Influence of S100A2 in Human Diseases
Abstract
:1. Introduction
2. Regulatory Action of S100A2 and Interaction with Other Molecules
3. Interactions of S100A with Other Molecules
4. Epigenetic Regulation of S100A2
5. Inflammatory Diseases
6. Benign Tumors
7. Role of S100A2 in Malignancies
8. Brain Cancer
9. Thyroid Cancer
10. Lung Cancer
11. Renal Cell Carcinoma
12. Liver Diseases
13. Breast Cancer
14. Bladder Cancer
15. Gynecologic Cancers
16. Pancreatic Cancer
17. Melanoma
18. Prostate Cancer
19. Squamous Cell Carcinoma
20. Gastroenterological Cancers
21. Summary of S100A2 Regulation
22. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Marenholz, I.; Heizmann, C.W.; Fritz, G. S100 proteins in mouse and man: From evolution to function and pathology (including an update of the nomenclature). Biochem. Biophys. Res. Commun. 2004, 322, 1111–1122. [Google Scholar] [CrossRef] [PubMed]
- Marks, A.; Allore, R. S100 protein and Down syndrome. Bioessays 1990, 12, 381–383. [Google Scholar] [CrossRef] [PubMed]
- Lombardi, T.; Samson, J. S-100 protein in normal and pathologic oral tissues. A review. Schweiz Mon. Zahnmed 1993, 103, 413–418. [Google Scholar]
- Zimmer, D.B.; Cornwall, E.H.; Landar, A.; Song, W. The S100 protein family: History, function, and expression. Brain Res. Bull. 1995, 37, 417–429. [Google Scholar] [CrossRef]
- Donato, R.; Cannon, B.R.; Sorci, G.; Riuzzi, F.; Hsu, K.; Weber, D.J.; Geczy, C.L. Functions of S100 proteins. Curr. Mol. Med. 2013, 13, 24–57. [Google Scholar] [CrossRef] [Green Version]
- Eckert, R.L.; Broome, A.M.; Ruse, M.; Robinson, N.; Ryan, D.; Lee, K. S100 proteins in the epidermis. J. Investig. Derm. 2004, 123, 23–33. [Google Scholar] [CrossRef] [Green Version]
- Koch, M.; Bhattacharya, S.; Kehl, T.; Gimona, M.; Vasák, M.; Chazin, W.; Heizmann, C.W.; Kroneck, P.M.; Fritz, G. Implications on zinc binding to S100A2. Biochim. Biophys. Acta 2007, 1773, 457–470. [Google Scholar] [CrossRef] [Green Version]
- Wolf, S.; Haase-Kohn, C.; Pietzsch, J. S100A2 in cancerogenesis: A friend or a foe? Amino. Acids 2011, 41, 849–861. [Google Scholar] [CrossRef]
- Wicki, R.; Franz, C.; Scholl, F.A.; Heizmann, C.W.; Schäfer, B.W. Repression of the candidate tumor suppressor gene S100A2 in breast cancer is mediated by site-specific hypermethylation. Cell Calcium. 1997, 22, 243–254. [Google Scholar] [CrossRef]
- Yan, J.; Huang, Y.J.; Huang, Q.Y.; Liu, P.X.; Wang, C.S. Transcriptional activation of S100A2 expression by HIF-1α via binding to the hypomethylated hypoxia response elements in HCC cells. Mol. Carcinog. 2022, 61, 494–507. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, C.; Song, J.; Xu, R.; Ruze, R.; Zhao, Y. S100A2 Is a Prognostic Biomarker Involved in Immune Infiltration and Predict Immunotherapy Response in Pancreatic Cancer. Front. Immunol. 2021, 12, 758004. [Google Scholar] [CrossRef] [PubMed]
- Yoshioka, M.; Sawada, Y.; Saito-Sasaki, N.; Yoshioka, H.; Hama, K.; Omoto, D.; Ohmori, S.; Okada, E.; Nakamura, M. High S100A2 expression in keratinocytes in patients with drug eruption. Sci. Rep. 2021, 11, 5493. [Google Scholar] [CrossRef] [PubMed]
- Hountis, P.; Matthaios, D.; Froudarakis, M.; Bouros, D.; Kakolyris, S. S100A2 protein and non-small cell lung cancer. The dual role concept. Tumour. Biol. 2014, 35, 7327–7333. [Google Scholar] [CrossRef] [PubMed]
