A Web Application for Biomedical Text Mining of Scientific Literature Associated with Coronavirus-Related Syndromes: Coronavirus Finder
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Relevant Information
3.2. Graphics
3.3. Gene Association
3.3.1. Vasoactive Intestinal Peptide
3.3.2. Ceruloplasmin
3.3.3. Transient Receptor Potential Vanilloid
3.3.4. Interleukin 6
3.3.5. CXCL10
3.3.6. Protein C
3.3.7. SRM
3.3.8. CYP3A4
3.3.9. HMGB1
3.3.10. NLRP3
3.4. Gene Network
3.4.1. SIRT Protein Family
3.4.2. TNF
3.4.3. TREM2
3.4.4. CCL2
3.4.5. AR
3.4.6. ISG15
3.4.7. IFIT
3.4.8. SRY and SOX3
3.5. Gene and Keyword Subcorpus
4. Future Work
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Greenberg, S.B. Update on Human Rhinovirus and Coronavirus Infections. Semin. Respir. Crit. Care Med. 2016, 37, 555–571. [Google Scholar] [CrossRef] [Green Version]
- McIntosh, K.; Ellis, E.F.; Hoffman, L.S.; Lybass, T.G.; Eller, J.J.; Fulginiti, V.A. Association of viral and bacterial respiratory infection with exacerbations of wheezing in young asthmatic children. Chest 1973, 63, 43S. [Google Scholar] [CrossRef]
- Peiris, J.S.M.; Lai, S.T.; Poon, L.L.M.; Guan, Y.; Yam, L.Y.C.; Lim, W.; Nicholls, J.; Yee, W.K.S.; Yan, W.W.; Cheung, M.T.; et al. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 2003, 361, 1319–1325. [Google Scholar] [CrossRef] [Green Version]
- Memish, Z.A.; Zumla, A.I.; Al-Hakeem, R.F.; Al-Rabeeah, A.A.; Stephens, G.M. Family Cluster of Middle East Respiratory Syndrome Coronavirus Infections. N. Engl. J. Med. 2013, 368, 2487–2494. [Google Scholar] [CrossRef]
- Wise, J. COVID-19: Highest death rates seen in countries with most overweight populations. BMJ 2021, 372, n623. [Google Scholar] [CrossRef]
- Luo, J.; Wu, M.; Gopukumar, D.; Zhao, Y. Big Data Application in Biomedical Research and Health Care: A Literature Review. Biomed. Inform. Insights 2016, 8, BII-S31559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salloum, S.A.; Al-Emran, M.; Monem, A.A.; Shaalan, K. Using text mining techniques for extracting information from research articles. In Studies in Computational Intelligence; Springer: Cham, Switzerland, 2018; Volume 740, pp. 373–397. [Google Scholar]
- Court, C.J.; Cole, J.M. Magnetic and superconducting phase diagrams and transition temperatures predicted using text mining and machine learning. Npj Comput. Mater. 2020, 6, 18. [Google Scholar] [CrossRef]
- Singhal, A.; Simmons, M.; Lu, Z. Text Mining Genotype-Phenotype Relationships from Biomedical Literature for Database Curation and Precision Medicine. PLoS Comput. Biol. 2016, 12, e1005017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, K.B.; Hunter, L.E. Chapter 16: Text mining for translational bioinformatics. PLoS Comput. Biol. 2013, 9, e1003044. [Google Scholar] [CrossRef] [Green Version]
- Holzinger, A.; Schantl, J.; Schroettner, M.; Seifert, C.; Verspoor, K. Biomedical text mining: State-of-the-art, open problems and future challenges. In Interactive Knowledge Discovery and Data Mining in Biomedical Informatics; Springer: Berlin/Heidelberg, Germany, 2014; Volume 8401, pp. 271–300. [Google Scholar] [CrossRef]
- Rosário-Ferreira, N.; Marques-Pereira, C.; Pires, M.; Ramalhão, D.; Pereira, N.; Guimarães, V.; Costa, V.S.; Moreira, I.S. The Treasury Chest of Text Mining: Piling Available Resources for Powerful Biomedical Text Mining. Biochem 2021, 1, 60–80. [Google Scholar] [CrossRef]
