Use of a Feed-Forward Back Propagation Network for the Prediction of Small for Gestational Age Newborns in a Cohort of Pregnant Patients with Thrombophilia
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kramer, M.S.; Olivier, M.; McLean, F.H.; Willis, D.M.; Usher, R.H. Impact of intrauterine growth retardation and body proportionality on fetal and neonatal outcome. Pediatrics 1990, 86, 707–713. [Google Scholar] [CrossRef] [PubMed]
- Beune, I.M.; Damhuis, S.E.; Ganzevoort, W.; Hutchinson, J.C.; Khong, T.Y.; Mooney, E.E.; Sebire, N.J.; Gordijn, S.J. Consensus definition of fetal growth restriction in intrauterine fetal death: A Delphi procedure. Arch. Pathol. Lab. Med. 2021, 145, 428–436. [Google Scholar] [CrossRef] [PubMed]
- Suhag, A.; Berghella, V. Intrauterine growth restriction (IUGR): Etiology and diagnosis. Curr. Obstet. Gynecol. Rep. 2013, 2, 102–111. [Google Scholar] [CrossRef] [Green Version]
- Romo, A.; Carceller, R.; Tobajas, J. Intrauterine growth retardation (IUGR): Epidemiology and etiology. Pediatr. Endocrinol. Rev. 2009, 6, 332–336. [Google Scholar]
- Maulik, D. Fetal growth restriction: The etiology. Clin. Obstet. Gynecol. 2006, 49, 228–235. [Google Scholar] [CrossRef]
- Dugalić, S.; Petronijevic, M.; Stefanovic, A.; Jeremic, K.; Petronijevic, S.V.; Soldatovic, I.; Pantic, I.; Djunic, I.; Jokic, Z.; Djokovic, F.; et al. The association between IUGR and maternal inherited thrombophilias: A case-control study. Medicine 2018, 97, e12799. [Google Scholar] [CrossRef]
- Saccone, G.; Berghella, V.; Maruotti, G.M.; Ghi, T.; Rizzo, G.; Simonazzi, G.; Rizzo, N.; Facchinetti, F.; Dall’Asta, A.; Visentin, S.; et al. Antiphospholipid antibody profile based obstetric outcomes of primary antiphospholipid syndrome: The PREGNANTS study. Am. J. Obs. Gynecol. 2017, 216, 525–525.e12. [Google Scholar] [CrossRef] [PubMed]
- Simcox, L.E.; Ormesher, L.; Tower, C.; Greer, I.A. Thrombophilia and pregnancy complications. Int. J. Mol. Sci. 2015, 16, 28418–28428. [Google Scholar] [CrossRef] [Green Version]
- Ariel, I.; Anteby, E.; Hamani, Y.; Redline, R.W. Placental pathology in fetal thrombophilia. Hum. Pathol. 2004, 35, 729–733. [Google Scholar] [CrossRef]
- Raspollini, M.R.; Oliva, E.; Roberts, D.J. Placental histopathologic features in patients with thrombophilic mutations. J. Matern.-Fetal Neonatal Med. 2007, 20, 113–123. [Google Scholar] [CrossRef]
- Voicu, N.L.; Bohîlţea, R.E.; Berceanu, S.; Busuioc, C.J.; Roşu, G.C.; Paitici, Ş.; Istrate-Ofiţeru, A.M.; Berceanu, C.; Diţescu, D. Evaluation of placental vascularization in thrombophilia and intrauterine growth restriction (IUGR). Rom. J. Morphol. Embryol. 2020, 61, 465. [Google Scholar] [CrossRef] [PubMed]
- Hemsworth, E.M.; O’Reilly, A.M.; Allen, V.M.; Kuhle, S.; Brock, J.K. Association between factor V leiden mutation, small for gestational age, and preterm birth: A systematic review and meta-analysis. J. Obs. Gynaecol. Can. 2016, 38, 897–908. [Google Scholar] [CrossRef] [PubMed]
- Sabadell, J.; Casellas, M.; Alijotas-Reig, J.; Arellano-Rodrigo, E.; Cabero, L. Inherited antithrombin deficiency and pregnancy: Maternal and fetal outcomes. Eur. J. Obstet. Gynecol. Reprod. Biol. 2010, 149, 47–51. [Google Scholar] [CrossRef] [PubMed]