- Deshpande, R.; Woods, T.L.; Fu, J.; Zhang, T.; Stoll, S.W.; Elder, J.T. Biochemical characterization of S100A2 in human keratinocytes: Subcellular localization, dimerization, and oxidative cross-linking. J. Investig. Derm. 2000, 115, 477–485. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Woods, T.L.; Elder, J.T. Differential responses of S100A2 to oxidative stress and increased intracellular calcium in normal, immortalized, and malignant human keratinocytes. J. Investig. Derm. 2002, 119, 1196–1201. [Google Scholar] [CrossRef] [Green Version]
- Naz, S.; Ranganathan, P.; Bodapati, P.; Shastry, A.H.; Mishra, L.N.; Kondaiah, P. Regulation of S100A2 expression by TGF-β-induced MEK/ERK signalling and its role in cell migration/invasion. Biochem. J. 2012, 447, 81–91. [Google Scholar] [CrossRef] [Green Version]
- Foser, S.; Redwanz, I.; Ebeling, M.; Heizmann, C.W.; Certa, U. Interferon-alpha and transforming growth factor-beta co-induce growth inhibition of human tumor cells. Cell Mol. Life Sci. 2006, 63, 2387–2396. [Google Scholar] [CrossRef]
- Haase-Kohn, C.; Wolf, S.; Lenk, J.; Pietzsch, J. Copper-mediated cross-linking of S100A4, but not of S100A2, results in proinflammatory effects in melanoma cells. Biochem. Biophys. Res. Commun. 2011, 413, 494–498. [Google Scholar] [CrossRef]
- Nagy, N.; Hoyaux, D.; Gielen, I.; Schäfer, B.W.; Pochet, R.; Heizmann, C.W.; Kiss, R.; Salmon, I.; Decaestecker, C. The Ca2+-binding S100A2 protein is differentially expressed in epithelial tissue of glandular or squamous origin. Histol. Histopathol. 2002, 17, 123–130. [Google Scholar]
- Stoll, S.W.; Zhao, X.; Elder, J.T. EGF stimulates transcription of CaN19 (S100A2) in HaCaT keratinocytes. J. Investig. Derm. 1998, 111, 1092–1097. [Google Scholar] [CrossRef]
- Tan, M.; Heizmann, C.W.; Guan, K.; Schafer, B.W.; Sun, Y. Transcriptional activation of the human S100A2 promoter by wild-type p53. FEBS Lett. 1999, 445, 265–268. [Google Scholar] [CrossRef] [Green Version]
- Koch, M.; Diez, J.; Wagner, A.; Fritz, G. Crystallization and calcium/sulfur SAD phasing of the human EF-hand protein S100A2. Acta Cryst. Sect. F Struct. Biol. Cryst. Commun. 2010, 66, 1032–1036. [Google Scholar] [CrossRef] [Green Version]
- van Dieck, J.; Fernandez-Fernandez, M.R.; Veprintsev, D.B.; Fersht, A.R. Modulation of the oligomerization state of p53 by differential binding of proteins of the S100 family to p53 monomers and tetramers. J. Biol. Chem. 2009, 284, 13804–13811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirschner, R.D.; Sänger, K.; Müller, G.A.; Engeland, K. Transcriptional activation of the tumor suppressor and differentiation gene S100A2 by a novel p63-binding site. Nucleic. Acids Res. 2008, 36, 2969–2980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lapi, E.; Iovino, A.; Fontemaggi, G.; Soliera, A.R.; Iacovelli, S.; Sacchi, A.; Rechavi, G.; Givol, D.; Blandino, G.; Strano, S. S100A2 gene is a direct transcriptional target of p53 homologues during keratinocyte differentiation. Oncogene 2006, 25, 3628–3637. [Google Scholar] [CrossRef] [Green Version]