- Koeppen, K.; Stanton, B.A.; Hampton, T.H. ScanGEO: Parallel mining of high-throughput gene expression data. Bioinformatics 2017, 33, 3500–3501. [Google Scholar] [CrossRef] [Green Version]
- Miller, D.M.; Shalhout, S.Z. GENETEX—A GENomics Report TEXt mining R package and Shiny application designed to capture real-world clinico-genomic data. JAMIA Open 2021, 4, ooab082. [Google Scholar] [CrossRef]
- Wei, C.H.; Kao, H.Y.; Lu, Z. PubTator: A web-based text mining tool for assisting biocuration. Nucleic Acids Res. 2013, 41, W518. [Google Scholar] [CrossRef]
- Djekidel, M.N.; Rosikiewicz, W.; Peng, J.C.; Kanneganti, T.-D.; Hui, Y.; Jin, H.; Hedges, D.; Schreiner, P.; Fan, Y.; Wu, G.; et al. CovidExpress: An interactive portal for intuitive investigation on SARS-CoV-2 related transcriptomes. bioRxiv 2021. Preprint. [Google Scholar] [CrossRef]
- Wu, M.; Zhang, Y.; Grosser, M.; Tipper, S.; Venter, D.; Lin, H.; Lu, J. Profiling COVID-19 Genetic Research: A Data-Driven Study Utilizing Intelligent Bibliometrics. Front. Res. Metrics Anal. 2021, 6, 30. [Google Scholar] [CrossRef]
- Jelodar, H.; Wang, Y.; Orji, R.; Huang, H.; Huang, H. Deep Sentiment Classification and Topic Discovery on Novel Coronavirus or COVID-19 Online Discussions: NLP Using LSTM Recurrent Neural Network Approach. Undefined 2020, 24, 2733–2742. [Google Scholar] [CrossRef]
- Bharti, U.; Bajaj, D.; Batra, H.; Lalit, S.; Lalit, S.; Gangwani, A. Proceedings of the Medbot: Conversational Artificial Intelligence Powered Chatbot for Delivering Tele-Health after COVID-19. Coimbatore, India, 10–12 June 2020; pp. 870–875. [Google Scholar] [CrossRef]
- Chen, Q.; Allot, A.; Lu, Z. LitCovid: An open database of COVID-19 literature. Nucleic Acids Res. 2021, 49, D1534–D1540. [Google Scholar] [CrossRef]
- Trewartha, A.; Dagdelen, J.; Huo, H.; Cruse, K.; Wang, Z.; He, T.; Subramanian, A.; Fei, Y.; Justus, B.; Persson, K.; et al. COVIDScholar: An automated COVID-19 research aggregation and analysis platform. arXiv 2020, arXiv:2012.03891. [Google Scholar]
- Zavarrone, E.; Grassia, M.G.; Marino, M.; Cataldo, R.; Mazza, R.; Canestrari, N. CO.ME.T.A.—COVID-19 media textual analysis. A dashboard for media monitoring. arXiv 2020, arXiv:2004.07742. [Google Scholar]
- Wang, L.L.; Lo, K. Text mining approaches for dealing with the rapidly expanding literature on COVID-19. Brief. Bioinform. 2021, 22, 781–799. [Google Scholar] [CrossRef]
- Mukhtar, H.; Ahmad, H.F.; Khan, M.Z.; Ullah, N. Analysis and Evaluation of COVID-19 Web Applications for Health Professionals: Challenges and Opportunities. Healthcare 2020, 8, 466. [Google Scholar] [CrossRef] [PubMed]
- Hassani-Pak, K. KnetMiner-An integrated data platform for gene mining and biological knowledge discovery. Ph.D. Thesis, Bielefeld University, Bielefeld, Germany, 2017. [Google Scholar]
- Oniani, D.; Jiang, G.; Liu, H.; Shen, F. Constructing co-occurrence network embeddings to assist association extraction for COVID-19 and other coronavirus infectious diseases. J. Am. Med. Inform. Assoc. 2020, 27, 1259–1267. [Google Scholar] [CrossRef]
- Chen, H.; Martin, B.; Daimon, C.M.; Maudsley, S. Effective use of latent semantic indexing and computational linguistics in biological and biomedical applications. Front. Physiol. 2013, 4, 8. [Google Scholar] [CrossRef] [Green Version]
- Roy, S.; Heinrich, K.; Phan, V.; Berry, M.W.; Homayouni, R. Latent Semantic Indexing of PubMed abstracts for identification of transcription factor candidates from microarray derived gene sets. BMC Bioinform. 2011, 12, S19. [Google Scholar] [CrossRef] [Green Version]
