Application of a Deep Learning System in Pterygium Grading and Further Prediction of Recurrence with Slit Lamp Photographs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Deep Learning System (DLS)
2.3. Data Process and Modeling
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rezvan, F.; Khabazkhoob, M.; Hooshmand, E.; Yekta, A.A.; Saatchi, M.; Hashemi, H. Prevalence and risk factors of pterygium: A systematic review and meta-analysis. Surv. Ophthalmol. 2018, 63, 719–735. [Google Scholar] [CrossRef] [PubMed]
- Sjö, N.C.; von Buchwald, C.; Prause, J.U.; Norrild, B.; Vinding, T.; Heegaard, S. Human papillomavirus and pterygium. Is the virus a risk factor? Br. J. Ophthalmol. 2007, 91, 1016–1018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Y.; He, H.; Sheha, H.; Tseng, S.C. Ocular Demodicosis as a Risk Factor of Pterygium Recurrence. Ophthalmology 2013, 120, 1341–1347. [Google Scholar] [CrossRef] [PubMed]
- Tan, D.T.H.; Chee, S.-P.; Dear, K.B.; Lim, A.S.M. Effect of Pterygium Morphology on Pterygium Recurrence in a Controlled Trial Comparing Conjunctival Autografting with Bare Sclera Excision. Arch. Ophthalmol. 1997, 115, 1235–1240. [Google Scholar] [CrossRef] [PubMed]
- Ting, D.S.J.; Liu, Y.-C.; Patil, M.; Ji, A.J.S.; Fang, X.L.; Tham, Y.C.; Lee, Y.-F.; Htoon, H.M.; Mehta, J.S. Proposal and validation of a new grading system for pterygium (SLIT2). Br. J. Ophthalmol. 2020, 105, 921–924. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Fu, Y.; Xu, Y.; Tseng, S.C.G. New grading system to improve the surgical outcome of multirecurrent pterygia. Arch. Ophthalmol. 2012, 130, 39–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, P.; Huang, J.; Tepelus, T.; Maram, J.; Sadda, S.; Lee, O.L. Validity of a new comprehensive pterygia grading scale for use in clinical research and clinical trial. Int. Ophthalmol. 2018, 38, 2303–2311. [Google Scholar] [CrossRef] [PubMed]
- Miyata, K.; Minami, K.; Otani, A.; Tokunaga, T.; Tokuda, S.; Amano, S. Proposal for a Novel Severity Grading System for Pterygia Based on Corneal Topographic Data. Cornea 2017, 36, 834–840. [Google Scholar] [CrossRef] [PubMed]
- Hirst, L.W. Cosmesis after Pterygium Extended Removal followed by Extended Conjunctival Transplant as Assessed by a New, Web-Based Grading System. Ophthalmology 2011, 118, 1739–1746. [Google Scholar] [CrossRef] [PubMed]
- Sayres, R.; Taly, A.; Rahimy, E.; Blumer, K.; Coz, D.; Hammel, N.; Krause, J.; Narayanaswamy, A.; Rastegar, Z.; Wu, D.; et al. Using a Deep Learning Algorithm and Integrated Gradients Explanation to Assist Grading for Diabetic Retinopathy. Ophthalmology 2019, 126, 552–564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaki, W.M.D.W.; Daud, M.M.; Abdani, S.R.; Hussain, A.; Mutalib, H.A. Automated pterygium detection method of anterior segment photographed images. Comput. Methods Programs Biomed. 2018, 154, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015; Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F., Eds.; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2015; Volume 9351. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Bai, X.; Fan, R.; Wang, Z. Deviation-Sparse Fuzzy C-Means with Neighbor Information Constraint. IEEE Trans. Fuzzy Syst. 2019, 27, 185–199. [Google Scholar] [CrossRef]
- Tang, Y.; Ren, F.; Pedrycz, W. Fuzzy C-Means clustering through SSIM and patch for image segmentation. Appl. Soft Comput. 2020, 87, 105928. [Google Scholar] [CrossRef]
