A Novel Mathematical Method to Diagnose the Transverse Growth Deficit of the Nasomaxillary Complex
Abstract
:1. Introduction
Diagnosis in the Transverse Plane
2. Materials and Methods
- -
- Facial axis, mandibular plane, ANB and Wits.
- -
- Maxillary and mandibular width: frontal teleradiograph of the skull was measured using the Kodak Dental Imaging Software 6.12.11.0 computer program, converting the automatically generated magnification to a 1:1 image ratio, with the aim of standardizing the magnification produced. Cranial width, orbital width, width between the zygomatic bones, maxillary width, and mandibular width were obtained (Figure 1).
- -
- Difference between maxillary and mandibular width, difference between orbital and maxillary width, difference between zygomatic and maxillary width, difference between maxillary and bigonial width and difference between maxillary and biantegonial width.
- -
- Chronological age.
- -
- Biological age, according to the Demirjian method [14].
Statistical Analysis
3. Results
3.1. Descriptive Analysis
3.1.1. Lateral Teleradiograph of the Skull
3.1.2. Frontal Teleradiograph of the Skull
3.2. Statistical Analysis Based on the Direct Variables Obtained in the Lateral and Frontal Teleradiograph of the Skull
3.3. Data Analysis Using Simple and Multivariate Models
3.3.1. Simple Diagnostic Discriminant Models of Absolute Variables
3.3.2. Multivariate Models of Absolute Variables
3.4. Evaluation of the Model of Absolute Variables in an External Sample
4. Discussion
5. Conclusions
- -
- The new mathematical method presented based on the cranial, orbital and maxillary width, with high sensitivity values, is capable of diagnosing cases of skeletal compression of the upper jaw.
- -
- In the sample studied, the probability that a case presents a transverse growth deficit of the nasomaxillary complex through the association of the maxillo-cranial and maxillo-orbital difference can be determined numerically with a sensitivity of 88.7% and a specificity of 77.1%, a positive predictive value of 87.3% and a negative predictive value of 79.4%.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Proffit, W.R. Contemporary Orthodontics, 5th ed.; Mosby: St. Louis, MO, USA, 2013. [Google Scholar]
- Lorente, P. Clasificación y tratamiento de las maolcusiones transversales. Rev. Española Ortod. 2002, 4, 179–181. [Google Scholar]
- Marshall, S.D.; Southard, K.A.; Southard, T.E. Early transverse treatment. Semin. Orthod. 2005, 3, 130–139. [Google Scholar] [CrossRef]
- Agostino, P.; Ugolini, A.; Signori, A.; Silvestrini-Biavati, A.; Harrison, J.E.; Riley, P. Orthodontic treatment of posterior crossbites (Review). Cochrane Libr. Database Syst. Rev. 2014, 8, CD000979. [Google Scholar]
- Bell, R.A.; Kiebach, T.J. Posterior crossbites in children: Developmental-based diagnosis and implications to normative growth patterns. Semin. Orthod. 2014, 20, 77–113. [Google Scholar] [CrossRef]
- Germa, A.; Clèment, C.; Weissenbach, M.; Heude, B.; Forhan, A.; Martin-Marchand, L.; Bonet, M.; Vital, S.; Kaminski, M.; Nabet, C. Early risk factors for posterior crossbite and anterior open bite in the primary dentition. Angle Orthod. 2016, 86, 832–838. [Google Scholar] [CrossRef] [Green Version]
- Ricketts, R.M. Perspectives in the clinical application of Cephalometrics. Angle Orthod. 1981, 51, 115–150. [Google Scholar]
- Vanarsdall, R.L. Transverse dimensión and long-term stability. Semin. Orthod. 1999, 3, 171–180. [Google Scholar] [CrossRef]
