Genes of the Glutamatergic System and Tardive Dyskinesia in Patients with Schizophrenia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Genetic Analysis
2.3. Statistical Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Owen, M.J.; Sawa, A.; Mortensen, P.B. Schizophrenia. Lancet 2016, 388, 86–97. [Google Scholar] [CrossRef] [Green Version]
- Cao, X.; Chen, S.; Xu, H.; Wang, Q.; Xie, S.; Zhang, Y. Global functioning, cognitive function, psychopathological symptoms in untreated patients with first-episode schizophrenia: A cross-sectional study. Psychiatry Res. 2022, 313, 114616. [Google Scholar] [CrossRef]
- Wu, Q.; Wang, X.; Wang, Y.; Long, Y.J.; Zhao, J.P.; Wu, R.R. Developments in Biological Mechanisms and Treatments for Negative Symptoms and Cognitive Dysfunction of Schizophrenia. Neurosci. Bull. 2021, 37, 1609–1624. [Google Scholar] [CrossRef]
- Charlson, F.J.; Ferrari, A.J.; Santomauro, D.F.; Diminic, S.; Stockings, E.; Scott, J.G.; McGrath, J.J.; Whiteford, H.A. Global Epidemiology and Burden of Schizophrenia: Findings from the Global Burden of Disease Study 2016. Schizophr. Bull. 2018, 44, 1195–1203. [Google Scholar] [CrossRef] [PubMed]
- Moran, P.; Stokes, J.; Marr, J.; Bock, G.; Desbonnet, L.; Waddington, J.; O’Tuathaigh, C. Gene × Environment Interactions in Schizophrenia: Evidence from Genetic Mouse Models. Neural Plast. 2016, 2016, 2173748. [Google Scholar] [CrossRef] [Green Version]
- Ripke, S.; O’Dushlaine, C.; Chambert, K.; Moran, J.L.; Kähler, A.K.; Akterin, S.; Bergen, S.E.; Collins, A.L.; Crowley, J.J.; Fromer, M.; et al. Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nat. Genet. 2013, 45, 1150–1159. [Google Scholar] [CrossRef] [PubMed]
- Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature 2014, 511, 421–427. [Google Scholar] [CrossRef] [Green Version]
- Harrison, P.J. Recent genetic findings in schizophrenia and their therapeutic relevance. J. Psychopharmacol. 2015, 29, 85–96. [Google Scholar] [CrossRef]
- Ivanova, S.A.; Osmanova, D.Z.; Freidin, M.B.; Fedorenko, O.Y.; Boiko, A.S.; Pozhidaev, I.V.; Semke, A.V.; Bokhan, N.A.; Agarkov, A.A.; Wilffert, B.; et al. Identification of 5-hydroxytryptamine receptor gene polymorphisms modulating hyperprolactinaemia in antipsychotic drug-treated patients with schizophrenia. World J. Biol. Psychiatry 2017, 18, 239–246. [Google Scholar] [CrossRef] [Green Version]
- Stroup, T.S.; Gray, N. Management of common adverse effects of antipsychotic medications. World Psychiatry 2018, 17, 341–356. [Google Scholar] [CrossRef]
- Kornetova, E.G.; Kornetov, A.N.; Mednova, I.A.; Goncharova, A.A.; Gerasimova, V.I.; Pozhidaev, I.V.; Boiko, A.S.; Semke, A.V.; Loonen, A.J.M.; Bokhan, N.A.; et al. Comparative Characteristics of the Metabolic Syndrome Prevalence in Patients with Schizophrenia in Three Western Siberia Psychiatric Hospitals. Front. Psychiatry 2021, 12, 661174. [Google Scholar] [CrossRef] [PubMed]
- Guo, K.; Feng, Z.; Chen, S.; Yan, Z.; Jiao, Z.; Feng, D. Safety Profile of Antipsychotic Drugs: Analysis Based on a Provincial Spontaneous Reporting Systems Database. Front. Pharmacol. 2022, 13, 848472. [Google Scholar] [CrossRef] [PubMed]
