Raman Spectroscopy: In Vivo Application for Bone Evaluation in Oral Reconstructive (Regenerative) Surgery
Abstract
:1. Introduction
2. Materials and Methods
2.1. In Vivo Measurements
2.2. In Vitro Measurements
2.3. Characterization Methods
3. Results
- (I)
- Clinical status—periodontally healthy (patients: #2, #6 and #9)
- (i)
- Both HAP phases (amorphous—corresponding to immature bone and crystalline—corresponding to mature bone) associated with Raman shift intervals (955–965 cm−1) and specific values as indicated in Table 2 were detected. Generally peak intensity corresponding to immature bone is higher than that corresponding to mature bone, as for patients’ #6vit and #9viv. As such, we obtained similar values for patient #6viv. The difference is made by the ratio of pyrophosphate intensity reported [3] to that corresponding to amorphous HAP phase (immature bone). The ratio belongs in the interval (0.45–0.80).
- (ii)
- Only one HAP phase is clearly distinguished. The ratio of PPi (pyrophosphate) intensity reported to that corresponding to HAP phase (amorphous/crystalline) belongs in the interval (0.40–0.80) for patient (#2vit/viv) or no pyrophosphate (small quantity) detected for HAP crystalline for patient (#9vit).
- (II)
- Clinical status—Previous periodontitis (patients: #1, #3, #4, #5 and #8)
- (i)
- Both HAP phases (amorphous—corresponding to immature bone and crystalline—corresponding to mature bone) associated with Raman shift intervals (955–965 cm−1) and specific values as indicated in Table 2 were detected. Peak intensity corresponding to the immature bone is higher than that for mature bone, and the ratio of PPi intensity belonging to immature bone belongs in the interval (0.40–0.70), as for patients’ #1viv, #4viv and #5vit.
- (ii)
- Only one HAP phase is detected, corresponding to either immature or mature bone. The ratio for PPi is lower than for (i) category and belonging to the interval (0.20–0.60), when just immature phase is detected, as observed for patients’ #3vit, #4vit and #8vit. The value for the PPi ratio can even be in the thousandths scale for a very small peak of immature bone, as for patient #3viv.
- (III)
- Clinical status—Periodontitis (patients: #7 and #10)
- (i)
- Both HAP phases (corresponding to immature/mature bone) are defined and belonging in the Raman shift interval (955–965 cm−1), but the ratio of PPi belonging to immature bone (or mature bone) is supra-unitary. For example, for patient #7vit, the value obtained for this ratio was 1.41.
- (ii)
- The HAP phases are not clearly defined, and the Raman shift is 959/960 cm−1. Under these conditions, the ratio of PPi compared with that of HAP phase belongs between (0.15–0.80), with a trend for lower or higher values, depending on the type of measurement conditions (0.18, 0.77, 0.70), as for patients (#10viv, #10vit, #7viv).
- (I)
- Clinical status—Periodontally healthy (patients: #2, #6 and #9)
- (II)
- Clinical status—Previous periodontitis (patients: #1, #3, #4, #5 and #8)
- (III)
- Clinical status—Periodontitis (patients: #7 and #10)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Fuji, S.; Sato, S.; Fukuda, K.; Okinaga, T.; Ariyoshi, W.; Usui, M.; Nakashima, K.; Nishihara, T.; Takenaka, S. Diagnosis of periodontal disease from saliva samples using Fourier Transform Infrared Microscopy coupled with partial least squares discriminant analysis. Anal. Sci. 2016, 32, 225–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sculean, A.; Chapple, I.L.C.; Giannobile, W.V. Wound models for periodontal and bone regeneration: The role of biologic research. Periodontol. 2000 2015, 68, 7–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gatin, E.; Nagy, P.; Paun, I.; Dubok, O.; Bucur, V.; Windisch, P. Raman spectroscopy: Application in periodontal and oral regenerative surgery for bone evaluation. IRBM 2019, 40, 279–285. [Google Scholar] [CrossRef]
