Multiple Myeloma Immunophenotype Related to Chromosomal Abnormalities Used in Risk Assessment
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- van Nieuwenhuijzen, N.; Spaan, I.; Raymakers, R.; Peperzak, V. From MGUS to multiple myeloma, a paradigm for clonal evolution of premalignant cells. Cancer Res. 2018, 78, 2449–2456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajkumar, S.V. Multiple myeloma: 2020 update on diagnosis, risk-stratification and management. Am. J. Hematol. 2020, 95, 548–567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pawlyn, C.; Cairns, D.; Kaiser, M.; Striha, A.; Jones, J.; Shah, V.; Davies, F. The relative importance of factors predicting outcome for myeloma patients at different ages: Results from 3894 patients in the Myeloma XI trial. Leukemia 2020, 34, 604–612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palumbo, A.; Avet-Loiseau, H.; Oliva, S.; Lokhorst, H.M.; Goldschmidt, H.; Rosinol, L.; Moreau, P. Revised international staging system for multiple myeloma: A report from international myeloma working group. J. Clin. Oncol. 2015, 33, 2863–2869. [Google Scholar] [CrossRef] [PubMed]
- Dispenzieri, A.; Rajkumar, S.V.; Gertz, M.A.; Lacy, M.Q.; Kyle, R.A.; Greipp, P.R.; Dalton, R.J. Treatment of newly diagnosed multiple myeloma based on Mayo stratification of myeloma and risk-adapted therapy (mSMART): Consensus statement. Mayo Clin. Proc. 2007, 82, 323–341. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.K.; Mikhael, J.R.; Buadi, F.K.; Dingli, D.; Dispenzieri, A.; Fonseca, R.; Bergsagel, P.L. Management of newly diagnosed symptomatic multiple myeloma: Updated Mayo Stratification of Myeloma and Risk-Adapted Therapy (mSMART) consensus guidelines. Mayo Clin. Proc. 2009, 84, 1095–1110. [Google Scholar] [CrossRef] [Green Version]
- Mikhael, J.R.; Dingli, D.; Roy, V.; Reeder, C.B.; Buadi, F.K.; Hayman, S.R.; Lacy, M.Q. Management of newly diagnosed symptomatic multiple myeloma: Updated mayo stratification of myeloma and risk-adapted therapy (mSMART) consensus guidelines 2013. Mayo Clin. Proc. 2013, 88, 360–376. [Google Scholar] [CrossRef] [Green Version]
- Berry, N.K.; Scott, R.J.; Rowlings, P.; Enjeti, A.K. Clinical use of SNP-microarrays for the detection of genome-wide changes in haematological malignancies. Crit. Rev. Oncol. Hematol. 2019, 142, 58–67. [Google Scholar] [CrossRef]
- Saxe, D.; Seo, E.J.; Bergeron, M.B.; Han, J.Y. Recent advances in cytogenetic characterization of multiple myeloma. Int. J. Lab. Hematol. 2019, 41, 5–14. [Google Scholar] [CrossRef] [Green Version]
- Zehentner, B.K.; Hartmann, L.; Johnson, K.R.; Stephenson, C.F.; Chapman, D.B.; de Baca, M.E.; Lim, L. Array-based karyotyping in plasma cell neoplasia after plasma cell enrichment increases detection of genomic aberrations. Am. J. Clin. Pathol. 2012, 138, 579–589. [Google Scholar] [CrossRef] [Green Version]
- Arroz, M.; Came, N.; Lin, P.; Chen, W.; Yuan, C.; Lagoo, A.; Paiva, B. Consensus guidelines on plasma cell myeloma minimal residual disease analysis and reporting. Cytom. Part B Clin. Cytom. 2016, 90, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Persona, E.; Vidriales, M.B.; Mateo, G.; García-Sanz, R.; Mateos, M.V.; de Coca, A.G.; San Miguel, J.F. New criteria to identify risk of progression in monoclonal gammopathy of uncertain significance and smoldering multiple myeloma based on multiparameter flow cytometry analysis of bone marrow plasma cells. Blood 2007, 110, 2586–2592. [Google Scholar] [CrossRef] [PubMed]
- Tarín, F.; López-Castaño, F.; García-Hernández, C.; Beneit, P.; Sarmiento, H.; Manresa, P.; Matutes, E. Multiparameter flow cytometry identification of neoplastic subclones: A new biomarker in monoclonal gammopathy of undetermined significance and multiple myeloma. Acta Haematol. 2019, 141, 1–6. [Google Scholar] [CrossRef]