- Buckley, N.E.; D’Costa, Z.; Kaminska, M.; Mullan, P.B. S100A2 is a BRCA1/p63 coregulated tumour suppressor gene with roles in the regulation of mutant p53 stability. Cell Death Dis. 2014, 5, e1070. [Google Scholar] [CrossRef] [Green Version]
- Kazakov, A.S.; Deryusheva, E.I.; Sokolov, A.S.; Permyakova, M.E.; Litus, E.A.; Rastrygina, V.A.; Uversky, V.N.; Permyakov, E.A.; Permyakov, S.E. Erythropoietin Interacts with Specific S100 Proteins. Biomolecules 2022, 12, 120. [Google Scholar] [CrossRef]
- Sawada, Y.; Gallo, R.L. Role of Epigenetics in the Regulation of Immune Functions of the Skin. J. Investig. Derm. 2021, 141, 1157–1166. [Google Scholar] [CrossRef]
- Seale, K.; Horvath, S.; Teschendorff, A.; Eynon, N.; Voisin, S. Making sense of the ageing methylome. Nat. Rev. Genet. 2022, in press. [Google Scholar] [CrossRef]
- Tsou, P.S.; Varga, J.; O’Reilly, S. Advances in epigenetics in systemic sclerosis: Molecular mechanisms and therapeutic potential. Nat. Rev. Rheumatol. 2021, 17, 596–607. [Google Scholar] [CrossRef]
- Dor, Y.; Cedar, H. Principles of DNA methylation and their implications for biology and medicine. Lancet 2018, 392, 777–786. [Google Scholar] [CrossRef]
- El-Dahr, S.S. DNA methylation links intrauterine stress with abnormal nephrogenesis. Nat. Rev. Nephrol. 2019, 15, 196–197. [Google Scholar] [CrossRef] [PubMed]
- Michalak, E.M.; Burr, M.L.; Bannister, A.J.; Dawson, M.A. The roles of DNA, RNA and histone methylation in ageing and cancer. Nat. Rev. Mol. Cell Biol. 2019, 20, 573–589. [Google Scholar] [CrossRef]
- Bird, A. DNA methylation patterns and epigenetic memory. Genes Dev. 2002, 16, 6–21. [Google Scholar] [CrossRef] [Green Version]
- Nanamori, H.; Sawada, Y. Epigenetic Modification of PD-1/PD-L1-Mediated Cancer Immunotherapy against Melanoma. Int. J. Mol. Sci. 2022, 23, 1119. [Google Scholar] [CrossRef]
- Lorincz, M.C.; Schübeler, D. Evidence for Converging DNA Methylation Pathways in Placenta and Cancer. Dev. Cell 2017, 43, 257–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, G.; Xu, X.; Youssef, E.M.; Lotan, R. Diminished expression of S100A2, a putative tumor suppressor, at early stage of human lung carcinogenesis. Cancer Res. 2001, 61, 7999–8004. [Google Scholar]
- Lee, J.; Wysocki, P.T.; Topaloglu, O.; Maldonado, L.; Brait, M.; Begum, S.; Moon, D.; Kim, M.S.; Califano, J.A.; Sidransky, D.; et al. Epigenetic silencing of S100A2 in bladder and head and neck cancers. Oncoscience 2015, 2, 410–418. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Jeong, Y.; Kwon, K.; Ismail, T.; Lee, H.K.; Kim, C.; Park, J.W.; Kwon, O.S.; Kang, B.S.; Lee, D.S.; et al. Physiological effects of KDM5C on neural crest migration and eye formation during vertebrate development. Epigenetics Chromatin 2018, 11, 72. [Google Scholar] [CrossRef]
- Wang, Y.; Ye, H.; Yang, Y.; Li, J.; Cen, A.; Zhao, L. microRNA-181a promotes the oncogene S100A2 and enhances papillary thyroid carcinoma growth by mediating the expression of histone demethylase KDM5C. J. Endocrinol. Investig. 2022, 45, 17–28. [Google Scholar] [CrossRef]
