Comparison of Different Nutritional Assessment Tools in Detecting Malnutrition and Sarcopenia among Cirrhotic Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Population Selection and Study Design
2.2. Nutritional Assessment Tools
2.3. Anthropometric Measurements
2.4. Statistical Analysis
3. Results
3.1. Patients’ Characteristics
3.2. Prevalence of Malnutrition/Sarcopenia
3.3. Malnutrition-Associated Factors
3.4. Comparison between the Used Methods
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mahaeshi, B.; Sharma, C.; Srivastava, S. Malnutrition in cirrhosis increases morbidity and mortality. J. Gastroenterol. Hepatol. 2015, 30, 1507–1513. [Google Scholar] [CrossRef] [PubMed]
- Bunchorntavakul, C.; Reddy, K.R. Review article: Malnutrition/sarcopenia and frailty in patients with cirrhosis. Aliment. Pharmacol. Ther. 2020, 51, 64–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cederholm, T.; Barazzoni, R.; Austin, P.; Ballmer, P.; Biolo, G.; Bischoff, S.C.; Compher, C.; Correia, I.; Higashiguchi, T.; Holst, M.; et al. ESPEN guidelines on definitions and terminology of clinical nutrition. Clin. Nutr. 2018, 36, 49–64. [Google Scholar] [CrossRef] [PubMed]
- Cederholm, T.; Jensen, G.L.; Correia, M.I.T.; Gonzale, M.C.; Fukushima, R.; Higashiguchi, T.; Baptista, G.; Barazzoni, R.; Blaauw, R.; Coats, A.; et al. GLIM criteria for the diagnosis of malnutrition: A consensus report from the global clinical nutrition community. Clin. Nutr. 2019, 38, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lai, J.C.; Tandon, P.; Bernal, W.; Tapper, E.B.; Ekong, U.; Dasarathy, S.; Carey, E.J. Malnutrition, Frailty, and Sarcopenia in Patients With Cirrhosis: 2021 Practice Guidance by the American Association for the Study of Liver Diseases. Hepatology 2021, 74, 1611–1644. [Google Scholar] [CrossRef] [PubMed]
- Merli, M.; Berzigotti, A.; Zelber-Sagi, S.; Dasarathy, S.; Montagnese, S.; Genton, L. EASL Clinical Practice Guidelines on nutrition in chronic liver disease. J. Hepatol. 2019, 70, 171–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fink, J.S.; Daniel de Mello, P.; Daniel de Mello, E. Subjective Global Asssessment of nutritional status—A sistematic review of the literature. Clin. Nutr. 2015, 34, 785–792. [Google Scholar] [CrossRef]
- Wishart, E.; Taylor, L.; Lam, L.; Marr, J.K.; Stapleton, M.; Fitzgerald, Q.; Chiu, E.; Tandon, P.; Raman, M. Exploring relationships between handgrip strength, mid-upper arm circumference, subjective global assessment and adverse clinical outcomes in cirrhosis: A prospective cohort study. J. Can. Assoc. Gastroenterol. 2019, 2 (Suppl. 2), 352–353. [Google Scholar] [CrossRef]
- Marr, K.J.; Shaheen, A.A.; Lam, L.; Stapleton, M.; Burak, K.; Raman, M. Nutritional status and the performance of multiple bedside tools for nutrition assessment among patients waiting for liver transplantation: A Canadian experience. Clin. Nutr. ESPEN 2017, 17, 68–74. [Google Scholar] [CrossRef]
- Moctezuma-Velazquez, C.; Ebadi, M.; Bhanji, R.A.; Stirnimann, G.; Tandon, P.; Montano-Loza, A.J. Limited performance of subjective global assessment compared to computed tomography-determined sarcopenia in predicting adverse clinical outcomes in patients with cirrhosis. Clin. Nutr. 2019, 38, 2696–2703. [Google Scholar] [CrossRef]
- Borhofen, S.M.; Gerner, C.; Lehmann, J.; Fimmers, R.; Görtzen, J.; Hey, B.; Geiser, F.; Strassburg, C.P.; Trebicka, J. The Royal Free Hospital-Nutritional Prioritizing Tool is an independent predictor of deterioration of liver function and survival in cirrhosis. Dig. Dis. Sci. 2016, 61, 1735–1743. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.; et al. Sarcopenia: Revised European Consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sinclair, M.; Chapman, B.; Hoermann, R.; Angus, P.W.; Testro, A.; Scodellaro, T.; Gow, P.J. Handgrip strength adds more prognostic value to the Model for End-Stage Liver Disease score than imaging- based measures of muscle mass in men with cirrhosis. Liver Transplant. 2019, 25, 1480–1487. [Google Scholar] [CrossRef] [PubMed]