- Xu, W.; Jin, L.; Zhu, P.-Z.; He, K.; Yang, W.-H.; Wu, M.A. Implementation and Application of an Intelligent Pterygium Diagnosis System Based on Deep Learning. Front. Psychol. 2021, 12, 759229. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.L.; Deshmukh, M.; Chee, M.L.; Soh, Z.-D.; Teo, Z.L.; Thakur, S.; Goh, J.H.L.; Liu, Y.-C.; Husain, R.; Mehta, J.; et al. Deep learning algorithms for automatic detection of pterygium using anterior segment photographs from slit-lamp and hand-held cameras. Br. J. Ophthalmol. 2021. [Google Scholar] [CrossRef] [PubMed]
- Zheng, B.; Liu, Y.F.; He, K.; Wu, M.N.; Jin, L.; Jiang, Q.; Zhu, S.; Hao, X.; Wang, C.; Yang, W. Research on an intelligent lightweight-assisted pterygium diagnosis model based on anterior segment images. Dis. Markers 2021, 2021, 7651462. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.W.; Kim, J.C. Current approaches and future directions in the management of pterygium. Int. J. Ophthalmol. 2018, 11, 709–711. [Google Scholar] [CrossRef] [PubMed]
- Campagna, G.; Adams, M.; Wang, L.; Khandelwal, S.; Al-Mohtaseb, Z. Comparison of Pterygium Recurrence Rates Among Different Races and Ethnicities after Primary Pterygium Excision by Surgeons in Training. Cornea 2018, 37, 199–204. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.P.; Ariyasu, R.G.; Kaza, V.; LaBree, L.D.; McDonnell, P.J. A randomized trial comparing mitomycin C and conjunctival autograft after excision of primary pterygium. Am. J. Ophthalmol. 1995, 120, 151–160. [Google Scholar] [CrossRef]
- Alsarhani, W.; Alshahrani, S.; Showail, M.; Alhabdan, N.; Alsumari, O.; Almalki, A.; Alsarhani, A.; Alluhaidan, A.; Alqahtani, B. Characteristics and recurrence of pterygium in Saudi Arabia: A single center study with a long follow-up. BMC Ophthalmol. 2021, 21, 207. [Google Scholar] [CrossRef] [PubMed]
Classification (Grading) | Training Set | Test Set |
---|---|---|
0 and 1, 2, 3 | 189 | 48 |
1 and 2 | 104 | 35 |
1 and 3 | 59 | 15 |
2 and 3 | 75 | 32 |
Classification (Grading) | Sensitivity | Specificity | F1 Score | Accuracy |
---|---|---|---|---|
0 and 1, 2, 3 | 0.9167 | 0.9167 | 0.8462 | 0.9167 |
1 and 2 | 0.8182 | 0.9167 | 0.8182 | 0.8857 |
2 and 3 | 0.8929 | 1.0000 | 0.9434 | 0.9063 |
1 and 3 | 0.8000 | 1.0000 | 0.8889 | 0.8667 |
Statistics | Value | 95% Confidence Interval (CI) |
---|---|---|
sensitivity | 66.67% | 9.43–99.16% |
specificity | 81.82% | 59.72–94.81% |
PPV | 33.33% | 13.16–62.27% |
NPV | 94.74% | 78.21–98.90% |
accuracy | 80.00% | 59.30–93.17% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hung, K.-H.; Lin, C.; Roan, J.; Kuo, C.-F.; Hsiao, C.-H.; Tan, H.-Y.; Chen, H.-C.; Ma, D.H.-K.; Yeh, L.-K.; Lee, O.K.-S. Application of a Deep Learning System in Pterygium Grading and Further Prediction of Recurrence with Slit Lamp Photographs. Diagnostics 2022, 12, 888. https://doi.org/10.3390/diagnostics12040888
Hung K-H, Lin C, Roan J, Kuo C-F, Hsiao C-H, Tan H-Y, Chen H-C, Ma DH-K, Yeh L-K, Lee OK-S. Application of a Deep Learning System in Pterygium Grading and Further Prediction of Recurrence with Slit Lamp Photographs. Diagnostics. 2022; 12(4):888. https://doi.org/10.3390/diagnostics12040888
Chicago/Turabian StyleHung, Kuo-Hsuan, Chihung Lin, Jinsheng Roan, Chang-Fu Kuo, Ching-Hsi Hsiao, Hsin-Yuan Tan, Hung-Chi Chen, David Hui-Kang Ma, Lung-Kun Yeh, and Oscar Kuang-Sheng Lee. 2022. "Application of a Deep Learning System in Pterygium Grading and Further Prediction of Recurrence with Slit Lamp Photographs" Diagnostics 12, no. 4: 888. https://doi.org/10.3390/diagnostics12040888
APA StyleHung, K. -H., Lin, C., Roan, J., Kuo, C. -F., Hsiao, C. -H., Tan, H. -Y., Chen, H. -C., Ma, D. H. -K., Yeh, L. -K., & Lee, O. K. -S. (2022). Application of a Deep Learning System in Pterygium Grading and Further Prediction of Recurrence with Slit Lamp Photographs. Diagnostics, 12(4), 888. https://doi.org/10.3390/diagnostics12040888