- Andreou, A.; Trantza, S.; Filippou, D.; Filippou, D.; Sipsas, N.; Tsiodras, S. COVID-19: The potential role of copper and N-acetylcysteine (NAC) in a combination of candidate antiviral treatments against SARS-CoV-2. In Vivo 2020, 34, 1567–1588. [Google Scholar] [CrossRef]
- Gassen, N.; Papies, J.; Bajaj, T.; Dethloff, F.; Emanuel, J.; Weckmann, K.; Heinz, D.; Heinemann, N.; Lennarz, M.; Richter, A.; et al. Analysis of SARS-CoV-2-controlled autophagy reveals spermidine, MK-2206, and niclosamide as putative antiviral therapeutics. BioRxiv 2020, arXiv:2020.04.15.997254. [Google Scholar] [CrossRef] [Green Version]
- Roberts, R.J. PubMed Central: The GenBank of the published literature. Proc. Natl. Acad. Sci. USA 2001, 98, 381–382. [Google Scholar] [CrossRef] [Green Version]
- Rani, J.; Shah, A.R.; Ramachandran, S. Pubmed.mineR: An R package with text-mining algorithms to analyse PubMed abstracts. J. Biosci. 2015, 40, 671–682. [Google Scholar] [CrossRef]
- Landauer, T.K.; Dumais, S.T. A Solution to Plato’s Problem: The Latent Semantic Analysis Theory of Acquisition, Induction, and Representation of Knowledge. Psychol. Rev. 1997, 104, 211–240. [Google Scholar] [CrossRef]
- Homayouni, R.; Heinrich, K.; Wei, L.; Berry, M.W. Gene clustering by Latent Semantic Indexing of MEDLINE abstracts. Bioinformatics 2005, 21, 104–115. [Google Scholar] [CrossRef] [PubMed]
- Wild, F.; Kalz, M.; van Bruggen, J.; Koper, R. (Eds.) An LSA package for R. In Mini-Proceedings of the 1st European Workshop on Latent Semantic Analysis in Technology-Enhanced Learning, Heerlen, The Netherlands, 29–30 March 2007; pp. 11–12. [Google Scholar]
- Günther, F.; Dudschig, C.; Kaup, B. LSAfun-An R package for computations based on Latent Semantic Analysis. Behav. Res. Methods 2014, 47, 930–944. [Google Scholar] [CrossRef] [PubMed]
- Gefen, D.; Endicott, J.E.; Fresneda, J.E.; Miller, J.L.; Larsen, K.R. A Guide to Text Analysis with Latent Semantic Analysis in R with Annotated Code: Studying Online Reviews and the Stack Exchange Community. Commun. Assoc. Inf. Syst. 2017, 41, 21. [Google Scholar] [CrossRef] [Green Version]
- R Studio. Shiny: A Web Application Framework for R. 2021. Available online: http://shiny.rstudio (accessed on 27 January 2022).
- Olaechea-Lázaro, S.; García-Santisteban, I.; Pineda, J.R.; Badiola, I.; Alonso, S.; Bilbao, J.R.; Fernandez-Jimenez, N. ShinyCurves, a shiny web application to analyse multisource qPCR amplification data: A COVID-19 case study. BMC Bioinform. 2021, 22, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Salehi, M.; Arashi, M.; Bekker, A.; Ferreira, J.; Chen, D.G.; Esmaeili, F.; Frances, M. A Synergetic R-Shiny Portal for Modeling and Tracking of COVID-19 Data. Front. Public Heal. 2021, 8, 1042. [Google Scholar] [CrossRef]
- Consortium, U. The universal protein resource (UniProt). Nucleic Acids Res 2008, 36, D190–D195. [Google Scholar] [CrossRef]
- Umetsu, Y.; Tenno, T.; Goda, N.; Shirakawa, M.; Ikegami, T.; Hiroaki, H. Structural difference of vasoactive intestinal peptide in two distinct membrane-mimicking environments. Biochim. Biophys. Acta-Proteins Proteom. 2011, 1814, 724–730. [Google Scholar] [CrossRef]
- Georges Youssef, J.; Zahiruddin, F.; Al-Saadi, M.; Yau, S.; Goodarzi, A.; Huang, H.J.; Javitt, J.C.; Affiliations, A. Brief Report: Rapid clinical recovery from Critical COVID-19 with Respiratory Failure in a lung transplant patient treated with intravenous Vasoactive Intestinal Peptide. Prepints 2020, 2020070178. [Google Scholar] [CrossRef]
