness of copy number variant detection following monogenic disease exclusion in prenatal diagnosis. J. Obstet. Gynaecol. Res. 2021, 47, 1002–1008. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Chen, L.; Zhou, C.; Wang, L.; Xie, H.; Xiao, Y.; Zhu, H.; Hu, T.; Zhang, Z.; Zhu, Q.; et al. Prospective chromosome analysis of 3429 amniocentesis samples in China using copy number variation sequencing. Am. J. Obstet. Gynecol. 2018, 219, 287.e1–287.e18. [Google Scholar] [CrossRef]
- Zhao, R.; Ruan, Y.; Wang, X. Whole-exome sequencing and whole genome re-sequencing for prenatal diagnosis of achondroplasia. Int. J. Clin. Exp. Med. 2015, 8, 19241–19249. [Google Scholar] [PubMed]
- Dong, Z.; Zhang, J.; Hu, P.; Chen, H.; Xu, J.; Tian, Q.; Meng, L.; Ye, Y.; Wang, J.; Zhang, M.; et al. Low-pass whole-genome sequencing in clinical cytogenetics: A validated approach. Genet. Med. 2016, 18, 940–948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chau, M.H.K.; Qian, J.; Chen, Z.; Li, Y.; Zheng, Y.; Tse, W.T.; Kwok, Y.K.; Leung, T.Y.; Dong, Z.; Choy, K.W. Trio-Based Low-Pass Genome Sequencing Reveals Characteristics and Significance of Rare Copy Number Variants in Prenatal Diagnosis. Front. Genet. 2021, 12, 742325. [Google Scholar] [CrossRef]
- Liang, D.; Wang, Y.; Ji, X.; Hu, H.; Zhang, J.; Meng, L.; Lin, Y.; Ma, D.; Jiang, T.; Jiang, H.; et al. Clinical application of whole-genome low-coverage next-generation sequencing to detect and characterize balanced chromosomal translocations. Clin. Genet. 2017, 91, 605–610. [Google Scholar] [CrossRef]
- Walker, L.; Watson, C.M.; Hewitt, S.; Crinnion, L.A.; Bonthron, D.T.; Cohen, K.E. An alternative to array-based diagnostics: A prospectively recruited cohort, comparing arrayCGH to next-generation sequencing to evaluate foetal structural abnormalities. J. Obstet. Gynaecol. 2019, 39, 328–334. [Google Scholar] [CrossRef]
- Huang, J.; Deng, X.; Wang, Y.; Tang, N.; Zeng, D. Analysis of Copy Number Variations by Low-Depth Whole-Genome Sequencing in Fetuses with Congenital Cardiovascular Malformations. Cytogenet. Genome Res. 2021, 160, 643–649. [Google Scholar] [CrossRef]
- Zhou, J.; Yang, Z.; Sun, J.; Liu, L.; Zhou, X.; Liu, F.; Xing, Y.; Cui, S.; Xiong, S.; Liu, X.; et al. Whole genome sequencing in the evaluation of fetal structural anomalies: A parallel test with chromosomal microarray plus whole exome sequencing. Genes 2021, 12, 1–14. [Google Scholar] [CrossRef]
- Yu, M.H.C.; Chau, J.F.T.; Au, S.L.K.; Lo, H.M.; Yeung, K.S.; Fung, J.L.F.; Mak, C.C.Y.; Chung, C.C.Y.; Chan, K.Y.K.; Chung, B.H.Y.; et al. Evaluating the Clinical Utility of Genome Sequencing for Cytogenetically Balanced Chromosomal Abnormalities in Prenatal Diagnosis. Front. Genet. 2021, 11, 620162. [Google Scholar] [CrossRef]
- Choy, K.W.; Wang, H.; Shi, M.; Chen, J.; Yang, Z.; Zhang, R.; Yan, H.; Wang, Y.; Chen, S.; Chau, M.H.K.; et al. Prenatal Diagnosis of Fetuses With Increased Nuchal Translucency by Genome Sequencing Analysis. Front. Genet. 2019, 10, 761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liao, Y.; Yang, Y.; Wen, H.; Wang, B.; Zhang, T.; Li, S. Abnormal Sylvian fissure at 20–30 weeks as an indicator of malformations of cortical development: Role for prenatal whole-genome sequencing. Ultrasound Obstet. Gynecol. 2021. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, L.; Yang, Y.K.; Liang, Y.; Zhang, T.J.; Liang, N.; Yang, L.M.; Li, S.J.; Shan, D.; Wu, Q.Q. Prenatal diagnosis of fetal skeletal dysplasia using targeted next-generation sequencing: An analysis of 30 cases. Diagn. Pathol. 2019, 14, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brady, P.D.; Vermeesch, J.R. Genomic microarrays: A technology overview. Prenat. Diagn. 2012, 32, 336–343. [Google Scholar] [CrossRef] [PubMed]
