Low Impact of Clonal Hematopoiesis on the Determination of RAS Mutations by Cell-Free DNA Testing in Routine Clinical Diagnostics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. cfTNA Extraction from Plasma Samples
2.3. DNA Extraction from Peripheral BLOOD Leucocytes (PBL)
2.4. Targeted Sequencing of cfTNA
2.5. ddPCR Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wan, J.C.M.; Massie, C.; Garcia-Corbacho, J.; Mouliere, F.; Brenton, J.D.; Caldas, C.; Pacey, S.; Baird, R.; Rosenfeld, N. Liquid biopsies come of age: Towards implementation of circulating tumour DNA. Nat. Rev. Cancer 2017, 17, 223–238. [Google Scholar] [CrossRef]
- Mateo, J.; Steuten, L.; Aftimos, P.; Andre, F.; Davies, M.; Garralda, E.; Geissler, J.; Husereau, D.; Martinez-Lopez, I.; Normanno, N.; et al. Delivering precision oncology to patients with cancer. Nat. Med. 2022, 28, 658–665. [Google Scholar] [CrossRef]
- Heitzer, E.; Haque, I.S.; Roberts, C.E.S.; Speicher, M.R. Current and future perspectives of liquid biopsies in genomics-driven oncology. Nat. Rev. Genet. 2019, 20, 71–88. [Google Scholar] [CrossRef]
- Normanno, N.; Apostolides, K.; de Lorenzo, F.; Beer, P.A.; Henderson, R.; Sullivan, R.; Biankin, A.V.; Horgan, D.; Lawler, M. Cancer Biomarkers in the era of precision oncology: Addressing the needs of patients and health systems. Semin. Cancer Biol. 2021, 84, 293–301. [Google Scholar] [CrossRef]
- Deans, Z.C.; Williams, H.; Dequeker, E.M.C.; Keppens, C.; Normanno, N.; Schuuring, E.; Patton, S.J.; Cheetham, M.; Butler, R.; Hall, J.A.; et al. Review of the implementation of plasma ctDNA testing on behalf of IQN Path ASBL: A perspective from an EQA providers’ survey. Virchows Arch. 2017, 471, 809–813. [Google Scholar] [CrossRef]
- Corcoran, R.B.; Chabner, B.A. Application of Cell-free DNA Analysis to Cancer Treatment. N. Engl. J. Med. 2018, 379, 1754–1765. [Google Scholar] [CrossRef] [PubMed]
- Normanno, N.; Cervantes, A.; Ciardiello, F.; De Luca, A.; Pinto, C. The liquid biopsy in the management of colorectal cancer patients: Current applications and future scenarios. Cancer Treat. Rev. 2018, 70, 1–8. [Google Scholar] [CrossRef]
- Esposito Abate, R.; Pasquale, R.; Fenizia, F.; Rachiglio, A.M.; Roma, C.; Bergantino, F.; Forgione, L.; Lambiase, M.; Sacco, A.; Piccirillo, M.C.; et al. The role of circulating free DNA in the management of NSCLC. Expert Rev. Anticancer Ther. 2019, 19, 19–28. [Google Scholar] [CrossRef]
- Miller, P.G.; Steensma, D.P. Implications of Clonal Hematopoiesis for Precision Oncology. JCO Precis. Oncol. 2020, 4, 639–646. [Google Scholar] [CrossRef] [PubMed]
- Curtis, C. Quantifying mutations in healthy blood. Science 2020, 367, 1426–1427. [Google Scholar] [CrossRef]