- Livrinova, V.; Lega, M.H.; Dimcheva, A.H.; Samardziski, I.; Isjanovska, R. Factor V leiden, prothrombin and MTHFR mutation in patients with preeclamsia, intrauterine growth restriction and placental abruption. Open Access Maced. J. Med. Sci. 2015, 3, 590–594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bahrami, R.; Schwartz, D.A.; Asadian, F.; Karimi-Zarchi, M.; Dastgheib, S.A.; Tabatabaie, R.S.; Meibodi, B.; Neamatzadeh, H. Association of MTHFR 677C>T polymorphism with IUGR and placental abruption risk: A systematic review and meta-analysis. Eur. J. Obs. Gynecol. Reprod. Biol. 2021, 256, 130–139. [Google Scholar] [CrossRef] [PubMed]
- Ciobanu, A.; Formuso, C.; Syngelaki, A.; Akolekar, R.; Nicolaides, K.H. Prediction of small-for-gestational-age neonates at 35–37 weeks’ gestation: Contribution of maternal factors and growth velocity between 20 and 36 weeks. Ultrasound Obs. Gynecol. 2019, 53, 488–495. [Google Scholar] [CrossRef] [PubMed]
- Papastefanou, I.; Wright, D.; Syngelaki, A.; Souretis, K.; Chrysanthopoulou, E.; Nicolaides, K.H. Competing-risks model for prediction of small-for-gestational-age neonate from biophysical and biochemical markers at 11–13 weeks’ gestation. Ultrasound Obs. Gynecol. 2021, 57, 52–61. [Google Scholar] [CrossRef]
- Papastefanou, I.; Nowacka, U.; Syngelaki, A.; Dragoi, V.; Karamanis, G.; Wright, D.; Nicolaides, K.H. Competing-risks model for prediction of small-for-gestational-age neonate from estimated fetal weight at 19–24 weeks’ gestation. Ultrasound Obs. Gynecol. 2021, 57, 917–924. [Google Scholar] [CrossRef]
- Tan, M.Y.; Poon, L.C.; Rolnik, D.L.; Syngelaki, A.; de Paco Matallana, C.; Akolekar, R.; Cicero, S.; Janga, D.; Singh, M.; Molina, F.S.; et al. Prediction and prevention of small-for-gestational-age neonates: Evidence from SPREE and ASPRE. Ultrasound Obs. Gynecol. 2018, 52, 52–59. [Google Scholar] [CrossRef] [Green Version]
- Feng, Y.; Zheng, H.; Fang, D.; Mei, S.; Zhong, W.; Zhang, G. Prediction of late-onset fetal growth restriction using a combined first- and second-trimester screening model. J. Gynecol. Obs. Hum. Reprod. 2022, 51, 102273. [Google Scholar] [CrossRef]
- Huang, C.; Xiang, Z.; Zhang, Y.; Tan, D.S.; Yip, C.K.; Liu, Z.; Li, Y.; Yu, S.; Diao, L.; Wong, L.Y.; et al. Using deep learning in a monocentric study to characterize maternal immune environment for predicting pregnancy outcomes in the recurrent reproductive failure patients. Front. Immunol. 2021, 12, 642167. [Google Scholar] [CrossRef] [PubMed]
- Gupta, K.; Balyan, K.; Lamba, B.; Puri, M.; Sengupta, D.; Kumar, M. Ultrasound placental image texture analysis using artificial intelligence to predict hypertension in pregnancy. J. Matern. Fetal Neonatal Med. 2021, 9, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Espinosa, C.; Becker, M.; Marić, I.; Wong, R.J.; Shaw, G.M.; Gaudilliere, B.; Aghaeepour, N.; Stevenson, D.K.; Stelzer, I.A.; Peterson, L.S.; et al. Data-driven modeling of pregnancy-related complications. Trends Mol. Med. 2021, 27, 762–776. [Google Scholar] [CrossRef] [PubMed]
- Kriegeskorte, N.; Golan, T. Neural network models and deep learning. Curr. Biol. 2019, 29, R231–R236. [Google Scholar] [CrossRef]