- Jelin, A.C.; Vora, N. Whole Exome Sequencing: Applications in Prenatal Genetics. Obstet. Gynecol. Clin. N. Am. 2018, 45, 69–81. [Google Scholar] [CrossRef]
- Crolla, J.A.; Wapner, R.; Van Lith, J.M.M. Controversies in prenatal diagnosis 3: Should everyone undergoing invasive testing have a microarray? Prenat. Diagn. 2014, 34, 18–22. [Google Scholar] [CrossRef]
- Society for Maternal-Fetal Medicine. Committee Opinion No.682: Microarrays and Next-Generation Sequencing Technology: The Use of Advanced Genetic Diagnostic Tools in Obstetrics and Gynecology. Obstet. Gynecol. 2016, 128, e262–e268. [Google Scholar] [CrossRef]
- Callaway, J.L.A.; Shaffer, L.G.; Chitty, L.S.; Rosenfeld, J.A.; Crolla, J.A. The clinical utility of microarray technologies applied to prenatal cytogenetics in the presence of a normal conventional karyotype: A review of the literature. Prenat. Diagn. 2013, 33, 1119–1123. [Google Scholar] [CrossRef] [PubMed]
- Coughlin, C.R.; Scharer, G.H.; Shaikh, T.H. Clinical impact of copy number variation analysis using high-resolution microarray technologies: Advantages, limitations and concerns. Genome Med. 2012, 4, 1–12. [Google Scholar] [CrossRef] [Green Version]
- American College of Obstetricians. Committee Opinion No. 581: The use of chromosomal microarray analysis in prenatal diagnosis. Obstet. Gynecol. 2013, 122, 1374–1377. [Google Scholar] [CrossRef]
- Evangelidou, P.; Alexandrou, A.; Moutafi, M.; Ioannides, M.; Antoniou, P.; Koumbaris, G.; Kallikas, I.; Velissariou, V.; Sismani, C.; Patsalis, P.C. Implementation of high resolution whole genome array cgh in the prenatal clinical setting: Advantages, challenges, and review of the literature. BioMed Res. Int. 2013, 2013, 346762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jelin, A.C.; Sagaser, K.G.; Wilkins-Haug, L. Prenatal Genetic Testing Options. Pediatr. Clin. N. Am. 2019, 66, 281–293. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.U.; Koo, S.H. Clinical implementation of chromosomal microarray technology in prenatal diagnosis. Mol. Med. Rep. 2012, 6, 1219–1222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leavitt, K.; Goldwaser, T.; Bhat, G.; Kalia, I.; Klugman, S.D.; Dolan, S.M. Chromosomal microarray in prenatal diagnosis: Case studies and clinical challenges. Per. Med. 2016, 13, 249–255. [Google Scholar] [CrossRef]
- Hillman, S.C.; McMullan, D.J.; Williams, D.; Maher, E.R.; Kilby, M.D. Microarray comparative genomic hybridization in prenatal diagnosis: A review. Ultrasound Obstet. Gynecol. 2012, 40, 385–391. [Google Scholar] [CrossRef]
- Levy, B.; Wapner, R. Prenatal diagnosis by chromosomal microarray analysis. Fertil. Steril. 2018, 109, 201–212. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; He, Z.; Lin, S.; Wang, Y.; Huang, L.; Huang, X.; Luo, Y. Absence of heterozygosity detected by single-nucleotide polymorphism array in prenatal diagnosis. Ultrasound Obstet. Gynecol. 2021, 57, 314–323. [Google Scholar] [CrossRef]
- Baker, J.; Shuman, C.; Chitayat, D.; Wasim, S.; Okun, N.; Keunen, J.; Hofstedter, R.; Silver, R. Informed Decision-Making in the Context of Prenatal Chromosomal Microarray. J. Genet. Couns. 2018, 27, 1130–1147. [Google Scholar] [CrossRef]
- Mcgillivray, G.; Rosenfeld, J.A.; Mckinlay Gardner, R.J.; Gillam, L.H. Genetic counselling and ethical issues with chromosome microarray analysis in prenatal testing. Prenat. Diagn. 2012, 32, 389–395. [Google Scholar] [CrossRef]