- Pan, S.C.; Li, C.Y.; Kuo, C.Y.; Kuo, Y.Z.; Fang, W.Y.; Huang, Y.H.; Hsieh, T.C.; Kao, H.Y.; Kuo, Y.; Kang, Y.R.; et al. The p53-S100A2 Positive Feedback Loop Negatively Regulates Epithelialization in Cutaneous Wound Healing. Sci. Rep. 2018, 8, 5458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitoma, C.; Kohda, F.; Mizote, Y.; Miake, A.; Ijichi, A.; Kawahara, S.; Kohno, M.; Sonoyama, H.; Mitamura, Y.; Kaku, Y.; et al. Localization of S100A2, S100A4, S100A6, S100A7, and S100P in the human hair follicle. Fukuoka Igaku Zasshi 2014, 105, 148–156. [Google Scholar] [PubMed]
- Gliga, A.R.; Di Bucchianico, S.; Åkerlund, E.; Karlsson, H.L. Transcriptome Profiling and Toxicity Following Long-Term, Low Dose Exposure of Human Lung Cells to Ni and NiO Nanoparticles-Comparison with NiCl(2). Nanomaterials 2020, 10, 649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poachanukoon, O.; Roytrakul, S.; Koontongkaew, S. A shotgun proteomic approach reveals novel potential salivary protein biomarkers for asthma. J. Asthma. 2022, 59, 243–254. [Google Scholar] [CrossRef]
- Zhu, L.; Okano, S.; Takahara, M.; Chiba, T.; Tu, Y.; Oda, Y.; Furue, M. Expression of S100 protein family members in normal skin and sweat gland tumors. J. Derm. Sci. 2013, 70, 211–219. [Google Scholar] [CrossRef]
- Shrestha, P.; Muramatsu, Y.; Kudeken, W.; Mori, M.; Takai, Y.; Ilg, E.C.; Schafer, B.W.; Heizmann, C.W. Localization of Ca(2+)-binding S100 proteins in epithelial tumours of the skin. Virchows Arch. 1998, 432, 53–59. [Google Scholar] [CrossRef]
- Lin, D.; Zhao, W.; Yang, J.; Wang, H.; Zhang, H. Integrative Analysis of Biomarkers and Mechanisms in Adamantinomatous Craniopharyngioma. Front. Genet. 2022, 13, 830793. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, X.; Zhu, X.L.; Bai, H.; Wang, Z.Z.; Zhang, J.J.; Hao, C.Y.; Duan, H.B. S100A gene family: Immune-related prognostic biomarkers and therapeutic targets for low-grade glioma. Aging 2021, 13, 15459–15478. [Google Scholar] [CrossRef]
- Yin, A.; Shang, Z.; Etcheverry, A.; He, Y.; Aubry, M.; Lu, N.; Liu, Y.; Mosser, J.; Lin, W.; Zhang, X.; et al. Integrative analysis identifies an immune-relevant epigenetic signature for prognostication of non-G-CIMP glioblastomas. Oncoimmunology 2021, 10, 1902071. [Google Scholar] [CrossRef]
- Aljohani, A.O.; Merdad, R.H.; Alserif, A.I.; Alhemayed, L.S.; Farsi, N.Z.; Alsufyani, T.A.; Alkaf, H.H.; Alherabi, A.Z.; Abdelmonim, S.K.; Alessa, M.A. The impact of thyroid tumor features on lymph node metastasis in papillary thyroid carcinoma patients in head and neck department at KAMC: A retrospective cross-sectional study. Ann. Med. Surg. 2021, 64, 102217. [Google Scholar] [CrossRef]
- Ito, Y.; Yoshida, H.; Tomoda, C.; Uruno, T.; Miya, A.; Kobayashi, K.; Matsuzuka, F.; Kakudo, K.; Kuma, K.; Miyauchi, A. Expression of S100A2 and S100A6 in thyroid carcinomas. Histopathology 2005, 46, 569–575. [Google Scholar] [CrossRef] [PubMed]
- Lederer, D.J.; Martinez, F.J. Idiopathic Pulmonary Fibrosis. N. Engl. J. Med. 2018, 378, 1811–1823. [Google Scholar] [CrossRef]