- Watson, C.J.; Papula, A.L.; Poon, G.Y.P.; Wong, W.H.; Young, A.L.; Druley, T.E.; Fisher, D.S.; Blundell, J.R. The evolutionary dynamics and fitness landscape of clonal hematopoiesis. Science 2020, 367, 1449–1454. [Google Scholar] [CrossRef]
- Young, A.L.; Challen, G.A.; Birmann, B.M.; Druley, T.E. Clonal haematopoiesis harbouring AML-associated mutations is ubiquitous in healthy adults. Nat. Commun. 2016, 7, 12484. [Google Scholar] [CrossRef]
- Hu, Y.; Ulrich, B.C.; Supplee, J.; Kuang, Y.; Lizotte, P.H.; Feeney, N.B.; Guibert, N.M.; Awad, M.M.; Wong, K.K.; Janne, P.A.; et al. False-Positive Plasma Genotyping Due to Clonal Hematopoiesis. Clin. Cancer Res. 2018, 24, 4437–4443. [Google Scholar] [CrossRef]
- Liu, J.; Chen, X.; Wang, J.; Zhou, S.; Wang, C.L.; Ye, M.Z.; Wang, X.Y.; Song, Y.; Wang, Y.Q.; Zhang, L.T.; et al. Biological background of the genomic variations of cf-DNA in healthy individuals. Ann. Oncol. 2019, 30, 464–470. [Google Scholar] [CrossRef]
- Fakih, M.G.; Kopetz, S.; Kuboki, Y.; Kim, T.W.; Munster, P.N.; Krauss, J.C.; Falchook, G.S.; Han, S.W.; Heinemann, V.; Muro, K.; et al. Sotorasib for previously treated colorectal cancers with KRAS(G12C) mutation (CodeBreaK100): A prespecified analysis of a single-arm, phase 2 trial. Lancet Oncol. 2022, 23, 115–124. [Google Scholar] [CrossRef]
- Hofmann, M.H.; Gerlach, D.; Misale, S.; Petronczki, M.; Kraut, N. Expanding the Reach of Precision Oncology by Drugging All KRAS Mutants. Cancer Discov. 2022, 12, 924–937. [Google Scholar] [CrossRef]
- Awad, M.M.; Liu, S.; Rybkin, I.I.; Arbour, K.C.; Dilly, J.; Zhu, V.W.; Johnson, M.L.; Heist, R.S.; Patil, T.; Riely, G.J.; et al. Acquired Resistance to KRAS(G12C) Inhibition in Cancer. N. Engl. J. Med. 2021, 384, 2382–2393. [Google Scholar] [CrossRef]
- Chakraborty, A. KRASG12C inhibitor: Combing for combination. Biochem. Soc. Trans. 2020, 48, 2691–2701. [Google Scholar] [CrossRef] [PubMed]
- Rachiglio, A.M.; Esposito Abate, R.; Sacco, A.; Pasquale, R.; Fenizia, F.; Lambiase, M.; Morabito, A.; Montanino, A.; Rocco, G.; Romano, C.; et al. Limits and potential of targeted sequencing analysis of liquid biopsy in patients with lung and colon carcinoma. Oncotarget 2016, 7, 66595–66605. [Google Scholar] [CrossRef]
- Pasquale, R.; Forgione, L.; Roma, C.; Fenizia, F.; Bergantino, F.; Rachiglio, A.M.; De Luca, A.; Gallo, M.; Maiello, M.R.; Palumbo, G.; et al. Targeted sequencing analysis of cell-free DNA from metastatic non-small-cell lung cancer patients: Clinical and biological implications. Transl. Lung Cancer Res. 2020, 9, 61–70. [Google Scholar] [CrossRef]