- Millo, T.; Douiev, L.; Popper, D.; Shkedi-Rafid, S. Personalized prenatal genomic testing: Couples’ experience with choice regarding uncertain and adult-onset findings from chromosomal-microarray-analysis. Prenat. Diagn. 2021, 41, 376–383. [Google Scholar] [CrossRef]
- De Jong, A.; Dondorp, W.J.; Macville, M.V.E.; De Die-Smulders, C.E.M.; Van Lith, J.M.M.; De Wert, G.M.W.R. Microarrays as a diagnostic tool in prenatal screening strategies: Ethical reflection. Hum. Genet. 2014, 133, 163–172. [Google Scholar] [CrossRef]
- Shaffer, L.G.; Dabell, M.P.; Rosenfeld, J.A.; Neill, N.J.; Ballif, B.C.; Coppinger, J.; Diwan, N.R.; Chong, K.; Shohat, M.; Chitayat, D. Referral patterns for microarray testing in prenatal diagnosis. Prenat. Diagn. 2012, 32, 611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stark, Z.; Gillam, L.; Walker, S.P.; McGillivray, G. Ethical controversies in prenatal microarray. Curr. Opin. Obstet. Gynecol. 2013, 25, 133–137. [Google Scholar] [CrossRef] [PubMed]
- Bejjani, B.A.; Shaffer, L.G. Application of Array-Based Comparative Genomic Hybridization to Clinical Diagnostics. J. Mol. Diagn. 2006, 8, 528–533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Y.; Ruivenkamp, C.A.L.; Hoffer, M.J.V.; Vrijenhoek, T.; Kriek, M.; van Asperen, C.J.; den Dunnen, J.T.; Santen, G.W.E. Next-generation diagnostics: Gene panel, exome, or whole genome? Hum. Mutat. 2015, 36, 648–655. [Google Scholar] [CrossRef]
- Wou, K.; DeBie, I.; Carroll, J.; Brock, J.A.; Douglas Wilson, R. Fetal Exome Sequencing on the Horizon. J. Obstet. Gynaecol. Can. 2019, 41, 64–67. [Google Scholar] [CrossRef]
- Castleman, J.S.; Wall, E.; Allen, S.; Williams, D.; Doyle, S.; Kilby, M.D. The prenatal exome—A door to prenatal diagnostics? Expert Rev. Mol. Diagn. 2021, 21, 465–474. [Google Scholar] [CrossRef]
- Abou Tayoun, A.N.; Spinner, N.B.; Rehm, H.L.; Green, R.C.; Bianchi, D.W. Prenatal DNA Sequencing: Clinical, Counseling, and Diagnostic Laboratory Considerations. Prenat. Diagn. 2018, 38, 26–32. [Google Scholar] [CrossRef]
- Wise, A.L.; Manolio, T.A.; Mensah, G.A.; Peterson, J.F.; Roden, D.M.; Tamburro, C.; Williams, M.S.; Green, E.D. Genomic medicine for undiagnosed diseases. Lancet 2019, 394, 533–540. [Google Scholar] [CrossRef]
- Köhler, S.; Gargano, M.; Matentzoglu, N.; Carmody, L.C.; Lewis-Smith, D.; Vasilevsky, N.A.; Danis, D.; Balagura, G.; Baynam, G.; Brower, A.M. The human phenotype ontology in 2021. Nucleic Acids Res. 2021, 49, D1207–D1217. [Google Scholar] [CrossRef]
- Monaghan, K.G.; Leach, N.T.; Pekarek, D.; Prasad, P.; Rose, N.C. The use of fetal exome sequencing in prenatal diagnosis: A points to consider document of the American College of Medical Genetics and Genomics (ACMG). Genet. Med. 2020, 22, 675–680. [Google Scholar] [CrossRef] [Green Version]
- Miller, D.T.; Lee, K.; Chung, W.K.; Gordon, A.S.; Herman, G.E.; Klein, T.E.; Stewart, D.R.; Amendola, L.M.; Adelman, K.; Bale, S.J. ACMG SF v3. 0 list for reporting of secondary findings in clinical exome and genome sequencing: A policy statement of the American College of Medical Genetics and Genomics (ACMG). Genet. Med. 2021, 23, 1381–1390. [Google Scholar] [CrossRef] [PubMed]
- Muys, J.; Blaumeiser, B.; Janssens, K.; Loobuyck, P.; Jacquemyn, Y. Chromosomal microarray analysis in prenatal diagnosis: Ethical considerations of the Belgian approach. J. Med. Ethics 2020, 46, 104–109. [Google Scholar] [CrossRef]
