Development of the Integrated Glaucoma Risk Index
Abstract
:1. Introduction
+ 0.6750 × PC4 + 0.6650 × PC5
2. Materials and Methods
2.1. Preparation of the Dataset
2.2. Building of the Machine-Learning Predictive Model
2.3. Calculation of the Feature Importance of the Selected Features
- Take the five nearest instances of X from the reference dataset.
- Investigate the class labels of the five nearest instances.
2.4. Building of the I-GRI Measure
MD.normal × 0.14 +
RNFL_S.normal × 0.11 +
RNFL_I.normal × 0.31 +
RNFL_T.normal × 0.1 +
IOP.normal × 0.07
0.7231 × 0.31 + 0.6889 × 0.1 + 0.25 × 0.07
= 0.5971
= 0.678
3. Results
4. Discussion
4.1. Effect of the NNI
4.2. Comparison between the I-GRI and the MD
4.3. Comparison between Glaucoma and Glaucoma-like Diseases Based on the I-GRI
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Shaikh, Y.; Yu, F.; Coleman, A.L. Burden of undetected and untreated glaucoma in the United States. Am. J. Ophthalmol. 2014, 158, 1121–1129. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; Cho, K.J.; Oh, S. Development of machine learning models for diagnosis of glaucoma. PLoS ONE 2017, 12, e0177726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- An, G.; Omodaka, K.; Tsuda, S.; Shiga, Y.; Takada, N.; Kikawa, T.; Akiba, M. Comparison of machine-learning classification models for glaucoma management. J. Healthc. Eng. 2018, 2018, 6874765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christopher, M.; Belghith, A.; Weinreb, R.N.; Bowd, C.; Goldbaum, M.H.; Saunders, L.J.; Zangwill, L.M. Retinal nerve fiber layer features identified by unsupervised machine learning on optical coherence tomography scans predict glaucoma progression. Investig. Ophth. Vis. Sci. 2018, 59, 2748–2756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Civit-Masot, J.; Domínguez-Morales, M.J.; Vicente-Díaz, S.; Civit, A. Dual machine-learning system to aid glaucoma diagnosis using disc and cup feature extraction. IEEE Access 2020, 8, 127519–127529. [Google Scholar] [CrossRef]
- Mehta, P.; Petersen, C.A.; Wen, J.C.; Banitt, M.R.; Chen, P.P.; Bojikian, K.D.; Vision Consortium. Automated detection of glaucoma with interpretable machine learning using clinical data and multimodal retinal images. Am. J. Ophthalmol. 2021, 231, 154–169. [Google Scholar] [CrossRef] [PubMed]
- Baxter, S.L.; Marks, C.; Kuo, T.T.; Ohno-Machado, L.; Weinreb, R.N. Machine learning-based predictive modeling of surgical intervention in glaucoma using systemic data from electronic health records. Am. J. Ophthalmol. 2019, 208, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Bock, R.; Meier, J.; Nyúl, L.G.; Hornegger, J.; Michelson, G. Glaucoma risk index: Automated glaucoma detection from color fundus images. Med. Image Anal. 2010, 14, 471–481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loewen, R.T.; Roy, P.; Parikh, H.A.; Dang, Y.; Schuman, J.S.; Loewen, N.A. Impact of a glaucoma severity index on results of trabectome surgery: Larger pressure reduction in more severe glaucoma. PLoS ONE 2016, 11, e0151926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mookiah, M.R.K.; Acharya, U.R.; Lim, C.M.; Petznick, A.; Suri, J.S. Data mining technique for automated diagnosis of glaucoma using higher order spectra and wavelet energy features. Knowl-Based Syst. 2012, 33, 73–82. [Google Scholar] [CrossRef]
- Acharya, U.R.; Ng, E.Y.K.; Eugene, L.W.J.; Noronha, K.P.; Min, L.C.; Nayak, K.P.; Bhandary, S.V. Decision support system for the glaucoma using Gabor transformation. Biomed. Signal Process. Control 2015, 15, 18–26. [Google Scholar] [CrossRef] [Green Version]
- Acharya, U.R.; Bhat, S.; Koh, J.E.; Bhandary, S.V.; Adeli, H. A novel algorithm to detect glaucoma risk using texton and local configuration pattern features extracted from fundus images. Comput. Biol. Med. 2017, 88, 72–83. [Google Scholar] [CrossRef] [PubMed]
- Xgboost: Extreme Gradient Boosting. Available online: https://cran.r-project.org/web/packages/xgboost/xgboost.pdf (accessed on 10 December 2021).
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM Sigkdd International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Chen, T.; He, T.; Benesty, M.; Khotilovich, V. Package ‘xgboost’, R Version 90. 2019. Available online: https://link.springer.com/article/10.1057/jos.2013.2 (accessed on 10 December 2021).
- Jović, A.; Brkić, K.; Bogunović, N. A review of feature selection methods with applications. In Proceedings of the 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija, Croatia, 25–29 May 2015; pp. 1200–1205. [Google Scholar]
- Tang, J.; Alelyani, S.; Liu, H. Feature selection for classification: A review. Intell. Data Anal. 2014, 37, 131–156. [Google Scholar]
- Romanski, P.; Kotthoff, L.; Kotthoff, M.L. Package ‘FSelector’. Available online: http://cran/r-project.org/web/packages/FSelector/index.html (accessed on 10 December 2021).