- White, K.N.; Conesa, C.; Sánchez, L.; Amini, M.; Farnaud, S.; Lorvoralak, C.; Evans, R.W. The transfer of iron between ceruloplasmin and transferrins. Biochim. Biophys. Acta-Gen. Subj. 2012, 1820, 411–416. [Google Scholar] [CrossRef]
- Liao, J.; Yang, F.; Chen, H.; Yu, W.; Han, Q.; Li, Y.; Hu, L.; Guo, J.; Pan, J.; Liang, Z.; et al. Effects of copper on oxidative stress and autophagy in hypothalamus of broilers. Ecotoxicol. Environ. Saf. 2019, 185, 109710. [Google Scholar] [CrossRef]
- Kell, D.B.; Heyden, E.L.; Pretorius, E. The Biology of Lactoferrin, an Iron-Binding Protein That Can Help Defend Against Viruses and Bacteria. Front. Immunol. 2020, 11, 1221. [Google Scholar] [CrossRef]
- Peroni, D.G.; Fanos, V. Lactoferrin is an important factor when breastfeeding and COVID-19 are considered. Acta Paediatr. 2020, 109, 2139–2140. [Google Scholar] [CrossRef]
- Kuebler, W.M.; Jordt, S.E.; Liedtke, W.B. Urgent reconsideration of lung edema as a preventable outcome in COVID-19: Inhibition of TRPV4 represents a promising and feasible approach. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2020, 318, L1239–L1243. [Google Scholar] [CrossRef]
- Yang, Y.; Shen, C.; Li, J.; Yuan, J.; Yang, M.; Wang, F.; Li, G.; Li, Y.; Xing, L.; Peng, L.; et al. Exuberant elevation of IP-10, MCP-3 and IL-1ra during SARS-CoV-2 infection is associated with disease severity and fatal outcome. MedRxiv 2020, arXiv:2020.03.02.20029975. [Google Scholar] [CrossRef] [Green Version]
- Gong, J.; Dong, H.; Xia, S.Q.; Huang, Y.Z.; Wang, D.; Zhao, Y.; Liu, W.; Tu, S.; Zhang, M.; Wang, Q.; et al. Correlation Analysis Between Disease Severity and Inflammation-related Parameters in Patients with COVID-19 Pneumonia. MedRxiv 2020, arXiv:2020.02.25.20025643. [Google Scholar] [CrossRef] [Green Version]
- Magro, G. SARS-CoV-2 and COVID-19: Is interleukin-6 (IL-6) the ‘culprit lesion’ of ARDS onset? What is there besides Tocilizumab? SGP130Fc. Cytokine X 2020, 2, 100029. [Google Scholar] [CrossRef]
- Ulhaq, Z.S.; Soraya, G.V. Anti-IL-6 Receptor Antibody Treatment for Severe COVID-19 and the Potential Implication of IL-6 Gene Polymorphisms in Novel Coronavirus Pneumonia. Medicina Clinica 2020, 155, 548–556. [Google Scholar] [CrossRef]
- Coperchini, F.; Chiovato, L.; Croce, L.; Magri, F.; Rotondi, M. The cytokine storm in COVID-19: An overview of the involvement of the chemokine/chemokine-receptor system. Cytokine Growth Factor Rev. 2020, 53, 25–32. [Google Scholar] [CrossRef]
- Oliviero, A.; de Castro, F.; Coperchini, F.; Chiovato, L.; Rotondi, M. COVID-19 Pulmonary and Olfactory Dysfunctions: Is the Chemokine CXCL10 the Common Denominator? Neuroscientist 2020, 27, 214–221. [Google Scholar] [CrossRef]
- Griffin, J.H.; Lyden, P. COVID-19 hypothesis: Activated protein C for therapy of virus-induced pathologic thromboinflammation. Res. Pract. Thromb. Haemost. 2020, 4, 506–509. [Google Scholar] [CrossRef]
- Takahashi, T.; Luzum, J.A.; Nicol, M.R.; Jacobson, P.A. Pharmacogenomics of COVID-19 therapies. Npj Genom. Med. 2020, 5, 1–7. [Google Scholar] [CrossRef]
- Bhimraj, A.; Morgan, R.L.; Shumaker, A.H.; Lavergne, V.; Baden, L.; Cheng, V.C.-C.; Edwards, K.M.; Gandhi, R.; Muller, W.J.; O’Horo, J.C.; et al. Infectious Diseases Society of America Guidelines on the Treatment and Management of Patients with COVID-19. Clin. Infect. Dis. 2020. [Google Scholar] [CrossRef]