- Naqvi, M.; Goldfarb, I.T.; Hanmer, K.J.; Bryant, A. Chromosomal microarray use among women undergoing invasive prenatal diagnosis. Prenat. Diagn. 2016, 36, 656–661. [Google Scholar] [CrossRef] [PubMed]
- Richardson, A.; Ormond, K.E. Ethical considerations in prenatal testing: Genomic testing and medical uncertainty. In Seminars in Fetal and Neonatal Medicine; Elsevier: Amsterdam, The Netherlands, 2018; Volume 23, pp. 1–6. [Google Scholar]
- Lou, S.; Lomborg, K.; Lewis, C.; Riedijk, S.; Petersen, O.B.; Vogel, I. It’s probably nothing, but… couples’ experiences of pregnancy following a prenatally diagnosed and uncertain copy number variant. Acta Obs. Gynecol. Scand. 2020, 99, 791–801. [Google Scholar] [CrossRef] [PubMed]
- Quinlan-Jones, E.; Kilby, M.D.; Greenfield, S.; Parker, M.; McMullan, D.; Hurles, M.E.; Hillman, S.C. Prenatal whole exome sequencing: The views of clinicians, scientists, genetic counsellors and patient representatives. Prenat. Diagn. 2016, 36, 935–941. [Google Scholar] [CrossRef]
- Guadagnolo, D.; Mastromoro, G.; Di Palma, F.; Pizzuti, A.; Marchionni, E. Prenatal Exome Sequencing: Background, Current Practice and Future Perspectives—A Systematic Review. Diagnostics 2021, 11, 224. [Google Scholar] [CrossRef]
- Shkedi-Rafid, S.; Fenwick, A.; Dheensa, S.; Wellesley, D.; Lucassen, A.M. What results to disclose, when, and who decides? Healthcare professionals’ views on prenatal chromosomal microarray analysis. Prenat. Diagn. 2016, 36, 252–259. [Google Scholar] [CrossRef]
- Singletary, C.N.; Krstic, N.C.; Czerwinski, J.L.; Choates, M.G.; Wagner, C. Prenatal chromosomal microarray uptake with invasive prenatal diagnosis: How many patients take the leap? Prenat. Diagn. 2018, 38, 748–754. [Google Scholar] [CrossRef]
- Westerfield, L.; Darilek, S.; Van Den Veyver, I.B. Counseling challenges with variants of uncertain significance and incidental findings in prenatal genetic screening and diagnosis. J. Clin. Med. 2014, 3, 1018–1032. [Google Scholar] [CrossRef] [Green Version]
- Klapwijk, J.E.; Srebniak, M.I.; Go, A.T.J.I.; Govaerts, L.C.P.; Lewis, C.; Hammond, J.; Hill, M.; Lou, S.; Vogel, I.; Ormond, K.E.; et al. How to deal with uncertainty in prenatal genomics: A systematic review of guidelines and policies. Clin. Genet. 2021, 100, 647–658. [Google Scholar] [CrossRef] [PubMed]
- Mellis, R.; Chandler, N.; Chitty, L.S. Next-generation sequencing and the impact on prenatal diagnosis. Expert Rev. Mol. Diagn. 2018, 18, 689–699. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.C.; Blumenfeld, Y.J.; Chitkara, U.; Hudgins, L.; Quake, S.R. Noninvasive diagnosis of fetal aneuploidy by shotgun sequencing DNA from maternal blood. Proc. Natl. Acad. Sci. USA 2008, 105, 16266–16271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thung, D.T.; Beulen, L.; Hehir-Kwa, J.; Faas, B.H. Implementation of whole genome massively parallel sequencing for noninvasive prenatal testing in laboratories. Expert Rev. Mol. Diagn. 2015, 15, 111–124. [Google Scholar] [CrossRef]
- Hu, H.; Wang, L.; Wu, J.; Zhou, P.; Fu, J.; Sun, J.; Cai, W.; Liu, H.; Yang, Y. Noninvasive prenatal testing for chromosome aneuploidies and subchromosomal microdeletions/microduplications in a cohort of 8141 single pregnancies. Hum. Genom. 2019, 13, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Yu, Q.; Mao, X.; Lei, W.; He, M.; Lu, W. Noninvasive prenatal testing for chromosome aneuploidies and subchromosomal microdeletions/microduplications in a cohort of 42,910 single pregnancies with different clinical features. Hum. Genom. 2019, 13, 1–8. [Google Scholar] [CrossRef]