- Loonen, A.J.M.; Doorschot, C.H.; van Hemert, D.A.; Oostelbos, M.C.; Sijben, A.E. The Schedule for the Assessment of Drug-Induced Movement Disorders (SADIMoD): Test-retest reliability and concurrent validity. Int. J. Neuropsychopharmacol. 2000, 3, 285–296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loonen, A.J.M.; Doorschot, C.H.; van Hemert, D.A.; Oostelbos, M.C.; Sijben, A.E. The schedule for the assessment of drug-induced movement disorders (SADIMoD): Inter-rater reliability and construct validity. Int. J. Neuropsychopharmacol. 2001, 4, 347–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loonen, A.J.M.; van Praag, H.M. Measuring movement disorders in antipsychotic drug trials: The need to define a new standard. J. Clin. Psychopharmacol. 2007, 27, 423–430. [Google Scholar] [CrossRef]
- Loonen, A.J.M.; Ivanova, S.A. New insights into the mechanism of drug-induced dyskinesia. CNS Spectr. 2013, 18, 15–20. [Google Scholar] [CrossRef]
- Pozhidaev, I.V.; Paderina, D.Z.; Fedorenko, O.Y.; Kornetova, E.G.; Semke, A.V.; Loonen, A.J.M.; Bokhan, N.A.; Wilffert, B.; Ivanova, S.A. 5-Hydroxytryptamine Receptors and Tardive Dyskinesia in Schizophrenia. Front. Mol. Neurosci. 2020, 13, 63. [Google Scholar] [CrossRef] [Green Version]
- Al Hadithy, A.F.; Ivanova, S.A.; Pechlivanoglou, P.; Semke, A.; Fedorenko, O.; Kornetova, E.; Ryadovaya, L.; Brouwers, J.R.B.J.; Wilffert, B.; Bruggeman, R.; et al. Tardive dyskinesia and DRD3, HTR2A and HTR2C gene polymorphisms in Russian psychiatric inpatients from Siberia. Prog. Neuropsychopharmacol. Biol. Psychiatry 2009, 33, 475–481. [Google Scholar] [CrossRef]
- Loonen, A.J.M.; Wilffert, B.; Ivanova, S.A. Putative role of pharmacogenetics to elucidate the mechanism of tardive dyskinesia in schizophrenia. Pharmacogenomics 2019, 20, 1199–1223. [Google Scholar] [CrossRef] [Green Version]
- Loonen, A.J.M.; Ivanova, S.A. Neurobiological mechanisms associated with antipsychotic drug-induced dystonia. J. Psychopharmacol. 2021, 35, 3–14. [Google Scholar] [CrossRef]
- Sienaert, P.; van Harten, P.; Rhebergen, D. The psychopharmacology of catatonia, neuroleptic malignant syndrome, akathisia, tardive dyskinesia, and dystonia. Handb. Clin. Neurol. 2019, 165, 415–428. [Google Scholar] [CrossRef] [PubMed]
- Brosnan, J.T.; Brosnan, M.E. Glutamate: A truly functional amino acid. Amino Acids 2013, 45, 413–418. [Google Scholar] [CrossRef] [PubMed]
- Collingridge, G.L.; Abraham, W.C. Glutamate receptors and synaptic plasticity: The impact of Evans and Watkins. Neuropharmacology 2022, 206, 108922. [Google Scholar] [CrossRef] [PubMed]
- Szota, A.M.; Scheel-Krüger, J. The role of glutamate receptors and their interactions with dopamine and other neurotransmitters in the development of tardive dyskinesia: Preclinical and clinical results. Behav. Pharmacol. 2020, 31, 511–523. [Google Scholar] [CrossRef]
- Traynelis, S.F.; Wollmuth, L.P.; McBain, C.J.; Menniti, F.S.; Vance, K.M.; Ogden, K.K.; Hansen, K.B.; Yuan, H.; Myers, S.J.; Dingledine, R. Glutamate receptor ion channels: Structure, regulation, and function. Pharmacol. Rev. 2010, 62, 405–496. [Google Scholar] [CrossRef] [Green Version]
- Greger, I.H.; Mayer, M.L. Structural biology of glutamate receptor ion channels: Towards an understanding of mechanism. Curr. Opin. Struct. Biol. 2019, 57, 185–195. [Google Scholar] [CrossRef]