- Moreau, R.; Sicot, C. Evaluation du pronostic à court terme des cirrhotiques admis en réanimation, à l’aide de 4 indices de gravité [Evaluation of the short-term prognosis of cirrhotic patients admitted to intensive care, using 4 scoring systems]. Gastroenterol. Clin. Biol. 1985, 9, 871–876. (In French) [Google Scholar] [PubMed]
- Onaca, N.N.; Levy, M.F.; Sanchez, E.Q.; Chinnakotla, S.; Fasola, C.G.; Thomas, M.J.; Weinstein, J.S.; Murray, N.G.; Goldstein, R.M.; Klintmalm, G.B. A correlation between the pretransplantation MELD score and mortality in the first two years after liver transplantation. Liver Transplant. 2003, 9, 117–123. [Google Scholar] [CrossRef]
- Morgan, M.Y.; Madden, A.M.; Soulsby, C.T.; Morris, R.W. Derivation and validation of a new global method for assessing nutritional status in patients with cirrhosis. Hepatology 2006, 44, 823–835. [Google Scholar] [CrossRef]
- McDowell, M.; Fryar, C.; Ogden, C.; Flegal, K. Anthropometric reference data for children and adults: United States, 2003–2006. Natl. Health Stat. Rep. 2008, 10, 5. [Google Scholar]
- Frisancho, A.R. New standards of weight and body composition by frame size and height for assessment of nutritional status of adults and the elderly. Am. J. Clin. Nutr. 1984, 40, 808–819. [Google Scholar] [CrossRef] [Green Version]
- Blackburn, G.L.; Harvey, K.B. Prognostic strength of nutritional assessment. Prog. Clin. Biol. Res. 1981, 77, 689–697. [Google Scholar]
- Giovanni, M.; Sinan, S.; Giulio, V.; Rita, G.; Davide, F.; Antonio, C.; Renzulli, M. Imaging Software- Based Sarcopenia Assessment in Gastroenterology: Evolution and Clinical Meaning. Can. J. Gastroenterol. Hepatol. 2021, 2021, 6669480. [Google Scholar] [CrossRef]
- Hassan, M.S.; Rehim, A.S.E.A.; Khalil, M.A.; Osman, Y.A.M. Nutritional assessment of cirrhotic patients with variable severity. J. Curr. Med. Res. Pract. 2019, 4, 144–151. [Google Scholar] [CrossRef]
- Nunes, G.; Santos, C.A.; Barosa, R.; Fonseca, C.; Barata, A.T.; Fonseca, J. Outcome and nutritional assessment of chronic liver disease patients using anthropometry and subjective global assessment. Arq. Gastroenterol. 2017, 54, 224–231. [Google Scholar] [CrossRef] [PubMed]
- Tandon, P.; Low, G.; Mourtzakis, M.; Zenith, L.; Myers, R.P.; Abraldes, J.G.; Shaheen AA, M.; Qamar, H.; Mansoor, N.; Carbonneau, M.; et al. A model to identify Sarcopenia in Patients with cirrhosis. Clin. Gastroenterol. Hepatol. 2016, 14, 1473–1480. [Google Scholar] [CrossRef] [PubMed]
- Georgiou, A.; Papatheodoridis, G.V.; Alexopoulou, A.; Deutsch, M.; Vlachogiannakos, I.; Ioannidou, P.; Ioannidou, P.; Papageorgiou, M.V.; Papadopoulos, N.; Tsibouris, P.; et al. Evaluation of the effective-ness of eight screening tools in detecting risk of malnutrition in cirrhotic patients: The KIRRHOS study. Br. J. Nutr. 2019, 122, 1368–1376. [Google Scholar] [CrossRef] [PubMed]
- Tapper, E.B.; Derstine, B.; Baki, J.; Su, G.L. Bedside Measures of Frailty and Cognitive Function Correlate with Sarcopenia in Patients with Cirrhosis. Dig. Dis. Sci. 2019, 64, 3652–3659. [Google Scholar] [CrossRef]
- Carvalho, L.; Parise, E.R. Evaluation of nutritional status of non-hospitalized patients with liver cirrhosis. Arq. Gastroenterol. 2006, 43, 269–274. [Google Scholar] [CrossRef] [Green Version]
- Fozouni, L.; Wang, C.W.; Lai, L.C. Sex Differences in the Association Between Frailty and Sarcopenia in Patients With Cirrhosis. Clin. Transl. Gastroenterol. 2019, 10, e00102. [Google Scholar] [CrossRef]