- Nawi, N.M.; Ransing, R.S.; Salleh, M.N.M.; Ghazali, R.; Hamid, N.A. (Eds.) An Improved Back Propagation Neural Network Algorithm on Classification Problems. Database Theory and Application, Bio-Science and Bio-Technology; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Badr, A. Awesome back-propagation machine learning paradigm. Neural Comput. Appl. 2021, 33, 13225–13249. [Google Scholar] [CrossRef]
- Salomon, L.J.; Alfirevic, Z.; Bilardo, C.M.; Chalouhi, G.E.; Ghi, T.; Kagan, K.O.; Lau, T.K.; Papageorghiou, A.T.; Raine-Fenning, N.J.; Stirnemann, J.; et al. ISUOG practice guidelines: Performance of first-trimester fetal ultrasound scan. Ultrasound Obs. Gynecol. 2013, 41, 102–113. [Google Scholar]
- Lubchenco, L.O.; Hansman, C.; Dressler, M.; Boyd, E. Intrauterine growth as estimated from liveborn birth-weight data at 24 to 42 weeks of gestation. Pediatrics 1963, 32, 793–800. [Google Scholar] [CrossRef]
- Fenton, T.R.; Kim, J.H. A systematic review and meta-analysis to revise the Fenton growth chart for preterm infants. BMC Pediatr. 2013, 13, 59. [Google Scholar] [CrossRef] [Green Version]
- Liu, H. (Ed.) On the Levenberg-Marquardt training method for feed-forward neural networks. In Proceedings of the 2010 Sixth International Conference on Natural Computation, Yantai, China, 10–12 August 2010; IEEE: New York, NJ, USA, 2010. [Google Scholar]
- Sapna, S.; Tamilarasi, A.; Kumar, M.P. Backpropagation learning algorithm based on Levenberg Marquardt Algorithm. Comp. Sci. Inf. Technol. CS IT 2012, 2, 393–398. [Google Scholar]
- Aslam, M.A.; Xue, C.; Liu, M.; Wang, K.; Cui, D. Classification and prediction of gastric cancer from saliva diagnosis using artificial neural network. Eng. Lett. 2020, 29, 1. [Google Scholar]
- Søreide, K.; Thorsen, K.; Søreide, J.A. Predicting outcomes in patients with perforated gastroduodenal ulcers: Artificial neural network modelling indicates a highly complex disease. Eur. J. Trauma Emerg. Surg. 2015, 41, 91–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nanglia, P.; Mahajan, A.; Kumar, S. Lung cancer classification using feed-forward back propagation neural network for CT images. Int. J. Med. Eng. Inform. 2020, 12, 447–456. [Google Scholar] [CrossRef]
- Singh, A.; Arya, S.; Chellani, H.; Aggarwal, K.C.; Pandey, R.M. Prediction model for low birth weight and its validation. Indian J. Pediatrics 2014, 81, 24–28. [Google Scholar] [CrossRef] [PubMed]
- Said, H.M.; El-Gharbawi, N.M.; Moneim, S.; Hafez, A.A. Association of hereditary antithrombin deficiency with intrauterine growth restriction. Blood Coagul. Fibrinolysis 2018, 29, 442–445. [Google Scholar] [CrossRef]
- Karadağ, C.; Akar, B.; Gönenç, G.; Aslancan, R.; Yılmaz, N.; Çalışkan, E. Aspirin, low molecular weight heparin, or both in preventing pregnancy complications in women with recurrent pregnancy loss and factor V Leiden mutation. J. Matern. Fetal. Neonatal Med. 2020, 33, 1934–1939. [Google Scholar] [CrossRef]
- Kupferminc, M.J.; Fait, G.; Many, A.; Lessing, J.B.; Yair, D.; Bar-Am, A.; Eldor, A. Low-molecular-weight heparin for the prevention of obstetric complications in women with thrombophilias. Hypertens. Pregnancy 2001, 20, 35–44. [Google Scholar] [CrossRef]
Patient Data | No SGA | SGA | p-Value | |