- Hansen, K.B.; Wollmuth, L.P.; Bowie, D.; Furukawa, H.; Menniti, F.S.; Sobolevsky, A.I.; Swanson, G.T.; Swanger, S.A.; Greger, I.H.; Nakagawa, T.; et al. Structure, Function, and Pharmacology of Glutamate Receptor Ion Channels. Pharmacol. Rev. 2021, 73, 298–487. [Google Scholar] [CrossRef]
- Ivanova, S.A.; Loonen, A.J.M.; Pechlivanoglou, P.; Freidin, M.B.; Al Hadithy, A.F.; Rudikov, E.V.; Zhukova, I.A.; Govorin, N.V.; Sorokina, V.A.; Fedorenko, O.Y.; et al. NMDA receptor genotypes associated with the vulnerability to develop dyskinesia. Transl. Psychiatry 2012, 2, e67. [Google Scholar] [CrossRef]
- Ivanova, S.A.; Loonen, A.J.M.; Bakker, P.R.; Freidin, M.B.; Ter Woerds, N.J.; Al Hadithy, A.F.; Semke, A.V.; Fedorenko, O.Y.; Brouwers, J.R.B.J.; Bokhan, N.A.; et al. Likelihood of mechanistic roles for dopaminergic, serotonergic and glutamatergic receptors in tardive dyskinesia: A comparison of genetic variants in two independent patient populations. SAGE Open Med. 2016, 4, 2050312116643673. [Google Scholar] [CrossRef]
- Lim, K.; Lam, M.; Zai, C.; Tay, J.; Karlsson, N.; Deshpande, S.N.; Thelma, B.K.; Ozaki, N.; Inada, T.; Sim, K.; et al. Genome wide study of tardive dyskinesia in schizophrenia. Transl. Psychiatry 2021, 11, 351. [Google Scholar] [CrossRef]
- Greenwood, T.A.; Lazzeroni, L.C.; Calkins, M.E.; Freedman, R.; Green, M.F.; Gur, R.E.; Gur, R.C.; Light, G.A.; Nuechterlein, K.H.; Olincy, A.; et al. Genetic assessment of additional endophenotypes from the Consortium on the Genetics of Schizophrenia Family Study. Schizophr. Res. 2016, 170, 30–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conn, P.J.; Pin, J.P. Pharmacology and functions of metabotropic glutamate receptors. Annu. Rev. Pharmacol. Toxicol. 1997, 37, 205–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerber, U.; Gee, C.E.; Benquet, P. Metabotropic glutamate receptors: Intracellular signaling pathways. Curr. Opin. Pharmacol. 2007, 7, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Shibata, H.; Tani, A.; Chikuhara, T.; Kikuta, R.; Sakai, M.; Ninomiya, H.; Tashiro, N.; Iwata, N.; Ozaki, N.; Fukumaki, Y. Association study of polymorphisms in the group III metabotropic glutamate receptor genes, GRM4 and GRM7, with schizophrenia. Psychiatry Res. 2009, 167, 88–96. [Google Scholar] [CrossRef]
- Saini, S.M.; Mancuso, S.G.; Mostaid, M.S.; Liu, C.; Pantelis, C.; Everall, I.P.; Bousman, C.A. Meta-analysis supports GWAS-implicated link between GRM3 and schizophrenia risk. Transl. Psychiatry 2017, 7, e1196. [Google Scholar] [CrossRef] [Green Version]
- Liang, W.; Yu, H.; Su, Y.; Lu, T.; Yan, H.; Yue, W.; Zhang, D. Variants of GRM7 as risk factor and response to antipsychotic therapy in schizophrenia. Transl. Psychiatry 2020, 10, 83. [Google Scholar] [CrossRef] [Green Version]
- Kovermann, P.; Engels, M.; Müller, F.; Fahlke, C. Cellular Physiology and Pathophysiology of EAAT Anion Channels. Front. Cell Neurosci. 2022, 15, 815279. [Google Scholar] [CrossRef]
- Shigeri, Y.; Seal, R.P.; Shimamoto, K. Molecular pharmacology of glutamate transporters, EAATs and VGLUTs. Brain Res. Brain Res. Rev. 2004, 45, 250–265. [Google Scholar] [CrossRef]
- Wang, L.; Ma, T.; Qiao, D.; Cui, K.; Bi, X.; Han, C.; Yang, L.; Sun, M.; Liu, L. Polymorphism of rs12294045 in EAAT2 gene is potentially associated with schizophrenia in Chinese Han population. BMC Psychiatry 2022, 22, 171. [Google Scholar] [CrossRef]