- Chan, H.T.; Nagayama, S.; Chin, Y.M.; Otaki, M.; Hayashi, R.; Kiyotani, K.; Fukunaga, Y.; Ueno, M.; Nakamura, Y.; Low, S.K. Clinical significance of clonal hematopoiesis in the interpretation of blood liquid biopsy. Mol. Oncol. 2020, 14, 1719–1730. [Google Scholar] [CrossRef]
- Sacco, A.; Forgione, L.; Carotenuto, M.; Luca, A.; Ascierto, P.A.; Botti, G.; Normanno, N. Circulating Tumor DNA Testing Opens New Perspectives in Melanoma Management. Cancers 2020, 12, 2914. [Google Scholar] [CrossRef]
- Mack, P.C.; Banks, K.C.; Espenschied, C.R.; Burich, R.A.; Zill, O.A.; Lee, C.E.; Riess, J.W.; Mortimer, S.A.; Talasaz, A.; Lanman, R.B.; et al. Spectrum of driver mutations and clinical impact of circulating tumor DNA analysis in non-small cell lung cancer: Analysis of over 8000 cases. Cancer 2020, 126, 3219–3228. [Google Scholar] [CrossRef]
- Schwaederle, M.; Chattopadhyay, R.; Kato, S.; Fanta, P.T.; Banks, K.C.; Choi, I.S.; Piccioni, D.E.; Ikeda, S.; Talasaz, A.; Lanman, R.B.; et al. Genomic Alterations in Circulating Tumor DNA from Diverse Cancer Patients Identified by Next-Generation Sequencing. Cancer Res. 2017, 77, 5419–5427. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, C.; Thompson, J.C.; Black, T.A.; Katz, S.I.; Fan, R.; Yee, S.S.; Chien, A.L.; Evans, T.L.; Bauml, J.M.; Alley, E.W.; et al. Clinical Implications of Plasma-Based Genotyping With the Delivery of Personalized Therapy in Metastatic Non-Small Cell Lung Cancer. JAMA Oncol. 2019, 5, 173–180. [Google Scholar] [CrossRef]
- Remon, J.; Lacroix, L.; Jovelet, C.; Caramella, C.; Howarth, K.; Plagnol, V.; Rosenfeld, N.; Morris, C.; Mezquita, L.; Pannet, C.; et al. Real-World Utility of an Amplicon-Based Next-Generation Sequencing Liquid Biopsy for Broad Molecular Profiling in Patients With Advanced Non-Small-Cell Lung Cancer. JCO Precis. Oncol. 2019, 3, 1–14. [Google Scholar] [CrossRef]
- Nakamura, Y.; Taniguchi, H.; Ikeda, M.; Bando, H.; Kato, K.; Morizane, C.; Esaki, T.; Komatsu, Y.; Kawamoto, Y.; Takahashi, N.; et al. Clinical utility of circulating tumor DNA sequencing in advanced gastrointestinal cancer: SCRUM-Japan GI-SCREEN and GOZILA studies. Nat. Med. 2020, 26, 1859–1864. [Google Scholar] [CrossRef]
- Pascual, J.; Attard, G.; Bidard, F.C.; Curigliano, G.; De Mattos-Arruda, L.; Diehn, M.; Italiano, A.; Lindberg, J.; Merker, J.D.; Montagut, C.; et al. ESMO recommendations on the use of circulating tumour DNA assays for patients with cancer: A report from the ESMO Precision Medicine Working Group. Ann. Oncol. 2022, 33, 750–768. [Google Scholar] [CrossRef]
- Razavi, P.; Li, B.T.; Brown, D.N.; Jung, B.; Hubbell, E.; Shen, R.; Abida, W.; Juluru, K.; De Bruijn, I.; Hou, C.; et al. High-intensity sequencing reveals the sources of plasma circulating cell-free DNA variants. Nat. Med. 2019, 25, 1928–1937. [Google Scholar] [CrossRef]