- Drury, S.; Mason, S.; McKay, F.; Lo, K.; Boustred, C.; Jenkins, L.; Chitty, L.S. Implementing non-invasive prenatal diagnosis (Nipd) in a national health service laboratory; From dominant to recessive disorders. In Advances in Experimental Medicine and Biology; Springer: Berlin/Heidelberg, Germany, 2016; Volume 924, pp. 71–75. [Google Scholar]
- Milunsky, A.; Milunsky, J.M. Genetic Disorders and the Fetus: Diagnosis, Prevention, and Treatment; John Wiley & Sons: Hoboken, NJ, USA, 2015; ISBN 1118981529. [Google Scholar]
- Lam, K.W.G.; Jiang, P.; Liao, G.J.W.; Chan, K.C.A.; Leung, T.Y.; Chiu, R.W.K.; Lo, Y.M.D. Noninvasive prenatal diagnosis of monogenic diseases by targeted massively parallel sequencing of maternal plasma: Application to β-thalassemia. Clin. Chem. 2012, 58, 1467–1475. [Google Scholar] [CrossRef] [Green Version]
- Chiu, E.K.L.; Hui, W.W.I.; Chiu, R.W.K. cfDNA screening and diagnosis of monogenic disorders—Where are we heading? Prenat. Diagn. 2018, 38, 52–58. [Google Scholar] [CrossRef] [Green Version]
- Vora, N.L.; Hui, L. Next-generation sequencing and prenatal ’omics: Advanced diagnostics and new insights into human development. Genet. Med. 2018, 20, 791–799. [Google Scholar] [CrossRef] [Green Version]
- Bhatti, G.; Romero, R.; Gomez-Lopez, N.; Pique-Regi, R.; Pacora, P.; Jung, E.; Yeo, L.; Hsu, C.D.; Kavdia, M.; Tarca, A.L. The amniotic fluid cell-free transcriptome in spontaneous preterm labor. Sci. Rep. 2021, 11, 1–14. [Google Scholar] [CrossRef]
- Moufarrej, M.N.; Wong, R.J.; Shaw, G.M.; Stevenson, D.K.; Quake, S.R. Investigating Pregnancy and Its Complications Using Circulating Cell-Free RNA in Women’s Blood During Gestation. Front. Pediatr. 2020, 8, 830. [Google Scholar] [CrossRef] [PubMed]
- Wong, F.C.K.; Lo, Y.M.D. Prenatal diagnosis innovation: Genome sequencing of maternal plasma. Annu. Rev. Med. 2016, 67, 419–432. [Google Scholar] [CrossRef] [PubMed]
- Chung, C.C.Y.; Chan, K.Y.K.; Hui, P.W.; Au, P.K.C.; Tam, W.K.; Li, S.K.M.; Leung, G.K.C.; Fung, J.L.F.; Chan, M.C.Y.; Luk, H.M.; et al. Cost-effectiveness analysis of chromosomal microarray as a primary test for prenatal diagnosis in Hong Kong. BMC Pregnancy Childbirth 2020, 20, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Diagnostic Rate | Yield (%) | n° Papers | |||||
---|---|---|---|---|---|---|---|
Class | Status | Group A | Group B | Group A | Group B | Group A | Group B |
Parental Anxiety/No Indication | - | 78/9918 | - | 0.79 (0.74–0.83) | - | 9 | - |
Advanced Maternal Age | - | 135/16,083 | - | 0.84 (0.82–0.86) | - | 10 | - |
Structural Anomaly | Isolated | 269/7352 | 297/5263 | 3.66 (3.60–3.72) | 5.64 (5.44–5.84) | 12 | 25 |
Structural Anomalies | Multiple | 70/817 | 146/937 | 8.57 (7.92–9.22) | 15.58 (14.57–16.59) | 11 | 15 |
Structural Anomalies | Pooled | 431/7540 | 107/1565 | 5.72 (5.65–5.78) | 6.84 (6.44–7.23) | 14 | 16 |
Central Nervous System | Isolated | 38/1067 | 14/327 | 3.56 (3.17–3.96) | 4.28 (2.39–6.17) | 7 | 2 |
Central Nervous System | Multiple | - | 9/224 | - | 4.02 (3.57–4.47) | - | 2 |
Central Nervous System | Pooled | - | 36/627 | - | 5.74 (5.33–6.15) | - | 4 |
Musculoskeletal | Isolated | 42/891 | - | 4.71 (4.22–5.20) | - | 8 | - |
Kidney/Genitourinary | Isolated | 44/1269 | 39/1164 | 3.47 (3.21–3.72) | 3.35 (3.26–3.44) | 8 | 5 |
Kidney/Genitourinary | Pooled | - | 24/421 | - | 5.70 (4.92–6.48) | - | 5 |
Gastrointestinal | Isolated | 4/86 | - | 4.65 (3.41–5.89) | - | 5 | - |
Cardiovascular | Isolated | 68/2139 | 229/3541 | 3.18 (3.11–3.25) | 6.47 (6.23–6.71) | 8 | 1 |