- Parkin, G.M.; Udawela, M.; Gibbons, A.; Dean, B. Glutamate transporters, EAAT1 and EAAT2, are potentially important in the pathophysiology and treatment of schizophrenia and affective disorders. World J. Psychiatry 2018, 8, 51–63. [Google Scholar] [CrossRef]
- Giunti, P.; Mantuano, E.; Frontali, M. Episodic Ataxias: Faux or Real? Int. J. Mol. Sci. 2020, 21, 6472. [Google Scholar] [CrossRef] [PubMed]
- Amadori, E.; Pellino, G.; Bansal, L.; Mazzone, S.; Møller, R.S.; Rubboli, G.; Striano, P.; Russo, A. Genetic paroxysmal neurological disorders featuring episodic ataxia and epilepsy. Eur. J. Med. Genet. 2022, 65, 104450. [Google Scholar] [CrossRef] [PubMed]
- Almqvist, J.; Huang, Y.; Laaksonen, A.; Wang, D.N.; Hovmöller, S. Docking and homology modeling explain inhibition of the human vesicular glutamate transporters. Protein Sci. 2007, 16, 1819–1829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fremeau, R.T., Jr.; Voglmaier, S.; Seal, R.P.; Edwards, R.H. VGLUTs define subsets of excitatory neurons and suggest novel roles for glutamate. Trends Neurosci. 2004, 27, 98–103. [Google Scholar] [CrossRef]
- World Health Organization. International Statistical Classification of Diseases and Health Related Problems ICD-10; World Health Organization: Geneva, Switzerland, 2004. [Google Scholar]
- Andreasen, N.C.; Pressler, M.; Nopoulos, P.; Miller, D.; Ho, B.C. Antipsychotic dose equivalents and dose-years: A standardized method for comparing exposure to different drugs. Biol. Psychiatry 2010, 67, 255–262. [Google Scholar] [CrossRef] [Green Version]
- Loonen, A.J.M.; Doorschot, C.H. Abnormal Involuntary Movement Scale (AIMS) (Sadimod Adaptation). Available online: https://sadimod.nl/AIMS-form-Sadimod (accessed on 23 May 2022).
- Li, J.; Ji, L. Adjusting multiple testing in multilocus analyses using the eigenvalues of a correlation matrix. Heredity 2005, 95, 221–227. [Google Scholar] [CrossRef] [Green Version]
- Loonen, A.J.M. Het Beweeglijke Brein. De Neurowetenschappelijke Achtergronden van de Psychische Functies, 3rd ed.; Uitgeverij Mension: Haarlem, The Netherlands, 2021; pp. 149–174. ISBN 978-90-77322-58-1. [Google Scholar]
- Bakker, P.R.; Al Hadithy, A.F.; Amin, N.; van Duijn, C.M.; van Os, J.; van Harten, P.N. Antipsychotic-induced movement disorders in long-stay psychiatric patients and 45 tag SNPs in 7 candidate genes: A prospective study. PLoS ONE 2012, 7, e50970. [Google Scholar] [CrossRef] [Green Version]
- Arning, L.; Kraus, P.H.; Valentin, S.; Saft, C.; Andrich, J.; Epplen, J.T. NR2A and NR2B receptor gene variations modify age at onset in Huntington disease. Neurogenetics 2005, 6, 25–28. [Google Scholar] [CrossRef]
- Andresen, J.M.; Gayán, J.; Cherny, S.S.; Brocklebank, D.; Alkorta-Aranburu, G.; Addis, E.A.; US-Venezuela Collaborative Research Group; Cardon, L.R.; Housman, D.E.; Wexler, N.S. Replication of twelve association studies for Huntington’s disease residual age of onset in large Venezuelan kindreds. J. Med. Genet. 2007, 44, 44–50. [Google Scholar] [CrossRef] [Green Version]
- Arning, L.; Saft, C.; Wieczorek, S.; Andrich, J.; Kraus, P.H.; Epplen, J.T. NR2A and NR2B receptor gene variations modify age at onset in Huntington disease in a sex-specific manner. Hum. Genet. 2007, 122, 175–182. [Google Scholar] [CrossRef]