- Birtoiu, I.A.; Rizea, C.; Togoe, D.; Munteanu, R.M.; Micsa, C.; Rusu, M.I.; Tautan, M.; Braic, L.; Scoicaru, L.O.; Parau, A.; et al. Diagnosing clean margins through Raman spectroscopy in human and animal mammary tumour surgery: A short review. Interface Focus 2016, 6, 20160067. [Google Scholar] [CrossRef] [PubMed]
- Hanlon, E.B.; Manoharan, R.; Koo, T.W.; Shafer, K.E.; Motz, J.T.; Fitzmaurice, M.; Kramer, J.R.; Itzkan, I.; Dasari, R.R.; Feld, M.S. Prospects for in vivo Raman spectroscopy. Phys. Med. Biol. 2000, 45, R1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schie, I.W.; Huser, T. Methods and applications of Raman microspectroscopy to single-cell analysis. Appl. Spectrosc. 2013, 67, 813–828. [Google Scholar] [CrossRef]
- Stevens, O.; Petterson, I.E.I.; Day, J.C.C.; Stone, N. Developing fiber optic Raman probes for applications in clinical spectroscopy. Chem. Soc. Rev. 2016, 45, 1919–1934. [Google Scholar] [CrossRef] [PubMed]
- Pence, I.; Mahadevan-Jansen, A. Clinical instrumentation and applications of Raman spectroscopy. Chem. Soc. Rev. 2016, 45, 1958–1979. [Google Scholar] [CrossRef] [Green Version]
- Cordero, E.; Latka, I.; Matthäus, C.; Schie, I.W.; Popp, J. In-vivo Raman spectroscopy: From basics to applications. J. Biomed. Opt. 2018, 23, 071210. [Google Scholar] [CrossRef]
- Sfeatcu, R.; Luculescu, C.; Ciobanu, L.; Balan, A.; Gatin, E.; Patrascu, I. Dental enamel quality and black tooth stain: A new approach and explanation by using Raman and AFM techniques. Part. Sci. Technol. 2015, 33, 429–435. [Google Scholar] [CrossRef]
- Camerlingo, C.; d’Apuzzo, F.; Grassia, V.; Perillo, L.; Lepore, M. Micro-Raman spectroscopy for monitoring changes in periodontal ligaments and gingival crevicular fluid. Sensors 2014, 14, 22552–22563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Timchenko, E.; Timchenko, P.; Volova, L.; Frolov, O.; Zibin, M.; Bazhutova, I. Raman spectroscopy of changes in the tissues of teeth with periodontitis. Diagnostics 2020, 10, 876. [Google Scholar] [CrossRef] [PubMed]
- Gatin, E.; Ciucu, C.; Ciobanu, G.; Berlic, C. Investigation and comparative survey of some dental restorative materials. Optoelectron. Adv. Mater. Rapid. Commun. 2008, 2, 284–290. [Google Scholar]
- Gatin, E.; Luculescu, C.; Iordache, S.M.; Patrascu, I. Morphological investigation by AFM of dental ceramics under thermal processing. J. Optoelectron. Adv. Mater. 2013, 15, 1136–1141. [Google Scholar]
- Mandair, G.S.; Morris, M.D. Contributions of Raman spectroscopy to the understanding of bone strength. Bonekey Rep. 2015, 4, 620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nathanael, A.J.; Hong, S.I.; Mangalaraj, D.; Chen, P.C. Large scale synthesis of hydroxyapatite nanospheres by high gravity method. Chem. Eng. J. 2011, 173, 846–854. [Google Scholar] [CrossRef]
- Daizy, P.; Bini, L.G.; Aruldhas, G. IR and polarized Raman spectra of Na4P2O7 10H2O. J. Raman Spectrosc. 1990, 21, 523–524. [Google Scholar]
- Manoun, B.; El Bali, B.; Saxena, S.K.; Gulve, R.P. High-pressure studies of SrNi3(P2O7)2 pyrophosphate by Raman spectroscopy and X-ray diffraction. J. Mol. Struct. 2006, 794, 334–340. [Google Scholar] [CrossRef]
- Deng, H.; Callender, R.; Schramm, V.L.; Grubmeyer, C. Pyrophosphate activation in hypoxanthine-guanine phosphoribosyltransferase with transition state analogue. Biochemistry 2010, 49, 2705–2714. [Google Scholar] [CrossRef] [Green Version]