- Huang, G.; Zhang, J.; Qing, G.; Liu, D.; Wang, X.; Chen, Y.; Li, Y.; Guo, S. S100A2 Silencing Relieves Epithelial-Mesenchymal Transition in Pulmonary Fibrosis by Inhibiting the Wnt/β-Catenin Signaling Pathway. DNA Cell Biol. 2021, 40, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Yun, S.T.; Yun, C.O.; Ahn, B.Y.; Jo, E.C. S100A2 promoter-driven conditionally replicative adenovirus targets non-small-cell lung carcinoma. Gene Ther. 2012, 19, 967–977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diederichs, S.; Bulk, E.; Steffen, B.; Ji, P.; Tickenbrock, L.; Lang, K.; Zänker, K.S.; Metzger, R.; Schneider, P.M.; Gerke, V.; et al. S100 family members and trypsinogens are predictors of distant metastasis and survival in early-stage non-small cell lung cancer. Cancer Res. 2004, 64, 5564–5569. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Liang, Y.; Thakur, A.; Zhang, S.; Liu, F.; Khan, H.; Shi, P.; Wang, N.; Chen, M.; Ren, H. Expression and clinicopathological significance of S100 calcium binding protein A2 in lung cancer patients of Chinese Han ethnicity. Clin. Chim. Acta 2017, 464, 118–122. [Google Scholar] [CrossRef]
- Bulk, E.; Sargin, B.; Krug, U.; Hascher, A.; Jun, Y.; Knop, M.; Kerkhoff, C.; Gerke, V.; Liersch, R.; Mesters, R.M.; et al. S100A2 induces metastasis in non-small cell lung cancer. Clin. Cancer Res. 2009, 15, 22–29. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Zhang, Z.; Li, R.; Ang, K.K.; Zhang, H.; Caraway, N.P.; Katz, R.L.; Jiang, F. Overexpression of S100A2 protein as a prognostic marker for patients with stage I non small cell lung cancer. Int. J. Cancer 2005, 116, 285–290. [Google Scholar] [CrossRef]
- Matsubara, D.; Niki, T.; Ishikawa, S.; Goto, A.; Ohara, E.; Yokomizo, T.; Heizmann, C.W.; Aburatani, H.; Moriyama, S.; Moriyama, H.; et al. Differential expression of S100A2 and S100A4 in lung adenocarcinomas: Clinicopathological significance, relationship to p53 and identification of their target genes. Cancer Sci. 2005, 96, 844–857. [Google Scholar] [CrossRef]
- Sugiyama, T.; Ozono, S.; Miyake, H. Expression Profile of S100A2 and its Clinicopathological Significance in Renal Cell Carcinoma. Anticancer Res. 2020, 40, 6337–6343. [Google Scholar] [CrossRef]
- Zheng, S.; Liu, L.; Xue, T.; Jing, C.; Xu, X.; Wu, Y.; Wang, M.; Xie, X.; Zhang, B. Comprehensive Analysis of the Prognosis and Correlations With Immune Infiltration of S100 Protein Family Members in Hepatocellular Carcinoma. Front. Genet. 2021, 12, 648156. [Google Scholar] [CrossRef]
- Zhang, C.; Yao, R.; Chen, J.; Zou, Q.; Zeng, L. S100 family members: Potential therapeutic target in patients with hepatocellular carcinoma: A STROBE study. Medicine 2021, 100, e24135. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Rudland, P.S.; Sibson, D.R.; Platt-Higgins, A.; Barraclough, R. Expression of calcium-binding protein S100A2 in breast lesions. Br. J. Cancer 2000, 83, 1473–1479. [Google Scholar] [CrossRef] [PubMed]
- Naba, A.; Clauser, K.R.; Lamar, J.M.; Carr, S.A.; Hynes, R.O. Extracellular matrix signatures of human mammary carcinoma identify novel metastasis promoters. eLife 2014, 3, e01308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Hu, X.; Yang, F.; Xiao, H. miR-325-3p Promotes the Proliferation, Invasion, and EMT of Breast Cancer Cells by Directly Targeting S100A2. Oncol. Res. 2021, 28, 731–744. [Google Scholar] [CrossRef]
- Matsumoto, K.; Irie, A.; Satoh, T.; Ishii, J.; Iwabuchi, K.; Iwamura, M.; Egawa, S.; Baba, S. Expression of S100A2 and S100A4 predicts for disease progression and patient survival in bladder cancer. Urology 2007, 70, 602–607. [Google Scholar] [CrossRef]