- Eslamparast, T.; Montano-Loza, A.J.; Raman, M.; Tandon, P. Sarcopenic obesity in cirrhosis—The confluence of 2 prognostic titans. Liver Int. 2018, 38, 1706–1717. [Google Scholar] [CrossRef] [Green Version]
Parameter | Values |
---|---|
Age [years] (mean ± SD) • <40 years • 40–60 years • >60 years | 61.8 ± 8.7 0 64 (41%) 92 (59%) |
Gender–Men n (%) | 96 (61.5%) |
Child-Pugh classification | |
| 34 (21.8%) 61 (39.1%) 61 (39.1%) |
Mean Child Pugh score (points) | 8.7 ± 2.2 |
Mean MELD score (points) | 14 (19) |
Ascites n (%) | |
| 53 (34.0%) 103 (66.0%) |
Etiology of cirrhosis n (%) | |
| 18 (11.5%) 40 (25.6%) 89 (57.1%) 3 (1.9%) 6 (3.9%) |
Esophageal varices present—n (%) | 104 (66.7%) |
Mean BMI (kg/m2) | 25.9 |
| 4 (2.7%) 67 (42.9%) 85 (54.4%) |
Mean Albumin (g/L ± SD) | 2.6 ± 0.7 |
Mean Hemoglobin level (g/L ± SD) | 10.4 ± 2.6 |
Parameter (Reference Category) | Odds Ratio (95% CI) | p Value |
---|---|---|
Age over 60 years | 0.92 (0.91–0.99) | 0.006 |
Child-Pugh score * | 1.38 (1.18–1.63) | 0.0009 |
MELD score | 1.05 (1.00–1.10) | 0.01 |
| 0.18 (0.08–0.43) 1.02 (0.53–1.98) 3.50 (1.20–4.25) | 0.09 0.05 <0.0001 |
Lower serum albumin levels * | 0.34 (0.20–0.58) | ˂0.0001 |
Vitamin D deficiency * | 5.66 (2.18–14.70) | ˂0.0001 |
Gender (male) | 3.42 (1.66–7.04) | 0.0008 |
Etiologies | ||
| 1.44 (0.75–2.75) 1.06 (0.33–3.40) 0.46 (0.21–0.99) | <0.0001 0.01 0.001 |
Parameter | AUROC | Sensibility (%) | Specificity (%) | Positive Predictive Value (%) | Negative Predictive Value (%) | p-Value |
---|---|---|---|---|---|---|
RFH-NPT score | 0.86 * | 76.6 | 88.7 | 91.1 | 71.4 | <0.0001 |
MUAC | 0.81 | 80.8 | 72.5 | 81.7 | 71.4 | <0.0001 |
MUMC | 0.79 | 90.4 | 58.0 | 75.2 | 79.1 | <0.0001 |
SGA score | 0.71 | 81.9 | 61.2 | 76.2 | 69.1 | <0.0001 |
DRY BMI | 0.68 | 42.5 | 91.9 | 83.7 | 50.5 | <0.0001 |
TSF | 0.63 | 41.4 | 80.6 | 76.5 | 47.6 | 0.002 |
BMI | 0.62 | 32.9 | 90.3 | 83.8 | 47.1 | 0.005 |
Diagnostic Methods | SGA | RFH-NPT | MUAC | MAMC | TSF | HGS |
---|---|---|---|---|---|---|
BMI | 0.74 | 0.87 | 0.81 | 0.79 | 0.64 | 0.16 |
SGA | 0.88 | 0.83 | 0.83 | 0.75 | 0.41 | |
RFH-NPT | 0.89 * | 0.89 * | 0.87 | −0.44 | ||
MUAC | 0.82 | 0.82 | 0.30 | |||
MUMC | 0.82 | 0.22 | ||||
TSF | 0.19 |
Diagnostic Methods | SGA | RFH-NPT | MUAC | MAMC | TSF | HGS | SMI + HGS |
---|---|---|---|---|---|---|---|
BMI | 0.03 | 0.06 | 0.06 | 0.11 | 0.11 | 0.05 | 0.04 |
SGA | 0.45 | 0.36 | 0.23 | 0.30 | 0.40 | 0.44 | |
RFH-NPT | 0.41 | 0.32 | 0.27 | −0.44 | 0.62 * | ||
MUAC | 0.54 | 0.41 | 0.29 | 0.47 | |||
MUMC | 0.12 | 0.20 | 0.39 | ||||
TSF | 0.17 | 0.20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Topan, M.-M.; Sporea, I.; Dănilă, M.; Popescu, A.; Ghiuchici, A.-M.; Lupușoru, R.; Șirli, R. Comparison of Different Nutritional Assessment Tools in Detecting Malnutrition and Sarcopenia among Cirrhotic Patients. Diagnostics 2022, 12, 893. https://doi.org/10.3390/diagnostics12040893
Topan M-M, Sporea I, Dănilă M, Popescu A, Ghiuchici A-M, Lupușoru R, Șirli R. Comparison of Different Nutritional Assessment Tools in Detecting Malnutrition and Sarcopenia among Cirrhotic Patients. Diagnostics. 2022; 12(4):893. https://doi.org/10.3390/diagnostics12040893
Chicago/Turabian StyleTopan, Mirabela-Madalina, Ioan Sporea, Mirela Dănilă, Alina Popescu, Ana-Maria Ghiuchici, Raluca Lupușoru, and Roxana Șirli. 2022. "Comparison of Different Nutritional Assessment Tools in Detecting Malnutrition and Sarcopenia among Cirrhotic Patients" Diagnostics 12, no. 4: 893. https://doi.org/10.3390/diagnostics12040893
APA StyleTopan, M. -M., Sporea, I., Dănilă, M., Popescu, A., Ghiuchici, A. -M., Lupușoru, R., & Șirli, R. (2022). Comparison of Different Nutritional Assessment Tools in Detecting Malnutrition and Sarcopenia among Cirrhotic Patients. Diagnostics, 12(4), 893. https://doi.org/10.3390/diagnostics12040893