- Suzuki, K.; Yano, S.; Shimada, T.; Yahagi, Y.; Ogasawara, Y.; Sugiyama, K.; Aiba, K. Prognostic value of expression of CD45 and CD49d in newly diagnosed of multiple myeloma. Int. J. Myeloma 2014, 4, 21–27. [Google Scholar]
- Guo, J.; Su, J.; He, Q.; Li, X.; Zhao, Y.; Gu, S.; Chang, C. The prognostic impact of multiparameter flow cytometry immunophenotyping and cytogenetic aberrancies in patients with multiple myeloma. Hematology 2016, 21, 152–161. [Google Scholar] [CrossRef] [Green Version]
- Arana, P.; Paiva, B.; Cedena, M.T.; Puig, N.; Cordon, L.; Vidriales, M.B.; San Miguel, J.F. Prognostic value of antigen expression in multiple myeloma: A PETHEMA/GEM study on 1265 patients enrolled in four consecutive clinical trials. Leukemia 2018, 32, 971–978. [Google Scholar] [CrossRef]
- Gupta, S.; Karandikar, N.J.; Ginader, T.; Bellizzi, A.M.; Holman, C.J. Flow cytometric aberrancies in plasma cell myeloma and MGUS—Correlation with laboratory parameters. Cytom. Part B Clin. Cytom. 2018, 94, 500–508. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, T.; Ri, M.; Kinoshita, S.; Narita, T.; Totani, H.; Ashour, R.; Iida, S. Low expression of neural cell adhesion molecule, CD56, is associated with low efficacy of bortezomib plus dexamethasone therapy in multiple myeloma. PLoS ONE 2018, 13, e0196780. [Google Scholar] [CrossRef] [Green Version]
- Nijhof, I.S.; Casneuf, T.; Van Velzen, J.; van Kessel, B.; Axel, A.E.; Syed, K.; van de Donk, N.W. CD38 expression and complement inhibitors affect response and resistance to daratumumab therapy in myeloma. Blood 2016, 128, 959–970. [Google Scholar] [CrossRef] [Green Version]
- Paiva, B.; Puig, N.; Cedena, M.T.; de Jong, B.G.; Ruiz, Y.; Rapado, I.; San-Miguel, J.F. Differentiation stage of myeloma plasma cells: Biological and clinical significance on behalf of GEM (Grupo Español de MM)/PETHEMA (Programa para el Estudio de la Terapéutica en Hemopatías Malignas) cooperative study groups Europe PMC Funders Group. Leukemia 2017, 31, 382–392. [Google Scholar] [CrossRef] [Green Version]
- Iriyama, N.; Miura, K.; Hatta, Y.; Uchino, Y.; Kurita, D.; Takahashi, H.; Takei, M. Plasma cell maturity as a predictor of prognosis in multiple myeloma. Med. Oncol. 2016, 33, 87. [Google Scholar] [CrossRef] [PubMed]
- Gonsalves, W.I.; Rajkumar, S.V.; Dispenzieri, A.; Dingli, D.; Timm, M.M.; Morice, W.G.; Kumar, S.K. Quantification of circulating clonal plasma cells via multiparametric flow cytometry identifies patients with smoldering multiple myeloma at high risk of progression. Leukemia 2017, 31, 130–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peceliunas, V.; Janiulioniene, A.; Matuzeviciene, R.; Zvirblis, T.; Griskevicius, L. Circulating plasma cells predict the outcome of relapsed or refractory multiple myeloma. Leuk. Lymphoma 2012, 53, 641–647. [Google Scholar] [CrossRef]
- Uxa, S.; Castillo-Binder, P.; Kohler, R.; Stangner, K.; Müller, G.A.; Engeland, K. Ki-67 gene expression. Cell Death Differ. 2021, 28, 3357–3370. [Google Scholar] [CrossRef] [PubMed]
- Colella, S.; Yau, C.; Taylor, J.M.; Mirza, G.; Butler, H.; Clouston, P.; Ragoussis, J. QuantiSNP: An Objective Bayes Hidden-Markov Model to detect and accurately map copy number variation using SNP genotyping data. Nucleic Acids Res. 2007, 35, 2013–2025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walker, B.A.; Mavrommatis, K.; Wardell, C.P.; Ashby, T.C.; Bauer, M.; Davies, F.; Morgan, G. A high-risk, Double-Hit, group of newly diagnosed myeloma identified by genomic analysis. Leukemia 2019, 33, 159–170. [Google Scholar] [CrossRef]
- Pojero, F.; Casuccio, A.; Parrino, M.F.; Cardinale, G.; Colonna Romano, G.; Caruso, C.; Gervasi, F. Old and new immunophenotypic markers in multiple myeloma for discrimination of responding and relapsing patients: The importance of “normal” residual plasma cell analysis. Cytom. Part B Clin. Cytom. 2015, 88, 165–182. [Google Scholar] [CrossRef] [Green Version]