- Xu, H.Y.; Song, H.M.; Zhou, Q. Comprehensive analysis of the expression and prognosis for S100 in human ovarian cancer: A STROBE study. Medicine 2020, 99, e22777. [Google Scholar] [CrossRef]
- Lou, W.; Ding, B.; Zhong, G.; Du, C.; Fan, W.; Fu, P. Dysregulation of pseudogene/lncRNA-hsa-miR-363-3p-SPOCK2 pathway fuels stage progression of ovarian cancer. Aging 2019, 11, 11416–11439. [Google Scholar] [CrossRef]
- Bai, Y.; Li, L.D.; Li, J.; Lu, X. Prognostic values of S100 family members in ovarian cancer patients. BMC Cancer 2018, 18, 1256. [Google Scholar] [CrossRef]
- Zhang, Q.; Xia, T.; Qi, C.; Du, J.; Ye, C. High expression of S100A2 predicts poor prognosis in patients with endometrial carcinoma. BMC Cancer 2022, 22, 77. [Google Scholar] [CrossRef]
- Mizrahi, J.D.; Surana, R.; Valle, J.W.; Shroff, R.T. Pancreatic cancer. Lancet 2020, 395, 2008–2020. [Google Scholar] [CrossRef]
- Biankin, A.V.; Kench, J.G.; Colvin, E.K.; Segara, D.; Scarlett, C.J.; Nguyen, N.Q.; Chang, D.K.; Morey, A.L.; Lee, C.S.; Pinese, M.; et al. Expression of S100A2 calcium-binding protein predicts response to pancreatectomy for pancreatic cancer. Gastroenterology 2009, 137, 558–568.e11. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Qiu, N.; Li, Q. Prognostic Values and Clinical Significance of S100 Family Member’s Individualized mRNA Expression in Pancreatic Adenocarcinoma. Front. Genet. 2021, 12, 758725. [Google Scholar] [CrossRef] [PubMed]
- Li, H.B.; Wang, J.L.; Jin, X.D.; Zhao, L.; Ye, H.L.; Kuang, Y.B.; Ma, Y.; Jiang, X.Y.; Yu, Z.Y. Comprehensive analysis of the transcriptional expressions and prognostic value of S100A family in pancreatic ductal adenocarcinoma. BMC Cancer 2021, 21, 1039. [Google Scholar] [CrossRef]
- Bachet, J.B.; Maréchal, R.; Demetter, P.; Bonnetain, F.; Cros, J.; Svrcek, M.; Bardier-Dupas, A.; Hammel, P.; Sauvanet, A.; Louvet, C.; et al. S100A2 is a predictive biomarker of adjuvant therapy benefit in pancreatic adenocarcinoma. Eur. J. Cancer 2013, 49, 2643–2653. [Google Scholar] [CrossRef]
- Xiong, T.F.; Pan, F.Q.; Li, D. Expression and clinical significance of S100 family genes in patients with melanoma. Melanoma Res. 2019, 29, 23–29. [Google Scholar] [CrossRef]
- Klopper, J.P.; Sharma, V.; Bissonnette, R.; Haugen, B.R. Combination PPARgamma and RXR Agonist Treatment in Melanoma Cells: Functional Importance of S100A2. PPAR Res. 2010, 2010, 729876. [Google Scholar] [CrossRef] [Green Version]
- Meghnani, V.; Wagh, A.; Indurthi, V.S.; Koladia, M.; Vetter, S.W.; Law, B.; Leclerc, E. The receptor for advanced glycation end products influences the expression of its S100 protein ligands in melanoma tumors. Int. J. Biochem. Cell Biol. 2014, 57, 54–62. [Google Scholar] [CrossRef]
- Gupta, S.; Hussain, T.; MacLennan, G.T.; Fu, P.; Patel, J.; Mukhtar, H. Differential expression of S100A2 and S100A4 during progression of human prostate adenocarcinoma. J. Clin. Oncol. 2003, 21, 106–112. [Google Scholar] [CrossRef]
- Kwon, Y.W.; Chang, I.H.; Kim, K.D.; Kim, Y.S.; Myung, S.C.; Kim, M.K.; Kim, T.H. Significance of S100A2 and S100A4 Expression in the Progression of Prostate Adenocarcinoma. Korean J. Urol. 2010, 51, 456–462. [Google Scholar] [CrossRef] [Green Version]