- Lanman, B.A.; Allen, J.R.; Allen, J.G.; Amegadzie, A.K.; Ashton, K.S.; Booker, S.K.; Chen, J.J.; Chen, N.; Frohn, M.J.; Goodman, G.; et al. Discovery of a Covalent Inhibitor of KRAS(G12C) (AMG 510) for the Treatment of Solid Tumors. J. Med. Chem. 2020, 63, 52–65. [Google Scholar] [CrossRef]
- Merz, V.; Gaule, M.; Zecchetto, C.; Cavaliere, A.; Casalino, S.; Pesoni, C.; Contarelli, S.; Sabbadini, F.; Bertolini, M.; Mangiameli, D.; et al. Targeting KRAS: The Elephant in the Room of Epithelial Cancers. Front. Oncol. 2021, 11, 638360. [Google Scholar] [CrossRef]
- Rachiglio, A.M.; Fenizia, F.; Piccirillo, M.C.; Galetta, D.; Crino, L.; Vincenzi, B.; Barletta, E.; Pinto, C.; Ferrau, F.; Lambiase, M.; et al. The Presence of Concomitant Mutations Affects the Activity of EGFR Tyrosine Kinase Inhibitors in EGFR-Mutant Non-Small Cell Lung Cancer (NSCLC) Patients. Cancers 2019, 11, 341. [Google Scholar] [CrossRef]
Tumor Type | N° Cases |
---|---|
NSCLC | 374 |
Colorectal | 61 |
Melanoma | 18 |
Cholangiocarcinoma | 21 |
Pancreas | 4 |
Breast | 3 |
Vater’s papilla | 2 |
Hepatocarcinoma | 2 |
Ovarian Cancer | 2 |
Stomach | 1 |
Bladder cancer | 1 |
Parathyroid cancer | 1 |
Cardias adenocarcinoma | 1 |
Tumor Type | Gene | Genomic Alterations | N. Cases |
---|---|---|---|
NSCLC | RET | KIF5B-RET.K23R12.COSF1234 | 2 |
NSCLC | RET | KIF5B-RET.K15R12.COSF1232.1 | 1 |
NSCLC | MET | MET-MET.M13M15 | 1 |
NSCLC | ALK | EML4-ALK.E13A20.COSF408.2 | 1 |
NSCLC | ALK | EML4-ALK.E6aA20.AB374361 | 1 |
N. | Tumor Type | KRAS Variant in cfDNA | ddPCR on PBL | Matched Tissue |
---|---|---|---|---|
10502 | NSCLC | p.G12D; c.35G > A (7.8%) | WT | NA |
10640 | NSCLC | p.G12D; c.35G > A (8.6%) | WT | NA |
10876 | NSCLC | p.G12A; c.35G > C (2.8%) | WT | NA |
10951 | NSCLC | p.G12D; c.35G > A (1.8%) | WT | NA |
10996 | NSCLC | p.G12A; c.35G > C (3.5%) | WT | NA |
11009 | NSCLC | p.G12C; c.34G > T (14.2%) | WT | NA |
11023 | NSCLC | p.G12C; c.34G > T (6.2%) | WT | NA |
11032 | NSCLC | p.Q61H; c.183A > T (2.8%) | WT | p.Q61H; c.183A > T (28.8%) |
11139 | NSCLC | p.G12C; c.35G > A (9.1%) | WT | NA |
11193 | NSCLC | p.G12V; c.35G > T (3.4%) | WT | NA |
11239 | NSCLC | p.G12C; c.34G > T (2.2%) | WT | p.G12C; c.34G > T (23.6%) |
11332 | NSCLC | p.G12V; c.35G > T (20.9%) | WT | NA |
11341 | NSCLC | p.G12V; c.35G > T (23.8%) | WT | p.G12V; c.35G > T (23.7%) |
11503 | NSCLC | p.G12V; c.35G > T (17.6%) | WT | NA |
11581 | NSCLC | p.G12V; c.G35T (1.3%) | WT | NA |
11598 | NSCLC | p.G12D; c.G35A (1.2%) | WT | NA |
11672 | NSCLC | p.G12C; c.34G > T (0.8%) | WT | NA |
11715 | NSCLC | p.G12C; c.34G > T (33%) | WT | p.G12C; c.34G > T (5.6%) |
11998 | NSCLC | p.Q61H; c.183A > C (6.1%) | WT | NA |