---|---|---|---|---|
Demographics | Age | Mean = 31.99 ± 4.11 SD | Mean = 31.51 ± 4.96 SD | 0.021 |
BMI | Mean= 22.7 ± 21.56 SD | Mean= 25.42 ± 1.2 SD | <0.001 | |
Patient’s history | Parity | Primiparity Yes = 212 (74.9%) | Primiparity Yes = 71 (25.1%) | 0.054 |
Smoking | Yes = 10 (13.2%) No = 358 (91.8%) | Yes = 66 (86.8%) No = 32 (8.2%) | <0.001 | |
Chronic hypertension | Yes = 3 (15%) No = 365 (81.8%) | Yes = 17 (85%) No = 81 (18.2%) | <0.001 | |
History of ischemic placental disease | Yes = 5 (26.3%) No = 363 (81.2%) | Yes = 14 (73.7%) No = 84 (18.8%) | <0.001 | |
Paraclinical data | Factor V Leiden | Yes = 36 (36%) No = 332 (90.7%) | Yes = 64 (64%) No = 34 (9.3%) | <0.001 |
MTHFR A1298C homozygous | Yes = 17 (19.5%) No = 351 (92.9%) | Yes = 70 (80.5%) No = 27(7.1%) | <0.001 | |
MTHFR C677T homozygous | Yes = 15 (19%) No = 353 (91.5%) | Yes = 64 (81%) No = 33 (8.5%) | <0.001 | |
PAI I deficiency | Yes = 7 (9.5%) No = 361 (92.1%) | Yes = 67 (90.5%) No = 31 (7.9%) | <0.001 | |
AT III deficiency | Yes = 6 (9.5%) No = 362 (89.8%) | Yes = 57 (90.5%) No = 41 (10.2%) | <0.001 | |
PROTEIN S deficiency | Yes = 20 (74.1%) No = 348 (79.3%) | Yes = 7 (25.9%) No = 91 (20.7%) | 0.520 | |
PROTEIN C deficiency | Yes = 12 (80%) No = 356 (78.9%) | Yes = 3 (20%) No = 95 (21.1%) | 0.921 | |
APCR | Yes = 1 (33.3%) No = 367 (79.3%) | Yes = 2 (66.7%) No = 96 (20.7%) | 0.052 | |
Prothrombin | Yes = 10 (71.4%) No = 358 (79.2%) | Yes = 4 (28.6%) No = 94 (20.8%) | 0.482 | |
LAC | Yes = 2 (66.7%) No = 366 (79%) | Yes = 1 (33.3%) No = 97 (21%) | 0.600 | |
ACL | Yes = 2 (66.7%) No = 366 (79%) | Yes = 1 (33.3%) No = 97 (21%) | 0.600 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vicoveanu, P.; Vasilache, I.A.; Scripcariu, I.S.; Nemescu, D.; Carauleanu, A.; Vicoveanu, D.; Covali, A.R.; Filip, C.; Socolov, D. Use of a Feed-Forward Back Propagation Network for the Prediction of Small for Gestational Age Newborns in a Cohort of Pregnant Patients with Thrombophilia. Diagnostics 2022, 12, 1009. https://doi.org/10.3390/diagnostics12041009
Vicoveanu P, Vasilache IA, Scripcariu IS, Nemescu D, Carauleanu A, Vicoveanu D, Covali AR, Filip C, Socolov D. Use of a Feed-Forward Back Propagation Network for the Prediction of Small for Gestational Age Newborns in a Cohort of Pregnant Patients with Thrombophilia. Diagnostics. 2022; 12(4):1009. https://doi.org/10.3390/diagnostics12041009
Chicago/Turabian StyleVicoveanu, Petronela, Ingrid Andrada Vasilache, Ioana Sadiye Scripcariu, Dragos Nemescu, Alexandru Carauleanu, Dragos Vicoveanu, Ana Roxana Covali, Catalina Filip, and Demetra Socolov. 2022. "Use of a Feed-Forward Back Propagation Network for the Prediction of Small for Gestational Age Newborns in a Cohort of Pregnant Patients with Thrombophilia" Diagnostics 12, no. 4: 1009. https://doi.org/10.3390/diagnostics12041009
APA StyleVicoveanu, P., Vasilache, I. A., Scripcariu, I. S., Nemescu, D., Carauleanu, A., Vicoveanu, D., Covali, A. R., Filip, C., & Socolov, D. (2022). Use of a Feed-Forward Back Propagation Network for the Prediction of Small for Gestational Age Newborns in a Cohort of Pregnant Patients with Thrombophilia. Diagnostics, 12(4), 1009. https://doi.org/10.3390/diagnostics12041009