- McGeer, P.L.; McGeer, E.G. Kainic acid: The neurotoxic breakthrough. Crit. Rev. Toxicol. 1982, 10, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Coyle, J.T. Kainic acid: Insights into excitatory mechanisms causing selective neuronal degeneration. Ciba Found Symp. 1987, 126, 186–203. [Google Scholar] [CrossRef] [PubMed]
- Coyle, J.T.; Schwarcz, R. Lesion of striatal neurones with kainic acid provides a model for Huntington’s chorea. Nature 1976, 263, 244–246. [Google Scholar] [CrossRef] [PubMed]
- Sanberg, P.R.; Johnston, G.A. Glutamate and Huntington’s disease. Med. J. Aust. 1981, 2, 460–465. [Google Scholar] [CrossRef] [PubMed]
- Levin, S.L.; Sytinskiĭ, I.A. Toksicheskoe deĭstvie kainovoĭ kisloty kak model’ khorei Gentingtona i épilepsii (obzor) [Toxic action of kainic acid as a model of Huntington chorea and epilepsy (review)]. Korsakov’s J. Neurol. Psychiatry 1983, 83, 754–763. [Google Scholar]
- Rusina, E.; Bernard, C.; Williamson, A. The Kainic Acid Models of Temporal Lobe Epilepsy. eNeuro 2021, 8, ENEURO.0337-20.2021. [Google Scholar] [CrossRef]
- Lee, J.H.; Lee, J.M.; Ramos, E.M.; Gillis, T.; Mysore, J.S.; Kishikawa, S.; Hadzi, T.; Hendricks, A.E.; Hayden, M.R.; Morrison, P.J.; et al. TAA repeat variation in the GRIK2 gene does not influence age at onset in Huntington’s disease. Biochem. Biophys. Res. Commun. 2012, 424, 404–408. [Google Scholar] [CrossRef] [Green Version]
- Lowry, E.R.; Kruyer, A.; Norris, E.H.; Cederroth, C.R.; Strickland, S. The GluK4 kainate receptor subunit regulates memory, mood, and excitotoxic neurodegeneration. Neuroscience 2013, 235, 215–225. [Google Scholar] [CrossRef] [Green Version]
- Caraci, F.; Battaglia, G.; Sortino, M.A.; Spampinato, S.; Molinaro, G.; Copani, A.; Nicoletti, F.; Bruno, V. Metabotropic glutamate receptors in neurodegeneration/neuroprotection: Still a hot topic? Neurochem. Int. 2012, 61, 559–565. [Google Scholar] [CrossRef]
- Nickols, H.H.; Conn, P.J. Development of allosteric modulators of GPCRs for treatment of CNS disorders. Neurobiol. Dis. 2014, 61, 55–71. [Google Scholar] [CrossRef] [Green Version]
- Amalric, M. Targeting metabotropic glutamate receptors (mGluRs) in Parkinson’s disease. Curr. Opin. Pharmacol. 2015, 20, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Sebastianutto, I.; Cenci, M.A. mGlu receptors in the treatment of Parkinson’s disease and L-DOPA-induced dyskinesia. Curr. Opin. Pharmacol. 2018, 38, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Frouni, I.; Huot, P. Glutamate modulation for the treatment of levodopa induced dyskinesia: A brief review of the drugs tested in the clinic. Neurodegener. Dis. Manag. 2022. [Google Scholar] [CrossRef] [PubMed]
- Mead, E.L.; Mosley, A.; Eaton, S.; Dobson, L.; Heales, S.J.; Pocock, J.M. Microglial neurotransmitter receptors trigger superoxide production in microglia; consequences for microglial-neuronal interactions. J. Neurochem. 2012, 121, 287–301. [Google Scholar] [CrossRef]
- Mastroiacovo, F.; Zinni, M.; Mascio, G.; Bruno, V.; Battaglia, G.; Pansiot, J.; Imbriglio, T.; Mairesse, J.; Baud, O.; Nicoletti, F. Genetic Deletion of mGlu3 Metabotropic Glutamate Receptors Amplifies Ischemic Brain Damage and Associated Neuroinflammation in Mice. Front. Neurol. 2021, 12, 668877. [Google Scholar] [CrossRef]