- Qi, Y.F.; Zhang, J.; Wang, L.; Shenoy, V.; Krause, E.; Oh, S.P.; Pepine, C.J.; Katovich, M.J.; Raizada, M.K. Angiotensin-converting enzyme 2 inhibits high-mobility group box 1 and attenuates cardiac dysfunction post-myocardial ischemia. J. Mol. Med. 2016, 94, 37–49. [Google Scholar] [CrossRef] [Green Version]
- Street, M.E. HMGB1: A Possible Crucial Therapeutic Target for COVID-19? Horm. Res. Paediatr. 2020, 93, 73–75. [Google Scholar] [CrossRef]
- Freeman, T.L.; Swartz, T.H. Targeting the NLRP3 Inflammasome in Severe COVID-19. Front. Immunol. 2020, 11, 1518. [Google Scholar] [CrossRef]
- Van den Berg, D.F.; te Velde, A.A. Severe COVID-19: NLRP3 Inflammasome Dysregulated. Front. Immunol. 2020, 11, 1580. [Google Scholar] [CrossRef]
- Budayeva, H.G.; Rowland, E.A.; Cristea, I.M. Intricate Roles of Mammalian Sirtuins in Defense against Viral Pathogens. J. Virol. 2016, 90, 5–8. [Google Scholar] [CrossRef] [Green Version]
- Miller, R.; Wentzel, A.R.; Richards, G.A. COVID-19: NAD+ deficiency may predispose the aged, obese and type2 diabetics to mortality through its effect on SIRT1 activity. Med. Hypotheses 2020, 144, 110044. [Google Scholar] [CrossRef]
- Robinson, P.C.; Liew, D.F.L.; Liew, J.W.; Monaco, C.; Richards, D.; Shivakumar, S.; Tanner, H.L.; Feldmann, M. The Potential for Repurposing Anti-TNF as a Therapy for the Treatment of COVID-19. Med 2020, 1, 90–102. [Google Scholar] [CrossRef]
- Garcia-Revilla, J.; Deierborg, T.; Venero, J.L.; Boza-Serrano, A. Hyperinflammation and Fibrosis in Severe COVID-19 Patients: Galectin-3, a Target Molecule to Consider. Front. Immunol. 2020, 11, 2069. [Google Scholar] [CrossRef]
- Chua, R.L.; Lukassen, S.; Trump, S.; Hennig, B.P.; Wendisch, D.; Pott, F.; Debnath, O.; Thürmann, L.; Kurth, F.; Völker, M.T.; et al. COVID-19 severity correlates with airway epithelium–immune cell interactions identified by single-cell analysis. Nat. Biotechnol. 2020, 38, 970–979. [Google Scholar] [CrossRef]
- Raghavan, P.R. Metadichol®, A Novel Nano Lipid Formulation that Inhibits SARS-CoV-2 and a Multitude of Pathological Viruses in Vitro. Biomed Res. Int. 2020, 2022, 1558860. [Google Scholar] [CrossRef]
- Goren, A.; McCoy, J.; Wambier, C.G.; Vano-Galvan, S.; Shapiro, J.; Dhurat, R.; Washenik, K.; Lotti, T. What does androgenetic alopecia have to do with COVID-19? An insight into a potential new therapy. Dermatol. Ther. 2020, e13365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCoy, J.; Wambier, C.G.; Vano-Galvan, S.; Shapiro, J.; Sinclair, R.; Ramos, P.M.; Washenik, K.; Andrade, M.; Herrera, S.; Goren, A. Racial variations in COVID-19 deaths may be due to androgen receptor genetic variants associated with prostate cancer and androgenetic alopecia. Are anti-androgens a potential treatment for COVID-19? J. Cosmet. Dermatol. 2020, 19, 1542–1543. [Google Scholar] [CrossRef] [PubMed]
- Farrell, P.J.; Broeze, R.J.; Lengyel, P. Accumulation of an mRNA and protein in interferon-treated Ehrlich ascites tumour cells. Nature 1979, 279, 523–525. [Google Scholar] [CrossRef]
- Swaim, C.D.; Canadeo, L.A.; Monte, K.J.; Khanna, S.; Lenschow, D.J.; Huibregtse, J.M. Modulation of Extracellular ISG15 Signaling by Pathogens and Viral Effector Proteins. Cell Rep. 2020, 31, 107772. [Google Scholar] [CrossRef]
- Wrensch, F.; Winkler, M.; Pöhlmann, S. IFITM proteins inhibit entry driven by the MERS-Coronavirus Spike protein: Evidence for Cholesterol-Independent Mechanisms. Viruses 2014, 6, 3683–3698. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.; Ren, L.; Zhang, L.; Zhong, J.; Xiao, Y.; Jia, Z.; Guo, L.; Yang, J.; Wang, C.; Jiang, S. Heightened Innate Immune Responses in the Respiratory Tract of COVID-19 Patients. Cell Host Microbe 2020, 27, 883–890.e2. [Google Scholar] [CrossRef]