Cardiovascular | Multiple | - | 113/586 | - | 19.28 (17.94–20.63) | - | 1 |
Cardiovascular | Pooled | - | 46/506 | - | 9.09 (8.22–9.97) | - | 14 |
Thorax/Respiratory | Isolated | 4/127 | - | 3.15 (2.72–3.58) | - | 7 | - |
Craniofacial | Isolated | 9/208 | 4/44 | 4.33 (3.79–4.86) | 9.09 | 6 | 10 |
Craniofacial | Multiple | - | 15/60 | - | 25.00 | - | 6 |
Abdomen/Body Wall | Isolated | 3/90 | - | 3.33 (2.56–4.10) | - | 2 | - |
Fetal Growth Restriction | Isolated | 30/897 | 17/518 | 3.34 (3.17–3.52) | 3.28 (3.13–3.43) | 9 | 6 |
Fetal Growth Restriction | Multiple | - | 18/201 | - | 8.96 (8.63–9.28) | - | 3 |
Fetal Growth Restriction | Pooled | - | 33/568 | - | 5.81 (5.59–6.02) | - | 5 |
Amniotic Fluid Quantity | Isolated | 21/582 | - | 3.61 (3.34–3.88) | - | 6 | - |
Hydrops | Isolated | 5/102 | - | 4.90 (3.68–6.13) | - | 7 | - |
Polyhydramnios | Isolated | 17/534 | 15/619 | 3.18 (2.95–3.42) | 2.42 | 2 | 1 |
Polyhydramnios | Pooled | - | 3/114 | - | 2.63 | - | 1 |
Oligohydramnios | Isolated | 1/2 | 1/50 | 50.00 (50.00–50.00) | 2.00 | 1 | 1 |
Cystic Hygroma | Isolated | 13/346 | - | 3.76 (3.20–4.31) | - | 3 | - |
Soft Markers | Isolated | 78/3633 | 47/887 | 2.15 (2.11–2.19) | 5.30 (4.50–6.10) | 6 | 10 |
Soft Markers | Multiple | 22/639 | 6/132 | 3.44 (3.24–3.64) | 4.55 (2.48–6.61) | 4 | 2 |
Soft Markers | Pooled | 107/4374 | 95/1407 | 2.45 (2.41–2.48) | 6.75 (6.19–7.31) | 6 | 8 |
Echogenic Bowel | Isolated | 2/216 | 5/242 | 0.93 (0.72–1.13) | 2.07 (2.05–2.09) | 4 | 2 |
Absent/Hypoplastic Nasal Bone | Isolated | 2/99 | 16/165 | 2.02 (1.71–2.33) | 9.70 (6.26–13.13) | 3 | 3 |
Absent/Hypoplastic Nasal Bone | Pooled | - | 27/122 | - | 22.13 (19.78–24.49) | - | 3 |
Intracardiac echogenic Focus | Isolated | 2/356 | 3/149 | 0.56 (0.33–0.79) | 2.01 (1.77–2.25) | 4 | 2 |
Intracardiac Echogenic Focus | Multiple | - | 0/97 | - | 0.00 | - | 1 |
Intracardiac Echogenic Focus | Pooled | - | 7/179 | - | 3.91 | - | 1 |
Choroid Plexus Cyst | Isolated | 4/287 | - | 1.39 (1.30–1.49) | - | 4 | - |
Choroid Plexus Cyst | Pooled | - | 7/186 | - | 3.76 | - | 1 |
Enlarged Cisterna Magna | Isolated | 0/10 | - | 0.00 (0.00–0.00) | - | 1 | - |
Mild Pyelectasis | Isolated | 0/25 | - | 0.00 (0.00–0.00) | - | 1 | - |
Single Umbilical Artery | Isolated | 0/37 | - | 0.00 (0.00–0.00) | - | 2 | - |
Mild VentriculoMegaly | Isolated | 9/204 | 23/331 | 4.41 (4.26–4.57) | 6.95 (6.76–7.13) | 3 | 3 |
Mild VentriculoMegaly | Pooled | - | 64/968 | - | 6.61 (6.30–6.92) | - | 4 |
Nuchal Translucency | Isolated | 32/1217 | - | 2.63 (2.46–2.80) | - | 9 | - |
Nuchal Translucency | Pooled | - | 125/3495 | - | 3.58 (3.47–3.68) | - | 14 |
Short Femur | Isolated | 3/24 | 11/187 | 12.50 (12.50–12.50) | 5.88 (5.37–6.40) | 1 | 3 |
Short Femur | Multiple | - | 9/67 | - | 13.43 (8.83–18.04) | - | 2 |
Short Femur | Pooled | - | 1/11 | - | 9.09 | - | 1 |
VUS Rate | Yield (%) | n° Papers | |||||
---|---|---|---|---|---|---|---|
Class | Status | Group A | Group B | Group A | Group B | Group A | Group B |
Parental Anxiety/No Indication | - | 9/3323 | - | 0.27 (0.24–0.30) | - | 5 | - |
Advanced Maternal Age | - | 217/12,388 | - | 1.75 (1.65–1.85) | - | 6 | - |
Structural Anomaly | Isolated | 278/5394 | 144/3434 | 5.15 (5.05–5.26) | 4.19 (3.86–4.53) | 8 | 20 |
Structural Anomalies | Multiple | 47/751 | 17/847 | 6.26 (5.95–6.57) | 2.01 (1.67–2.34) | 8 | 11 |
Structural Anomalies | Pooled | 180/6288 | 39/1167 | 2.86 (2.79–2.93) | 3.34 (3.03–3.66) | 10 | 12 |
Central Nervous System | Isolated | 45/596 | 28/327 | 7.55 (6.40–8.70) | 8.56 (5.53–11.59) | 5 | 2 |