- Madupalli, H.; Pavan, B.; Tecklenburg, M.J.M. Carbonate substitution in the mineral component of bone: Discriminating the structural changes, simultaneously imposed by carbonate in A and B sites of apatite. J. Solid State Chem. 2017, 255, 27–35. [Google Scholar] [CrossRef]
- Cámara, F.; Curetti, N.; Benna, P.; Abdu, Y.A.; Hawthorne, F.C.; Ferraris, C. The effect of type-B carbonate content on the elasticity of fluorapatite. Phys. Chem. Miner. 2018, 45, 789–800. [Google Scholar] [CrossRef] [Green Version]
- Sbordone, C.; Toti, P.; Brevi, B.; Martuscelli, R.; Sbordone, L.; Di Spirito, F. Computed tomography-aided descriptive analysis of maxillary and mandibular atrophies. J. Stomatol. Oral Maxillofac. Surg. 2019, 120, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Di Spirito, F.; Toti, P.; Brevi, B.; Martuscelli, R.; Sbordone, L.; Sbordone, C. Computed Tomography Evaluation of Jaw Atrophies Before and after Surgical Bone Augmentation. Int. J. Clin. Dent. 2019, 12, 259–270. [Google Scholar]
- Ramaglia, L.; Di Spirito, F.; Sirignano, M.; La Rocca, M.; Esposito, U.; Sbordone, L. A 5-year longitudinal cohort study on crown to implant ratio effect on marginal bone level in single implants. Clin. Implant. Dent. Relat. Res. 2019, 21, 916–922. [Google Scholar] [CrossRef]
Patient Number | Gender | Age (Years) | Healthy | Periodontal Condition | Bone Phenotype | Bone Type |
---|---|---|---|---|---|---|
#1 | M | 58 | - | History of periodontitis | thick | more cortical |
#2 | M | 70 | Yes | - | thick | more cortical |
#3 | M | 64 | - | History of periodontitis | thin | more cortical |
#4 | F | 50 | - | History of periodontitis | thick | more cortical |
#5 | M | 70 | - | History of periodontitis | thin | more cortical |
#6 | M | 35 | Yes | - | thin | more cortical |
#7 | F | 62 | - | Yes | thin | more cancellous |
#8 | F | 37 | - | History of periodontitis | thin | cortical/cancellous |
#9 | F | 45 | Yes, lower jaw | Upper jaw | thin | more cortical |
#10 | M | 43 | - | Yes | thick | more cortical |
Raman Shift | Characteristics | Assignment | References |
---|---|---|---|
430–450 cm−1 | very strong | ν2 PO43−, shoulder | [15,16] |
955–960 cm−1 955 cm−1 957 cm−1 | very strong | Extensive mineral immature bone; ν1 PO43−, P–O phase; ν1 PO43−, extensive HPO42− | [16] |
960–965 cm−1 963 cm−1 | very strong | Mineral mature bone; ν1 PO43− tetrahedral internal mode | [16] |
1023 cm−1 | strong | PPi (P2O74−), inorganic pyrophosphate; symmetric P••O stretch modes of PO32− moieties; νS PO3 and of P–O–P bridging | [17,18,19] |
1070 cm−1 1076 cm−1 | strong | Mineral bone B-type carbonate HAP; CO32− (ν1) overlap; PO43− (ν3) overlap | [15] |
Patient Number/Raman Shift (cm−1)/Normalized Intensity (%)/SD | 430–450 cm−1 | 955–965 cm−1 | 1020–1030 cm−1 | 1070–1080 cm−1 | |
---|---|---|---|---|---|
#1 | vit * | 444→38.3%, SD = 2.01 | 962→99.3%, SD = 1.52 | 1026→35.3%, SD = 1.52 | 1071→40.2%, SD = 1.52 |
viv * | 445→6.2%, SD = 0.31 | 958→9.8%, SD = 0.51 964→8.9%, SD = 0.31 | 1024→7.4%, SD = 0.58 | 1074→7.4%, SD = 0.38 | |
#2 | vit | 444→52.3%, SD = 2.08 | 956→88.4%, SD = 0.57 | 1022→68.8%, SD = 1.52 | 1080→78.1%, SD = 1.73 |
viv | 445→7.4%, SD = 0.32 | 962→12.07%, SD = 0.58 | 1023→9.4%, SD = 0.51 | 1074→6.9%, SD = 0.28 | |
#3 | vit | 435→45.3%, SD = 1.52 443→53%, SD = 1 | 957→70.3%, SD = 1.52 | 1022→48.17%, SD = 1.15 | 1076→78%, SD = 1 |
viv | 438→3.9%, SD = 0.21 | 958→7.81%, SD = 0.33 | 1071→3.9%, SD = 0.27 | ||