- Tsang, M.; Rambhatla, S.; Liu, Y. How does this interaction affect me? interpretable attribution for feature interactions. arXiv 2020, arXiv:2006.10965. [Google Scholar]
- Tang, X.; Dai, Y.; Xiang, Y. Feature selection based on feature interactions with application to text categorization. Expert Syst. Appl. 2019, 120, 207–216. [Google Scholar] [CrossRef]
- Mills, R.P.; Budenz, D.L.; Lee, P.P.; Noecker, R.J.; Walt, J.G.; Siegartel, L.R.; Doyle, J.J. Categorizing the stage of glaucoma from pre-diagnosis to end-stage disease. Am. J. Ophthalmol. 2006, 141, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Tomita, G.; Takamoto, T.; Schwartz, B. Glaucoma-like disks without increased IOP or VF loss. Am. J. Ophthalmol. 1989, 108, 496–504. [Google Scholar] [CrossRef]
Normal Group | Glaucoma Group | Total | |
---|---|---|---|
Number of participants | 629 | 741 | 1370 |
Gender (male/female) | 518/437 | 852/497 | 1370/934 |
Age (mean ± SD 1) | 51.1 ± 15.1 | 59.1 ± 14.1 | 55.8 ± 15.3 |
Number of eyes | 868 | 1060 | 1928 |
Number of cases | 955 | 1349 | 2304 |
Feature List |
---|
Sex, age, GHT 1, VFI 2, MD 3, PSD 4, RNFL 5 superior, RNFL nasal, RNFL inferior, RNFL temporal, mean of the RNFL thickness, IOP 6, CCT 7, BCVA 8, SE 9, axial length, neuroretinal rim, cup, disc, mean of the cup/disc ratio, vertical_cup/disc ratio, and CNN2 10 degree |
No. | Feature | Abbreviation | Source |
---|---|---|---|
1 | Pattern standard deviation | PSD | VF 1 |
2 | Mean deviation (defect) | MD | VF |
3 | RNFL superior | RNFL_S | OCT 2 |
4 | RNFL inferior | RNFL_I | OCT |
5 | RNFL temporal | RNFL_T | OCT |
6 | IOP | IOP | IOP 3 |
Parameter Name | Value |
---|---|
booster | “gbtree” |
Eta | 0.4 |
max_depth | 4 |
gamma | 1 |
subsample | 0.7 |
objective | “multi:softprob” |
eval_metric | “merror” |
num_class | 2 |
No. | Feature | Importance |
---|---|---|
1 | PSD | 0.27 |
2 | MD | 0.14 |
3 | RNFL_S | 0.11 |
4 | RNFL_I | 0.31 |
5 | RNFL_T | 0.10 |
6 | IOP | 0.07 |
No. | Feature | Min | Max |
---|---|---|---|
1 | PSD | 0.95 | 16.9 |
2 | MD | −24.1 | 6.39 |
3 | RNFL_S | 6 | 172 |
4 | RNFL_I | 0 | 195 |
5 | RNFL_T | 20 | 110 |
6 | IOP | 5 | 29 |
PSD | MD | RNFL_S | RNFL_I | RNFL_T | IOP |
---|---|---|---|---|---|
9.54 | −0.84 | 56 | 54 | 48 | 11 |
PSD | MD | RNFL_S | RNFL_I | RNFL_T | IOP |
---|---|---|---|---|---|
0.5386 | 0.5333 | 0.3012 | 0.2769 | 0.3111 | 0.25 |
PSD | MD | RNFL_S | RNFL_I | RNFL_T | IOP |
---|---|---|---|---|---|
0.5386 | 0.4667 | 0.6889 | 0.7231 | 0.6889 | 0.25 |
Group | PSD | MD | RNFL_S | RNFL_I | RNFL_T | IOP | I-GRI |
---|---|---|---|---|---|---|---|
Glaucoma | 9.54 | −7.84 | 56 | 54 | 48 | 11 | 0.679 |
Border section | 2.29 | −6.99 | 94 | 89 | 77 | 12 | 0.369 |
Normal | 1.43 | −1.49 | 125 | 140 | 63 | 13 | 0.191 |
Comparison Point | Bock [8] | Loewen [9] | Mookiah [10] | Acharya [11] | Proposed |
---|---|---|---|---|---|
0–1 normalization | X | X | X | X | O |
Continuity of risk index | O | X | O | O | O |
Number of used features | 3 | 3 | 13 | 23 | 6 |
Resource 1 | fundus image | IOP, VF, NPM 2 | fundus image | fundus image | IOP, VF, OCT |
Accuracy 3 | 0.80 | NA | 0.95 | 0.93 | 0.93 |
Group | MD | Mean (I-GRI) |
---|---|---|
Normal | – | 0.249 |
Early glaucoma | >−0.5 dB | 0.374 |
Intermediate glaucoma | −5.0 to −12.0 dB | 0.539 |
Advanced glaucoma | <−12 dB | 0.737 |
Group | Mean (I-GRI) | p-Value * |
---|---|---|
Glaucoma | 0.607 | – |
GOD 1 | 0.263 | <10−3 |
LHON 2 | 0.403 | <10−3 |
SSOH 3 | 0.417 | 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oh, S.; Cho, K.J.; Kim, S.-J. Development of the Integrated Glaucoma Risk Index. Diagnostics 2022, 12, 734. https://doi.org/10.3390/diagnostics12030734
Oh S, Cho KJ, Kim S-J. Development of the Integrated Glaucoma Risk Index. Diagnostics. 2022; 12(3):734. https://doi.org/10.3390/diagnostics12030734
Chicago/Turabian StyleOh, Sejong, Kyong Jin Cho, and Seong-Jae Kim. 2022. "Development of the Integrated Glaucoma Risk Index" Diagnostics 12, no. 3: 734. https://doi.org/10.3390/diagnostics12030734
APA StyleOh, S., Cho, K. J., & Kim, S. -J. (2022). Development of the Integrated Glaucoma Risk Index. Diagnostics, 12(3), 734. https://doi.org/10.3390/diagnostics12030734