Central Nervous System | Multiple | - | 2/224 | - | 0.89 (0.55–1.23) | - | 2 |
Central Nervous System | Pooled | - | 16/627 | - | 2.55 (2.27–2.83) | - | 4 |
Musculoskeletal | Isolated | 34/605 | - | 5.62 (5.17–6.07) | - | 5 | - |
Kidney/Genitourinary | Isolated | 63/1095 | 29/1164 | 5.75 (5.54–5.97) | 2.49 (2.49–2.49) | 5 | 5 |
Kidney/Genitourinary | Pooled | - | 15/421 | - | 3.56 (3.56–3.57) | - | 5 |
Gastrointestinal | Isolated | 0/41 | - | 0.00 | - | 4 | - |
Cardiovascular | Isolated | 40/1608 | 85/1830 | 2.49 (2.34–2.64) | 4.64 (442–4.87) | 5 | 10 |
Cardiovascular | Multiple | - | 11/496 | - | 2.22 (1.97–2.47) | - | 6 |
Cardiovascular | Pooled | - | 6/108 | - | 5.56 (4.90–6.21) | - | 2 |
Thorax/Respiratory | Isolated | 0/18 | - | 0.00 | - | 4 | - |
Craniofacial | Isolated | 0/23 | 0/44 | 0.00 | 0.00 | 3 | 1 |
Craniofacial | Multiple | - | 0/60 | - | 0.00 | - | 1 |
Abdomen/Body Wall | Isolated | 0/0 | - | 0.00 | - | 2 | - |
Fetal Growth Restriction | Isolated | 37/583 | 16/483 | 6.35 (4.27–8.42) | 3.31 (3.09–3.54) | 5 | 5 |
Fetal Growth Restriction | Multiple | - | 19/201 | - | 9.45 (8.13–10.78) | - | 3 |
Fetal Growth Restriction | Pooled | - | 26/479 | - | 5.43 (4.89–5.97) | - | 3 |
Amniotic Fluid Quantity | Isolated | 25/502 | - | 4.98 (4.67–5.29) | - | 2 | - |
Hydrops | Isolated | 0/0 | - | 0.00 | - | 1 | - |
Polyhydramnios | Isolated | 25/494 | - | 4.25 (5.06–5.06) | - | 2 | - |
Oligohydramnios | Isolated | 0/0 | 2/50 | 0.00 | 4 | - | 1 |
Cystic Hygroma | Isolated | 4/16 | 25.00 (9.60–40.40) | 5.11 (4.68–5.53) | 1 | - | |
Soft Markers | Isolated | 58/3149 | 26/509 | 1.84 (1.81–1.87) | 5.11 (4.68–5.53) | 4 | 6 |
Soft Markers | Multiple | 12/520 | 7/97 | 2.31 (2.18–2.44) | 7.22 | 2 | 1 |
Soft Markers | Pooled | 61/3412 | 16/593 | 1.79 (1.74–1.83) | 2.70 (2.64–2.75) | 4 | 4 |
Echogenic Bowel | Isolated | 2/133 | 9/242 | 1.50 (1.34–1.67) | 3.72 (3.72–3.72) | 3 | 2 |
Absent/Hypoplastic Nasal Bone | Isolated | 3/99 | 5/118 | 3.03 (2.57–3.49) | 4.24 (4.20–4.28) | 2 | 2 |
Absent/Hypoplastic Nasal Bone | Pooled | - | 2/52 | - | 3.85 (3.81–3.88) | - | 1 |
Intracardiac echogenic Focus | Isolated | 5/244 | 12/149 | 2.05 (1.76–2.34) | 8.05 (7.09–9.02) | 3 | 2 |
Intracardiac Echogenic Focus | Multiple | - | 7/97 | - | 7.22 | - | 1 |
Intracardiac Echogenic Focus | Pooled | - | 4/179 | - | 2.23 | - | 1 |
Choroid Plexus Cyst | Isolated | 5/194 | - | 2.58 (2.16–3.00) | - | 3 | - |
Choroid Plexus Cyst | Pooled | - | 5/186 | - | 2.69 | - | 1 |
Enlarged Cisterna Magna | Isolated | 0/0 | - | 0.00 | - | - | - |
Mild Pyelectasis | Isolated | 0/0 | - | 0.00 | - | - | - |
Single Umbilical Artery | Isolated | 1/37 | - | 2.70 (1.08–4.33) | - | 1 | - |
Mild VentriculoMegaly | Isolated | 8/264 | - | 3.03 (2.76–3.30) | - | 2 | - |
Mild VentriculoMegaly | Pooled | - | 5/189 | - | 2.65 | - | 1 |
Nuchal Translucency | Isolated | 10/513 | - | 1.95 (1.82–2.08) | - | 5 | - |
Nuchal Translucency | Pooled | - | 72/2432 | - | 2.96 (2.88–3.04) | - | 12 |
Short Femur | Isolated | 1/24 | 2/187 | 4.17 (4.17–4.17) | 1.07 (0.72–1.42) | 1 | 3 |
Short Femur | Multiple | - | 4/67 | - | 5.97 (3.49/8.45) | - | 2 |
Short Femur | Pooled | - | 2/11 | - | 18.18 | - | 1 |
Diagnostic Rate | Yield (%) | VUS Rate | Yield (%) | n° Papers | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Class | Status | Group A | Group B | Group A | Group B | Group A | Group B | Group A | Group B | Group A | Group B |
Pooled mixed anomalies | Any | 384/1972 | - | 19.47 (18.94–20.01) | - | 130/1563 | - | 8.32 (7.94–8.69) | - | 17/17 | - |