- Araujo, F.C.; Milsted, A.; Watanabe, I.K.M.; Del Puerto, H.L.; Santos, R.A.S.; Lazar, J.; Reis, F.M.; Prokop, J.W. Similarities and differences of X and Y chromosome homologous genes, SRY and SOX3, in regulating the renin-angiotensin system promoters. Physiol. Genom. 2015, 47, 177–186. [Google Scholar] [CrossRef] [Green Version]
- Lazartigues, E.; Qadir, M.M.F.; Mauvais-Jarvis, F. Endocrine Significance of SARS-CoV-2’s Reliance on ACE2. Endocrinology 2020, 161, bqaa108. [Google Scholar] [CrossRef]
- SyedHassan, S.R.; Yusoff, N.M.; Zilfalil, B.A. COVID-19 and SARS-CoV-2: A Virus of Sexism? Malays. J. Hum. Genet. 2020, 1, 1–3. [Google Scholar]
- Drożdżal, S.; Rosik, J.; Lechowicz, K.; Machaj, F.; Szostak, B.; Przybyciński, J.; Lorzadeh, S.; Kotfis, K.; Ghavami, S.; Łos, M.J. An update on drugs with therapeutic potential for SARS-CoV-2 (COVID-19) treatment. Drug Resist. Updat. 2021, 59, 100794. [Google Scholar] [CrossRef]
- Peters, M.E.; Neumann, M.; Iyyer, M.; Gardner, M.; Clark, C.; Lee, K.; Zettlemoyer, L. Deep Contextualized Word Representations. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Association for Computational Linguistics, New Orleans, LA, USA, 1–6 June 2018; 2018; 1, pp. 2227–2237. [Google Scholar] [CrossRef] [Green Version]
- Zhu, R.; Tu, X.; Huang, J.X. Utilizing BERT for biomedical and clinical text mining. Data Anal. Biomed. Eng. Healthc. 2021, 73–103. [Google Scholar] [CrossRef]
- Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Association for Computational Linguistics, Minneapolis, MN, USA, 2–7 June 2019; 2019; 1, pp. 4171–4186. [Google Scholar]
- Lee, J.; Yoon, W.; Kim, S.; Kim, D.; Kim, S.; So, C.H.; Kang, J. BioBERT: A pre-trained biomedical language representation model for biomedical text mining. Bioinformatics 2020, 36, 1234–1240. [Google Scholar] [CrossRef]
- Akhtyamova, L. Named Entity Recognition in Spanish Biomedical Literature: Short Review and Bert Model. Conf. Open Innov. Assoc. Fruct 2020, 1–7. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Armenta-Medina, D.; Brambila-Tapia, A.J.L.; Miranda-Jiménez, S.; Rodea-Montero, E.R. A Web Application for Biomedical Text Mining of Scientific Literature Associated with Coronavirus-Related Syndromes: Coronavirus Finder. Diagnostics 2022, 12, 887. https://doi.org/10.3390/diagnostics12040887
Armenta-Medina D, Brambila-Tapia AJL, Miranda-Jiménez S, Rodea-Montero ER. A Web Application for Biomedical Text Mining of Scientific Literature Associated with Coronavirus-Related Syndromes: Coronavirus Finder. Diagnostics. 2022; 12(4):887. https://doi.org/10.3390/diagnostics12040887
Chicago/Turabian StyleArmenta-Medina, Dagoberto, Aniel Jessica Leticia Brambila-Tapia, Sabino Miranda-Jiménez, and Edel Rafael Rodea-Montero. 2022. "A Web Application for Biomedical Text Mining of Scientific Literature Associated with Coronavirus-Related Syndromes: Coronavirus Finder" Diagnostics 12, no. 4: 887. https://doi.org/10.3390/diagnostics12040887
APA StyleArmenta-Medina, D., Brambila-Tapia, A. J. L., Miranda-Jiménez, S., & Rodea-Montero, E. R. (2022). A Web Application for Biomedical Text Mining of Scientific Literature Associated with Coronavirus-Related Syndromes: Coronavirus Finder. Diagnostics, 12(4), 887. https://doi.org/10.3390/diagnostics12040887