- Yavuz, I.; Íkbal, A.; Baydas, B.Y.; Ceylan, I. Longitudinal posteroanterior changes in transverse and vertical craniofacial structures between 10 and 14 years old. Angle Orthod. 2004, 5, 624–629. [Google Scholar]
- Font, J.M. Tratamiento interceptivo en el maxilar superior. Rev. Española Ortod. 2002, 2, 109–122. [Google Scholar]
- Hsiao, T.H.; Chang, H.P.; Liu, K.M. A method of magnification correction for posteroanterior radiographic cephalometry. Angle Orthod. 1997, 2, 137–142. [Google Scholar]
- Jain, S.; Choudhary, K.; Nagi, R.; Shukla, S.; Kaur, N.; Grover, D. New evolution of cone-beam computed tomography in dentistry: Combining digital technologies. Imaging Sci. Dent. 2019, 49, 179–190. [Google Scholar] [CrossRef] [PubMed]
- McNamara, J.A. Maxillary transverse deficiency. Am. J. Orthod. Dentofac. Orthop. 2000, 5, 567–570. [Google Scholar] [CrossRef]
- Cruz-Landeira, A.; Linares-Argote, J.; Martínez-Rodríguez, M.; Rodríguez-Calvo, M.S.; Otero, X.L.; Concheiro, L. Dental age estimation in Spanish and Venezuelan children. Comparison of Demirjian and Chaillet’s scores. Int. J. Legal Med. 2010, 124, 105–112. [Google Scholar] [CrossRef]
- Athanasiou, A.; Droschi, H.; Bosch, C. Data and patterns of transverse dentofacial structure of 6 to 15 year-old children: A posteroanterior cephalometric study. Am. J. Orthod. Dentofac. Orthop. 1992, 5, 465–471. [Google Scholar] [CrossRef]
- Angell, E.H. Treatment of the irregularity of the permanent or the adult teeth. Dent. Cosm. 1960, 1, 540–544. [Google Scholar]
- Graber, L.W.; Vanarsdall, R.L.; Vig, K.W.L. Orthodontics: Current Principles and Techniques, 5th ed.; Elsevier Mosby: Philadelphia, PA, USA, 2012. [Google Scholar]
- Franchi, L.; Baccetti, T. Transverse maxillary deficiency in Class II and Class III malocclusions: A cephalometric and morphometric study on postero-anterior films. Orthod. Craniofacial Res. 2005, 1, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, A. The Wits apraisal of jaw disharmony. Am. J. Orthod. 1975, 2, 125–138. [Google Scholar] [CrossRef]
- Alarashi, M.; Franchi, L.; Marinelli, A.; Defraia, E. Morphometric analysis of the transverse dentoskeletal features os Class II malocclusion in the mixed dentition. Angle Orthod. 2003, 1, 21–25. [Google Scholar]
- Lux, C.J.; Conradt, C.; Burden, D.; Komposch, G. Dental arch widths and mandibular-maxillary base widths in class II malocclusions between early mixed and permanent dentitions. Angle Orthod. 2003, 6, 674–685. [Google Scholar]
- Tollaro, I.; Baccetti, T.; Franchi, L.; Tanasescu, D. Role of posterior transverse interarch discrepancy in Class II, Division 1 malocclusion during the mixed dentition phase. Am. J. Orthod. Dentofac. Orthop. 1996, 110, 17–22. [Google Scholar] [CrossRef]
- Bishara, S.E. Class II malocclusions: Diagnostic and clinical considerations with and without treatment. Semin. Orthod. 2006, 1, 11–24. [Google Scholar] [CrossRef]
- Da Silva, O.G.; Ferrari, F.M.; Ozawa, T.O. Dental arch dimensions in CLass II división 1 malocclusions with mandibular deficiency. Angle Orthod. 2008, 78, 466–474. [Google Scholar] [CrossRef] [PubMed]
- Sayin, M.O.; Turkkahraman, H. Comparison of dental arch and alveolar widthsof patients with Class II, Division 1 malocclusion and subjects with Class I ideal occlusion. Angle Orthod. 2004, 74, 56–60. [Google Scholar]
- Walkow, T.M.; Peck, S. Dental arch width in Class II Division 2 deep-bite malocclusion. Am. J. Orthod. Dentofac. Orthop. 2002, 122, 608–613. [Google Scholar] [CrossRef]
- Nanda, R.; Snodell, S.F.; Bollu, P. Transverse growth of maxilla and mandible. Semin. Orthod. 2012, 8, 100–117. [Google Scholar] [CrossRef]