Multiple Structural Anomalies | Associated (≥2) | 211/768 | - | 27.47 (26.45–28.49) | - | - | - | - | - | 17/17 | - |
Cardiovascular anomalies † | Any | 39/264 † | 94/853 | 14.77 (13.23–16.32) | 11.02 (10.65–11.39) | - | 65/853 | - | 7.62 (7.48–7.76) | 8/17 | 5 |
Musculoskeletal anomalies † | Any | 88/258 † | - | 34.11 (31.42–36.80) | - | - | - | - | - | 9/17 | - |
Kidney/genitourinary anomalies † | Any | 31/146 † | - | 21.23 (17.49–24.97) | - | - | - | - | - | 9/17 | - |
Skeletal dysplasias | Any | - | 113/161 | - | 70.19 (68.80–71.57) | - | 6/135 | - | 4.44 (3.67–5.22) | - | 6 |
Craniofacial anomalies † | Any | 30/86 † | - | 34.88 (30.21–39.55) | - | - | - | - | - | 6/17 | - |
CNS anomalies † | Any | 61/247 † | - | 24.70 (23.94–25.45) | - | - | - | - | - | 10/17 | - |
Abdomen or body wall anomalies † | Any | 2/19 † | - | 10.53 (7.53–13.52) | - | - | - | - | - | 4/17 | - |
Dynamic anomalies † | Any | 32/154 † | - | 20.78 (18.71–22.84) | - | - | - | - | - | 8/17 | - |
Nuchal Translucency | Isolated | 14/104 | 9/208 | 13.46 (10.19–16.74) | 4.33 (3.59–5.07) | - | 3/208 | - | 1.44 (0.46–2.42) | 6/17 | 3 * |
Non-Immune Hydrops Fetalis | Any | - | 53/172 | - | 30.81 (28.56–33.07) | - | 18/172 | - | 10.47 (9.14–11.79) | - | 3 |
Anomaly | Status | Diagnostic Yield (%) | VUS Rate (%) | ||||||
---|---|---|---|---|---|---|---|---|---|
CMA | ES | CMA | ES | ||||||
A | B | A | B | A | B | A | B | ||
Structural Anomaly | Pooled | 5.72 (5.65–5.78) | 6.84 (6.44–7.23) | 19.47 (18.94–20.01) | 2.86 (2.79–2.93) | 3.34 (3.03–3.66) | 8.32 (7.94–8.69) | ||
Structural Anomaly | Multiple | 8.57 (7.92–9.22) | 15.58 (14.57–16.59) | 27.47 (26.45–18.49) | |||||
Central Nervous System | Pooled | 5.74 (5.22–6.15) | 24.7 (23.94–25.45) | ||||||
Cardiovascular | Pooled | 9.09 (8.22–9-97) | 14.77 (13.23–16.32) | 11.02 (10.65–11.39 | 5.56 (4.90–6.21) | 7.62 (7.48–7.76) | |||
Genitourinary | Pooled | 5.70 (4.92–6.48) | 21.23 (17.49–24.97) | ||||||
Nuchal Translucency | Isolated | 2.63 (2.46–2.80) | 13.46 (10.19–16.74) | 4.33 (3.59–5.07) | 1.95 (1.82–2.08) | 1.44 (0.46–2.42) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mastromoro, G.; Guadagnolo, D.; Khaleghi Hashemian, N.; Marchionni, E.; Traversa, A.; Pizzuti, A. Molecular Approaches in Fetal Malformations, Dynamic Anomalies and Soft Markers: Diagnostic Rates and Challenges—Systematic Review of the Literature and Meta-Analysis. Diagnostics 2022, 12, 575. https://doi.org/10.3390/diagnostics12030575
Mastromoro G, Guadagnolo D, Khaleghi Hashemian N, Marchionni E, Traversa A, Pizzuti A. Molecular Approaches in Fetal Malformations, Dynamic Anomalies and Soft Markers: Diagnostic Rates and Challenges—Systematic Review of the Literature and Meta-Analysis. Diagnostics. 2022; 12(3):575. https://doi.org/10.3390/diagnostics12030575
Chicago/Turabian StyleMastromoro, Gioia, Daniele Guadagnolo, Nader Khaleghi Hashemian, Enrica Marchionni, Alice Traversa, and Antonio Pizzuti. 2022. "Molecular Approaches in Fetal Malformations, Dynamic Anomalies and Soft Markers: Diagnostic Rates and Challenges—Systematic Review of the Literature and Meta-Analysis" Diagnostics 12, no. 3: 575. https://doi.org/10.3390/diagnostics12030575
APA StyleMastromoro, G., Guadagnolo, D., Khaleghi Hashemian, N., Marchionni, E., Traversa, A., & Pizzuti, A. (2022). Molecular Approaches in Fetal Malformations, Dynamic Anomalies and Soft Markers: Diagnostic Rates and Challenges—Systematic Review of the Literature and Meta-Analysis. Diagnostics, 12(3), 575. https://doi.org/10.3390/diagnostics12030575