- Takamori, S. VGLUTs: ‘exciting’ times for glutamatergic research? Neurosci. Res. 2006, 55, 343–351. [Google Scholar] [CrossRef]
- Smith, Y.; Galvan, A.; Ellender, T.J.; Doig, N.; Villalba, R.M.; Huerta-Ocampo, I.; Wichmann, T.; Bolam, J.P. The thalamostriatal system in normal and diseased states. Front. Syst. Neurosci. 2014, 8, 5. [Google Scholar] [CrossRef]
- Du, X.; Li, J.; Li, M.; Yang, X.; Qi, Z.; Xu, B.; Liu, W.; Xu, Z.; Deng, Y. Research progress on the role of type I vesicular glutamate transporter (VGLUT1) in nervous system diseases. Cell Biosci. 2020, 10, 26. [Google Scholar] [CrossRef] [Green Version]
- O’Shea, R.D. Roles and regulation of glutamate transporters in the central nervous system. Clin. Exp. Pharmacol. Physiol. 2002, 29, 1018–1023. [Google Scholar] [CrossRef]
- Milton, I.D.; Banner, S.J.; Ince, P.G.; Piggott, N.H.; Fray, A.E.; Thatcher, N.; Horne, C.H.; Shaw, P.J. Expression of the glial glutamate transporter EAAT2 in the human CNS: An immunohistochemical study. Brain Res. Mol. Brain Res. 1997, 52, 17–31. [Google Scholar] [CrossRef]
- Banner, S.J.; Fray, A.E.; Ince, P.G.; Steward, M.; Cookson, M.R.; Shaw, P.J. The expression of the glutamate re-uptake transporter excitatory amino acid transporter 1 (EAAT1) in the normal human CNS and in motor neurone disease: An immunohistochemical study. Neuroscience 2002, 109, 27–44. [Google Scholar] [CrossRef]
- Gras, G.; Chrétien, F.; Vallat-Decouvelaere, A.V.; Le Pavec, G.; Porcheray, F.; Bossuet, C.; Léone, C.; Mialocq, P.; Dereuddre-Bosquet, N.; Clayette, P.; et al. Regulated expression of sodium-dependent glutamate transporters and synthetase: A neuroprotective role for activated microglia and macrophages in HIV infection? Brain Pathol. 2003, 13, 211–222. [Google Scholar] [CrossRef] [PubMed]
- Vallat-Decouvelaere, A.V.; Chrétien, F.; Gras, G.; Le Pavec, G.; Dormont, D.; Gray, F. Expression of excitatory amino acid transporter-1 in brain macrophages and microglia of HIV-infected patients. A neuroprotective role for activated microglia? J. Neuropathol. Exp. Neurol. 2003, 62, 475–485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López-Redondo, F.; Nakajima, K.; Honda, S.; Kohsaka, S. Glutamate transporter GLT-1 is highly expressed in activated microglia following facial nerve axotomy. Brain Res. Mol. Brain Res. 2000, 76, 429–435. [Google Scholar] [CrossRef]
- Nakajima, K.; Tohyama, Y.; Kohsaka, S.; Kurihara, T. Ability of rat microglia to uptake extracellular glutamate. Neurosci. Lett. 2001, 307, 171–174. [Google Scholar] [CrossRef]
- Loonen, A.J.M.; Ivanova, S.A. Circuits Regulating Pleasure and Happiness—Focus on Potential Biomarkers for Circuitry including the Habenuloid Complex. Acta Neuropsychiatr. 2022, 1–36. [Google Scholar] [CrossRef]
Gene | SNP | Chromosome: Location | Location Region | Alleles | MAF | χ2 | p-Value |
---|---|---|---|---|---|---|---|
GRIN2A | rs11644461 | 16:10027033 | intron variant | T/C | 0.23 (C) | 0.686 | 0.408 |
rs11646587 | 16:9779462 | intron variant | G/A | 0.29 (A) | 0.373 | 0.541 | |
rs11866328 | 16:9768699 | intron variant | G/T | 0.31 (T) | 0 | 1 | |
rs1345423 | 16:10154207 | intron variant | G/A/C/T | 0.32 (G) | 0.241 | 0.624 | |