- Rehman, I.; Cross, S.S.; Catto, J.W.; Leiblich, A.; Mukherjee, A.; Azzouzi, A.R.; Leung, H.Y.; Hamdy, F.C. Promoter hyper-methylation of calcium binding proteins S100A6 and S100A2 in human prostate cancer. Prostate 2005, 65, 322–330. [Google Scholar] [CrossRef] [PubMed]
- Mahale, A.; Alkatan, H.; Alwadani, S.; Othman, M.; Suarez, M.J.; Price, A.; Al-Hussain, H.; Jastaneiah, S.; Yu, W.; Maktabi, A.; et al. Altered gene expression in conjunctival squamous cell carcinoma. Mod. Pathol. 2016, 29, 452–460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lauriola, L.; Michetti, F.; Maggiano, N.; Galli, J.; Cadoni, G.; Schäfer, B.W.; Heizmann, C.W.; Ranelletti, F.O. Prognostic significance of the Ca(2+) binding protein S100A2 in laryngeal squamous-cell carcinoma. Int. J. Cancer 2000, 89, 345–349. [Google Scholar] [CrossRef]
- Suzuki, F.; Oridate, N.; Homma, A.; Nakamaru, Y.; Nagahashi, T.; Yagi, K.; Yamaguchi, S.; Furuta, Y.; Fukuda, S. S100A2 expression as a predictive marker for late cervical metastasis in stage I and II invasive squamous cell carcinoma of the oral cavity. Oncol. Rep. 2005, 14, 1493–1498. [Google Scholar] [CrossRef] [PubMed]
- Almadori, G.; Bussu, F.; Galli, J.; Rigante, M.; Lauriola, L.; Michetti, F.; Maggiano, N.; Schafer, B.W.; Heizmann, C.W.; Ranelletti, F.O.; et al. Diminished expression of S100A2, a putative tumour suppressor, is an independent predictive factor of neck node relapse in laryngeal squamous cell carcinoma. J. Otolaryngol. Head Neck Surg. 2009, 38, 16–22. [Google Scholar] [PubMed]
- Kyriazanos, I.D.; Tachibana, M.; Dhar, D.K.; Shibakita, M.; Ono, T.; Kohno, H.; Nagasue, N. Expression and prognostic significance of S100A2 protein in squamous cell carcinoma of the esophagus. Oncol. Rep. 2002, 9, 503–510. [Google Scholar] [CrossRef]
- Imazawa, M.; Hibi, K.; Fujitake, S.; Kodera, Y.; Ito, K.; Akiyama, S.; Nakao, A. S100A2 overexpression is frequently observed in esophageal squamous cell carcinoma. Anticancer Res. 2005, 25, 1247–1250. [Google Scholar]
- Cao, L.Y.; Yin, Y.; Li, H.; Jiang, Y.; Zhang, H.F. Expression and clinical significance of S100A2 and p63 in esophageal carcinoma. World J. Gastroenterol. 2009, 15, 4183–4188. [Google Scholar] [CrossRef]
- Kumar, M.; Srivastava, G.; Kaur, J.; Assi, J.; Alyass, A.; Leong, I.; MacMillan, C.; Witterick, I.; Shukla, N.K.; Thakar, A.; et al. Prognostic significance of cytoplasmic S100A2 overexpression in oral cancer patients. J. Transl. Med. 2015, 13, 8. [Google Scholar] [CrossRef] [Green Version]
- Inukai, D.; Nishimura, K.; Okamoto, H.; Sano, R.; Ueda, H.; Ota, A.; Karnan, S.; Hosokawa, Y.; Yoshikawa, K.; Suzuki, S.; et al. Identification of cisplatin-resistant factor by integration of transcriptomic and proteomic data using head and neck carcinoma cell lines. Nagoya J. Med. Sci. 2020, 82, 519–531. [Google Scholar]