13366 | NSCLC | p.G12V; c.35G > T (1.4%) | WT | NA |
13272 | NSCLC | p.G13D; c.38G > A (0.2%) | WT | NA |
13316 | NSCLC | p.Q61H; c.183A > T (0.7%) p.G12V; c.35G > T (0.9%) | WT | NA |
10527c | NSCLC | p.G12R; c.34G > C (3.2%) | WT | p.G12R; c.34G > C (14.4%) |
13244 | NSCLC | p.G12V; c.35G > T (6.9%) | WT | p.G12V; c.35G > T (61.6%) |
12951 | NSCLC | p.G12V; c.35G > T (3.7%) | WT | p.G12V; c.35G > T (47.9%) |
12642 | NSCLC | p.Q61L; c.182A > T (1.4%) | WT | p.Q61L; c.182A > T (17.6%) |
12145 | NSCLC | p.G12S; c.34G > A (1.7%) | WT | NA |
12253 | NSCLC | p.G12C; c.34G > T (7%) | WT | p.G12C; c.34G > T (70.9%) |
10366 | CRC | p.G13D; c.38G > A (13%) | WT | NA |
10745 | CRC | p.G12D; c.35G > A (0.3%) | WT | NA |
10795 | CRC | p.G12D; c.35G > A (14.5%) | WT | NA |
10985 | CRC | p.G13D; c.38G > A (0.12%) | WT | NA |
10314 | CRC | p.G12D; c.35G > A (5.1%) | WT | NA |
11124 | CRC | p.G12S; c.34G > A (2.9%) | WT | NA |
11505 | CRC | p.G13D; c.38G > A (37.3%) | WT | NA |
11576 | CRC | p.G12A; c.G35C (10.4%) | WT | NA |
10963 | CRC | p.G12C; c.34G > T (6.9%) | WT | NA |
10478 | CCA | p.G12D; c.35G > A (3.6%) | WT | NA |
10762 | CCA | p.G12D; c.35G > A (0.5%) | WT | NA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roma, C.; Sacco, A.; Forgione, L.; Esposito Abate, R.; Lambiase, M.; Dotolo, S.; Maiello, M.R.; Frezzetti, D.; Nasti, G.; Morabito, A.; et al. Low Impact of Clonal Hematopoiesis on the Determination of RAS Mutations by Cell-Free DNA Testing in Routine Clinical Diagnostics. Diagnostics 2022, 12, 1956. https://doi.org/10.3390/diagnostics12081956
Roma C, Sacco A, Forgione L, Esposito Abate R, Lambiase M, Dotolo S, Maiello MR, Frezzetti D, Nasti G, Morabito A, et al. Low Impact of Clonal Hematopoiesis on the Determination of RAS Mutations by Cell-Free DNA Testing in Routine Clinical Diagnostics. Diagnostics. 2022; 12(8):1956. https://doi.org/10.3390/diagnostics12081956
Chicago/Turabian StyleRoma, Cristin, Alessandra Sacco, Laura Forgione, Riziero Esposito Abate, Matilde Lambiase, Serena Dotolo, Monica Rosaria Maiello, Daniela Frezzetti, Guglielmo Nasti, Alessandro Morabito, and et al. 2022. "Low Impact of Clonal Hematopoiesis on the Determination of RAS Mutations by Cell-Free DNA Testing in Routine Clinical Diagnostics" Diagnostics 12, no. 8: 1956. https://doi.org/10.3390/diagnostics12081956
APA StyleRoma, C., Sacco, A., Forgione, L., Esposito Abate, R., Lambiase, M., Dotolo, S., Maiello, M. R., Frezzetti, D., Nasti, G., Morabito, A., De Luca, A., & Normanno, N. (2022). Low Impact of Clonal Hematopoiesis on the Determination of RAS Mutations by Cell-Free DNA Testing in Routine Clinical Diagnostics. Diagnostics, 12(8), 1956. https://doi.org/10.3390/diagnostics12081956