rs4782039 | 16:9913110 | intron variant | T/C | 0.22 (C) | 0.659 | 0.417 | |
rs7190619 | 16:9985267 | intron variant | G/A | 0.07 (A) | 0.665 | 0.415 | |
rs7192557 | 16:10029612 | intron variant | G/A/C/T | 0.32 (A) | 0.280 | 0.597 | |
rs7196095 | 16:9791975 | intron variant | T/C/G | 0.30 (C) | 0.110 | 0.740 | |
rs7206256 | 16:10103066 | intron variant | A/G/T | 0.44 (G) | 0.417 | 0.518 | |
rs8057394 | 16:10021631 | intron variant | C/G | 0.43 (C) | 0.354 | 0.552 | |
rs9788936 | 16:10011603 | intron variant | T/C | 0.24 (C) | 0.014 | 0.906 | |
rs9989388 | 16:9872282 | intron variant | C/T | 0.19 (T) | 0.255 | 0.614 | |
GRIN2B | rs10772715 | 12:13885069 | intron variant | G/A | 0.43 (A) | 0.006 | 0.938 |
rs10845838 | 12:13741462 | intron variant | G/A | 0.38 (A) | 0.482 | 0.487 | |
rs12300851 | 12:13815471 | intron variant | T/A/C | 0.10 (C) | 0.066 | 0.798 | |
rs12827536 | 12:13943223 | intron variant | C/T | 0.22 (T) | 0.912 | 0.340 | |
rs1805481 | 12:13610521 | intron variant | A/C | 0.43 (C) | 0.832 | 0.362 | |
rs2192970 | 12:13683379 | intron variant | G/A | 0.11 (A) | 0.195 | 0.659 | |
rs220599 | 12:13822364 | intron variant | G/A | 0.44 (A) | 2.664 | 0.103 | |
rs2300242 | 12:13687363 | intron variant | A/T | 0.48 (T) | 0.604 | 0.437 | |
rs7313149 | 12:13675353 | intron variant | T/A/C/G | 0.21 (C) | 1.875 | 0.171 | |
rs890 | 12:13562374 | 3 prime UTR variant | A/C/G | 0.28 (C) | 0.600 | 0.438 | |
GRIK4 | rs1954787 | 11:120792654 | intron variant | T/C | 0.50 (T) | 0.052 | 0.819 |
SLC1A2 | rs1042113 | 11:35286822 | synonymous variant | T/C | 0.23 (C) | 0.081 | 0.777 |
rs10742338 | 11:35255541 | 3 prime UTR variant | T/A/C | 0.10 (T) | 4.312 | 0.038 * | |
rs10768121 | 11:35258109 | 3 prime UTR variant | A/C/G | 0.35 (C) | 1.411 | 0.235 | |
rs11033046 | 11:35253386 | 3 prime UTR variant | T/A | 0.36 (A) | 0.763 | 0.382 | |
rs12294045 | 11:35257754 | 3 prime UTR variant | C/G/T | 0.20 (T) | 0.015 | 0.904 | |
rs12361171 | 11:35256786 | 3 prime UTR variant | T/A/C | 0.36 (A) | 2.575 | 0.109 | |
rs3088168 | 11:35251721 | 3 prime UTR variant | T/C | 0.36 (C) | 0.778 | 0.378 | |
rs3812778 | 11:35255723 | 3 prime UTR variant | G/A | 0.10 (A) | 2.547 | 0.110 | |
rs3829280 | 11:35255176 | 3 prime UTR variant | A/C/T | 0.13 (T) | 2.916 | 0.088 | |
rs7936950 | 11:35257412 | 3 prime UTR variant | C/A/G/T | 0.10 (C) | 3.488 | 0.062 | |
SLC1A3 | rs2229894 | 5:36686302 | 3 prime UTR variant | G/A/C | 0.43 | 0.552 | 0.457 |
SLC17A7 | rs62126236 | 19:49441696 | intron variant | T/C | 0.19 (C) | 0.458 | 0.499 |
GRM3 | rs1468412 | 7:86804135 | intron variant | A/T | 0.38 (T) | 0 | 1 |
rs2237562 | 7:86792916 | intron variant | T/C | 0.39 (C) | 0.587 | 0.444 | |
rs2299225 | 7:86818264 | intron variant | T/G | 0.03 (G) | 1.247 | 0.264 | |
rs6465084 | 7:86774159 | intron variant | A/G | 0.23 (G) | 4.100 | 0.043 * | |
GRM7 | rs12491620 | 3:7352646 | intron variant | C/G | 0.18 (G) | 3.215 | 0.073 |
rs1396409 | 3:7261220 | intron variant | G/A/C/T | 0.34 (A) | 0.096 | 0.757 | |
rs1450099 | 3:7496689 | intron variant | T/G | 0.38 (T) | 0.099 | 0.752 | |
rs17031835 | 3:6880071 | intron variant | C/T | 0.10 (T) | 0.039 | 0.844 | |
rs3749380 | 3:6861610 | missense variant | C/G/T | 0.42 (T) | 0.299 | 0.585 | |