- Nagy, N.; Brenner, C.; Markadieu, N.; Chaboteaux, C.; Camby, I.; Schäfer, B.W.; Pochet, R.; Heizmann, C.W.; Salmon, I.; Kiss, R.; et al. S100A2, a putative tumor suppressor gene, regulates in vitro squamous cell carcinoma migration. Lab. Investig. 2001, 81, 599–612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsai, W.C.; Tsai, S.T.; Jin, Y.T.; Wu, L.W. Cyclooxygenase-2 is involved in S100A2-mediated tumor suppression in squamous cell carcinoma. Mol. Cancer Res. 2006, 4, 539–547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.F.; Liu, Q.Q.; Wang, X.; Luo, C.H. Clinical significance of S100A2 expression in gastric cancer. Tumour Biol. 2014, 35, 3731–3741. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhang, T.B.; Wang, Q. Clinical significance of altered S100A2 expression in gastric cancer. Oncol. Rep. 2013, 29, 1556–1562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, J.; Zhu, Y.; Yang, G.; Gong, L.; Wang, B.; Liu, H. Loss of Reprimo and S100A2 expression in human gastric adenocarcinoma. Diagn. Cytopathol. 2011, 39, 752–757. [Google Scholar] [CrossRef] [PubMed]
- Lee, O.J.; Hong, S.M.; Razvi, M.H.; Peng, D.; Powell, S.M.; Smoklin, M.; Moskaluk, C.A.; El-Rifai, W. Expression of calcium-binding proteins S100A2 and S100A4 in Barrett’s adenocarcinomas. Neoplasia 2006, 8, 843–850. [Google Scholar] [CrossRef] [Green Version]
- Masuda, T.; Ishikawa, T.; Mogushi, K.; Okazaki, S.; Ishiguro, M.; Iida, S.; Mizushima, H.; Tanaka, H.; Uetake, H.; Sugihara, K. Overexpression of the S100A2 protein as a prognostic marker for patients with stage II and III colorectal cancer. Int. J. Oncol. 2016, 48, 975–982. [Google Scholar] [CrossRef] [Green Version]
- Long, N.P.; Park, S.; Anh, N.H.; Nghi, T.D.; Yoon, S.J.; Park, J.H.; Lim, J.; Kwon, S.W. High-Throughput Omics and Statistical Learning Integration for the Discovery and Validation of Novel Diagnostic Signatures in Colorectal Cancer. Int. J. Mol. Sci. 2019, 20, 296. [Google Scholar] [CrossRef] [Green Version]
- Alajez, N.M. Large-Scale Analysis of Gene Expression Data Reveals a Novel Gene Expression Signature Associated with Colorectal Cancer Distant Recurrence. PLoS ONE 2016, 11, e0167455. [Google Scholar] [CrossRef]
- Giráldez, M.D.; Lozano, J.J.; Cuatrecasas, M.; Alonso-Espinaco, V.; Maurel, J.; Mármol, M.; Hörndler, C.; Ortego, J.; Alonso, V.; Escudero, P.; et al. Gene-expression signature of tumor recurrence in patients with stage II and III colon cancer treated with 5’fluoruracil-based adjuvant chemotherapy. Int. J. Cancer 2013, 132, 1090–1097. [Google Scholar] [CrossRef]
- Li, C.; Chen, Q.; Zhou, Y.; Niu, Y.; Wang, X.; Li, X.; Zheng, H.; Wei, T.; Zhao, L.; Gao, H. S100A2 promotes glycolysis and proliferation via GLUT1 regulation in colorectal cancer. FASEB J. 2020, 34, 13333–13344. [Google Scholar] [CrossRef] [PubMed]
- Sato, Y.; Harada, K.; Sasaki, M.; Nakanuma, Y. Clinicopathological significance of S100 protein expression in cholangiocarcinoma. J. Gastroenterol. Hepatol. 2013, 28, 1422–1429. [Google Scholar] [CrossRef] [PubMed]
- Tsai, S.T.; Jin, Y.T.; Tsai, W.C.; Wang, S.T.; Lin, Y.C.; Chang, M.T.; Wu, L.W. S100A2, a potential marker for early recurrence in early-stage oral cancer. Oral. Oncol. 2005, 41, 349–357. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sugino, H.; Sawada, Y. Influence of S100A2 in Human Diseases. Diagnostics 2022, 12, 1756. https://doi.org/10.3390/diagnostics12071756
Sugino H, Sawada Y. Influence of S100A2 in Human Diseases. Diagnostics. 2022; 12(7):1756. https://doi.org/10.3390/diagnostics12071756
Chicago/Turabian StyleSugino, Hitomi, and Yu Sawada. 2022. "Influence of S100A2 in Human Diseases" Diagnostics 12, no. 7: 1756. https://doi.org/10.3390/diagnostics12071756