#4 | vit | 445→31.3%, SD = 1.52 | 958→99%, SD = 1 | 1024→32.5%, SD = 0.57 | 1076→37.6%, SD = 0.57 |
viv | 440→5.4%, SD = 0.21 | 956→11%, SD = 1 962→7.51, SD = 0.33 | 1024→6.08%, SD = 0.31 | 1080→6.5%, SD = 0.27 1072→6.2%, SD = 0.21 | |
#5 | vit | 442→46%, SD = 1 | 956→90.6%, SD = 1.15 965→62.8%, SD = 1.15 | 1027→55%, SD = 1 | 1075→58.6%, SD = 1.15 1079→69%, SD = 1 |
viv | 440→12%, SD = 1 | 961→23.7%, SD = 0.57 | 1024→12%, SD = 1 | 1072→22.5%, SD = 0.25 | |
#6 | vit | 434→19.6%, SD = 1.15 440→15%, SD = 1 | 958→27.2%, SD = 0.25 964→26.2%, SD = 0.31 | 1023→15%, SD = 0.25 | 1073→20.5%, SD = 1.15 |
viv | 442→6%, SD = 1 | 955→28.5%, SD = 1.15 961→30.1%, SD = 1.51 | 1023→13%, SD = 1 | 1080→16%, SD = 1 | |
#7 | vit | 433→16%, SD = 1 | 956→18.3%, SD = 0.27 964→14.3%, SD = 0.21 | 1023→25.9%, SD = 0.31 | 1073→19%, SD = 1 |
viv | 433→3.5%, SD = 0.22 438→6.5%, SD = 0.55 | 959→13%, SD = 1 | 1024→9.1%, SD = 0.34 | 1070→10.5%, SD = 0.25 | |
#8 | vit | 435→7.2%, SD = 0.25 441→7.5%, SD = 0.38 | 957→24.4%, SD = 0.21 | 1023→15%, SD = 0.20 | 1071→5.2%, SD = 0.31 |
viv | 433→3.8%, SD = 035 438→6.5%, SD = 0.24 | 961→27%, SD = 1 | 1023→6.6%, SD = 0.50 | 1069→10%, SD = 1 1078→8.7%, SD = 0.38 | |
#9 | vit | 435→6.5%, SD = 0.25 441→5.2% | 963→13.5%, SD = 0.35 | 1070→6.2%, SD = 0.31 | |
viv | 436→3.3%, SD = 0.31 441→4%, SD = 1 448→3.5%, SD = 0.33 | 957→13.5%, SD = 0.31 963→8.6%, SD = 0.20 | 1023→5.7%, SD = 0.50 | 1077→5.5%, SD = 0.25 | |
#10 | vit | 443→13%, SD = 1 448→17.2%, SD = 0.25 | 959→34.2%, SD = 1.52 | 1022→26.4%, SD = 0.32 | 1071→15%, SD = 1 |
viv | 445→5.5%, SD = 0.20 | 959→30%, SD = 1 | 1023→5.6%, SD = 0.25 | 1079→9%, SD = 1 |
Patient Number | Ca/P Ratio W/A | Mean Value | STD |
---|---|---|---|
#1 | 1.73, 2.01, 1.63, 1.85 1.34, 1.55, 1.26, 1.43 | 1.805 1.395 | 0.141 0.107 |
#2 | 1.49, 1.46, 1.39, 1.41 1.39, 1.38, 1.48, 1.41 | 1.437 1.415 | 0.039 0.039 |
#3 | 0.66, 1.06, 1.46, 0.92 0.52, 0.81, 1.13, 1.02 | 1.025 0.870 | 0.289 0.232 |
#4 | 1.46, 1.43, 1.75, 1.44 1.16, 1.21, 1.47, 1.31 | 1.520 1.287 | 0.133 0.118 |
#5 | 0.95, 1.45, 0.64, 1.03 0.77, 1.11, 1.30, 0.98 | 1.017 1.040 | 0.289 0.193 |
#6 | 2.39, 3.17, 2.30, 2.40 1.85, 2.47. 1.79, 1.96 | 2.565 2.017 | 0.351 0.268 |
#7 | 0.68, 0.99, 0.62, 1.24 0.52, 0.77, 0.47, 0.96 | 0.882 0.680 | 0.249 0.197 |
#8 | 3.04, 2.55, 2.97, 2.94 2.30, 1.96, 2.29, 2.27 | 2.875 2.205 | 0.191 0.141 |
#9 | 2.23, 0.92, 2.37, 2.48 1.72, 0.72, 1.82, 1.91 | 2.000 1.540 | 0.629 0.479 |
#10 | 0.53, 1.21, 1.09, 0.91 0.68, 0.95, 0.61, 0.58 | 0.935 0.705 | 0.296 0.168 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gatin, E.G.; Nagy, P.; Iordache, S.-M.; Iordache, A.-M.; Luculescu, C.R. Raman Spectroscopy: In Vivo Application for Bone Evaluation in Oral Reconstructive (Regenerative) Surgery. Diagnostics 2022, 12, 723. https://doi.org/10.3390/diagnostics12030723
Gatin EG, Nagy P, Iordache S-M, Iordache A-M, Luculescu CR. Raman Spectroscopy: In Vivo Application for Bone Evaluation in Oral Reconstructive (Regenerative) Surgery. Diagnostics. 2022; 12(3):723. https://doi.org/10.3390/diagnostics12030723
Chicago/Turabian StyleGatin, Eduard Gheorghe, Pal Nagy, Stefan-Marian Iordache, Ana-Maria Iordache, and Catalin Romeo Luculescu. 2022. "Raman Spectroscopy: In Vivo Application for Bone Evaluation in Oral Reconstructive (Regenerative) Surgery" Diagnostics 12, no. 3: 723. https://doi.org/10.3390/diagnostics12030723
APA StyleGatin, E. G., Nagy, P., Iordache, S.-M., Iordache, A.-M., & Luculescu, C. R. (2022). Raman Spectroscopy: In Vivo Application for Bone Evaluation in Oral Reconstructive (Regenerative) Surgery. Diagnostics, 12(3), 723. https://doi.org/10.3390/diagnostics12030723