p-Value (Test) | |
---|---|
Facial axis | 0.914 |
Md plane | 0.054 |
SNA | 0.085 |
SNB | 0.647 |
ANB | 0.113 |
Wits | 0.035 * |
p-Value (Test) | |
---|---|
Craneal width | <0.001 *** |
Zyg width | 0.067 |
Orbital width | <0.001 *** |
Maxilar width | 0.472 |
Bigonial width | 0.694 |
Biantegonial width | 0.189 |
B | E.T. | Wald | gl | p-Value | OR | I.C. 95.0% for OR | ||
---|---|---|---|---|---|---|---|---|
Lower | Upper | |||||||
CRANEAL WIDTH | 0.207 | 0.053 | 15.251 | 1 | <0.001 *** | 1.230 | 1.109 | 1.364 |
ZYG WIDTH | 0.073 | 0.040 | 3.268 | 1 | 0.071 | 1.075 | 0.994 | 1.164 |
ORBITAL WIDTH | 0.419 | 0.084 | 25.179 | 1 | <0.001 *** | 1.521 | 1.291 | 1.792 |
MAXILAR WIDTH | −0.039 | 0.054 | 0.528 | 1 | 0.468 | 0.961 | 0.864 | 1.069 |
BIGONIAL MD | 0.017 | 0.043 | 0.159 | 1 | 0.690 | 1.017 | 0.935 | 1.106 |
BIANTEGONIAL MD | 0.064 | 0.049 | 1.722 | 1 | 0.189 | 1.066 | 0.969 | 1.172 |
FACIAL AXIS | 0.006 | 0.053 | 0.012 | 1 | 0.913 | 1.006 | 0.907 | 1.115 |
MD PLANE | 0.073 | 0.038 | 3.604 | 1 | 0.058 | 1.076 | 0.998 | 1.160 |
SNA | −0.118 | 0.069 | 2.896 | 1 | 0.089 | 0.889 | 0.776 | 1.018 |
SNB | −0.028 | 0.060 | 0.215 | 1 | 0.643 | 0.973 | 0.865 | 1.094 |
ANB | −0.149 | 0.095 | 2.452 | 1 | 0.117 | 0.862 | 0.715 | 1.038 |
WITTS | −0.177 | 0.086 | 4.231 | 1 | 0.040 * | 0.838 | 0.708 | 0.992 |
B | E.T. | Wald | gl | p-Value | OR | I.C. 95.0% for OR | ||
---|---|---|---|---|---|---|---|---|
Lower | Upper | |||||||
−47.035 | 11.13 | 17.880 | 1 | <0.001 *** | .000 | |||
CRANEAL WIDTH | 0.171 | 0.064 | 7.227 | 1 | 0.007 ** | 1.186 | 1.047 | 1.344 |
ORBITAL WIDTH | 0.567 | 0.128 | 19.675 | 1 | <0.001 *** | 1.763 | 1.372 | 2.264 |
MAXILAR WIDTH | −0.366 | 0.105 | 12.123 | 1 | <0.001 *** | 0.693 | 0.564 | 0.852 |
Total | Control | Compression | ||||
---|---|---|---|---|---|---|
N | % | N | % | N | % | |
Total | 42 | 100.0% | 22 | 52.4% | 20 | 47.6% |
Control Group | 19 | 100.0% | 17 | 89.5% | 2 | 10.5% |
Compression Group | 23 | 100.0% | 5 | 21.7% | 18 | 78.3% |
S | E | PPV | PPN | % Correct Total | |
---|---|---|---|---|---|
Actual model (60−40%) | 89.5% | 78.3% | 90.0% | 77.3% | 83.3% |
Complete model (100%) | 88.7% | 77.1% | 87.3% | 79.4% | 84.5% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guinot-Barona, C.; Soler Segarra, I.; Arias de Luxán, S.; Laparra Hernández, R.; Marqués Martínez, L.; García Miralles, E. A Novel Mathematical Method to Diagnose the Transverse Growth Deficit of the Nasomaxillary Complex. Diagnostics 2022, 12, 1537. https://doi.org/10.3390/diagnostics12071537
Guinot-Barona C, Soler Segarra I, Arias de Luxán S, Laparra Hernández R, Marqués Martínez L, García Miralles E. A Novel Mathematical Method to Diagnose the Transverse Growth Deficit of the Nasomaxillary Complex. Diagnostics. 2022; 12(7):1537. https://doi.org/10.3390/diagnostics12071537
Chicago/Turabian StyleGuinot-Barona, Clara, Inmaculada Soler Segarra, Santiago Arias de Luxán, Raquel Laparra Hernández, Laura Marqués Martínez, and Esther García Miralles. 2022. "A Novel Mathematical Method to Diagnose the Transverse Growth Deficit of the Nasomaxillary Complex" Diagnostics 12, no. 7: 1537. https://doi.org/10.3390/diagnostics12071537
APA StyleGuinot-Barona, C., Soler Segarra, I., Arias de Luxán, S., Laparra Hernández, R., Marqués Martínez, L., & García Miralles, E. (2022). A Novel Mathematical Method to Diagnose the Transverse Growth Deficit of the Nasomaxillary Complex. Diagnostics, 12(7), 1537. https://doi.org/10.3390/diagnostics12071537