GRM8 | rs2237748 | 7:126638809 | intron variant | C/T | 0.32 (T) | 0 | 1 |
rs2299472 | 7:126580415 | intron variant | C/A/G | 0.32 (A) | 0.062 | 0.803 |
Patients without TD | Patients with TD | p-Value | |
---|---|---|---|
Total sample size | 715 | 229 | - |
Gender, n (%) | Male—375 (52.45%) | Male—134 (58.51%) | 0.109 |
Female—340 (47.55%) | Female—95 (41.49%) | ||
Age, years Me (Q1; Q3) | 37 (30; 48) | 45 (34.75; 56.25) | <0.001 |
Age of onset, years Me (Q1; Q3) | 24 (20; 29) | 24 (19; 31.25) | 0.558 |
Duration of illness, years Me (Q1; Q3) | 11.5 (5; 20) | 18 (8.75; 27.25) | <0.001 |
CPZeq, dose Me (Q1; Q3) | 450 (225; 750) | 500 (300; 758.7) | 0.187 |
Patients without TD | Patients with TD | p-Value | |
---|---|---|---|
Total sample size | 546 | 158 | - |
Orofacial TD—86 Limb-truncal TD—77 | |||
Gender, n (%) | Male—282 (51.65%) | Male—88 (55.70%) | 0.109 |
Female—264 (48.35%) | Female—70 (44.30%) | ||
Age, years Me (Q1; Q3) | 38 (31; 48) | 45 (34; 57) | <0.001 |
Age of onset, years Me (Q1; Q3) | 24 (20; 30) | 24 (19.5; 31.5) | 0.558 |
Duration of illness, years Me (Q1; Q3) | 12 (6; 21) | 18 (9; 27) | <0.001 |
CPZeq, dose Me (Q1; Q3) | 430 (225; 779.95) | 500 (300; 758.7) | 0.294 |
Gene | SNP | Estimate | Standard Error | p-Value |
---|---|---|---|---|
GRM3 | rs2237562 | 0.3884 | 0.1400 | 0.0055 |
GRM3 | rs1468412 | 0.3311 | 0.1400 | 0.0180 |
SLC1A2 | rs1042113 | 0.3846 | 0.1434 | 0.0073 |
SLC1A2 | rs10768121 | −0.2963 | 0.1352 | 0.0284 |
SLC1A2 | rs12361171 | −0.2963 | 0.1358 | 0.0291 |
SLC1A3 | rs2229894 | −0.3327 | 0.1401 | 0.0175 |
Haplotype | Frequency | OR | 95% CI | p-Values |
---|---|---|---|---|
TCA | 0.3805 | 1.00 (Ref.) | ||
CAT | 0.2731 | 1.57 | 1.15–2.14 | 0.0048 |
TAT | 0.3311 | 1.16 | 0.84–1.60 | 0.3570 |
Rare | 0.0152 | 0.74 | 0.21–2.54 | 0.6296 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fedorenko, O.Y.; Paderina, D.Z.; Kornetova, E.G.; Poltavskaya, E.G.; Pozhidaev, I.V.; Goncharova, A.A.; Freidin, M.B.; Bocharova, A.V.; Bokhan, N.A.; Loonen, A.J.M.; et al. Genes of the Glutamatergic System and Tardive Dyskinesia in Patients with Schizophrenia. Diagnostics 2022, 12, 1521. https://doi.org/10.3390/diagnostics12071521
Fedorenko OY, Paderina DZ, Kornetova EG, Poltavskaya EG, Pozhidaev IV, Goncharova AA, Freidin MB, Bocharova AV, Bokhan NA, Loonen AJM, et al. Genes of the Glutamatergic System and Tardive Dyskinesia in Patients with Schizophrenia. Diagnostics. 2022; 12(7):1521. https://doi.org/10.3390/diagnostics12071521
Chicago/Turabian StyleFedorenko, Olga Yu., Diana Z. Paderina, Elena G. Kornetova, Evgeniya G. Poltavskaya, Ivan V. Pozhidaev, Anastasiia A. Goncharova, Maxim B. Freidin, Anna V. Bocharova, Nikolay A. Bokhan, Anton J. M. Loonen, and et al. 2022. "Genes of the Glutamatergic System and Tardive Dyskinesia in Patients with Schizophrenia" Diagnostics 12, no. 7: 1521. https://doi.org/10.3390/diagnostics12071521
APA StyleFedorenko, O. Y., Paderina, D. Z., Kornetova, E. G., Poltavskaya, E. G., Pozhidaev, I. V., Goncharova, A. A., Freidin, M. B., Bocharova, A. V., Bokhan, N. A., Loonen, A. J. M., & Ivanova, S. A. (2022). Genes of the Glutamatergic System and Tardive Dyskinesia in Patients with Schizophrenia. Diagnostics, 12(7), 1521. https://doi.org/10.3390/diagnostics12071521