- Guikema, J.E.J.; Hovenga, S.; Vellenga, E.; Conradie, J.J.; Abdulahad, W.H.; Bekkema, R.; Bos, N.A. CD27 is heterogeneously expressed in multiple myeloma: Low CD27 expression in patients with high-risk disease. Br. J. Haematol. 2003, 121, 36–43. [Google Scholar] [CrossRef] [Green Version]
- Zheng, W.; Liu, D.; Fan, X.; Powers, L.; Goswami, M.; Hu, Y.; Wang, S.A. Potential therapeutic biomarkers in plasma cell myeloma: A flow cytometry study. Cytom. Part B Clin. Cytom. 2013, 84, 222–228. [Google Scholar] [CrossRef]
- Raja, K.R.M.; Kovarova, L.; Hajek, R. Review of phenotypic markers used in flow cytometric analysis of MGUS and MM, and applicability of flow cytometry in other plasma cell disorders. Br. J. Haematol. 2010, 149, 334–351. [Google Scholar] [CrossRef]
- Gonsalves, W.I.; Timm, M.M.; Rajkumar, S.V.; Morice, W.G.; Dispenzieri, A.; Buadi, F.K.; Kumar, S.K. The prognostic significance of CD45 expression by clonal bone marrow plasma cells in patients with newly diagnosed multiple myeloma. Leuk. Res. 2016, 44, 32–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mateo, G.; Castellanos, M.; Rasillo, A.; Gutiérrez, N.C.; Montalbán, M.A.; Martín, M.L.; San Miguel, J.F. Genetic abnormalities and patterns of antigenic expression in multiple myeloma. Clin. Cancer Res. 2005, 11, 3661–3667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klimienė, I.; Radzevičius, M.; Matuzevičienė, R.; Sinkevič-Belliot, K.; Kučinskienė, Z.A.; Pečeliūnas, V. Adhesion molecule immunophenotype of bone marrow multiple myeloma plasma cells impacts the presence of malignant circulating plasma cells in peripheral blood. Int. J. Lab. Hematol. 2021, 43, 403–408. [Google Scholar] [CrossRef] [PubMed]
- de Pontes, R.M.; Flores-Montero, J.; Sanoja-Flores, L.; Puig, N.; de Magalhães, R.J.P.; Corral-Mateos, A.; Orfao, A. B-cell regeneration profile and minimal residual disease status in bone marrow of treated multiple myeloma patients. Cancers 2021, 13, 1704. [Google Scholar] [CrossRef]
- Paiva, B.; Pérez-Andrés, M.; Vídriales, M.B.; Almeida, J.; de Las Heras, N.; Mateos, M.V.; Orfao, A. Competition between clonal plasma cells and normal cells for potentially overlapping bone marrow niches is associated with a progressively altered cellular distribution in MGUS vs myeloma. Leukemia 2011, 25, 697–706. [Google Scholar] [CrossRef] [Green Version]
- Rawstron, A.C.; Smith, A.; de Tute, R.M.; Painter, D.; Roman, E.; Owen, R.G. Validation of Plasma Cell Immunophenotype As a Biomarker to Identify High-Risk Smoldering Myeloma. Blood 2016, 128, 4451. [Google Scholar] [CrossRef]
Characteristic | Number of Patients (%) Total n = 73 |
---|---|
Male | 30 (41.1%) |
Female | 43 (58.9%) |
R-ISS stage 1 | 10 (13.7%) |
R-ISS stage 2 | 42 (57.5%) |
R-ISS stage 3 | 19 (26.0%) |
m-SMARTA * standard risk | 35 (47.9%) |
m-SMARTA high risk | 38 (52.1%) |
Normal karyotype | 19 (26.0%) |
Standard risk abnormalities | 30 (41.1%) |
1 high risk ** abnormality | 21 (28.8%) |
2 high risk abnormalities | 3 (4.1%) |
IgG | 36 (49.3%) |
IgA | 15 (20.5%) |
Unknown or light-chain only | 22 (30.1%) |
Mean (range) | |
Age at diagnosis | 67 (42–84) |
ECOG/WHO performance status | 1 (0–4) |
HGB (g/L) | 110 (67–185) |
Creatinine | 92 (38–920) |
Beta-2-microglobulin | 4.9 (1.38–47.41) |
Albumin | 40 (15.9–54.7) |
LDH | 199 (104–697) |
Ca2+ | 1.22 (1.04–2.61) |
Marker Expression (%, MFI), Median (total = 73 patients) | Hyperdiploidy (Non-Isolated) 20 (27%) | Hyperdiploidy (Isolated) 10 (14%) | 1q Gain Detected 16 (22%) | 1q Gain not Detected 57 (78%) | t(4;14) Detected 7 (10%) | t(4;14) not Detected 66 (90%) | Chromosome 14 Deletion Detected 8 (11%) | Chromosome 14 Deletion not Detected 65 (89%) | 1p Deletion Detected 9 (12%) | del1p not Detected 64 (88%) |
---|---|---|---|---|---|---|---|---|---|---|
CD27 % | 64 | 82 | 62 | 77 | 56 | 77 | 69.5 | 74 | 43 *↓ | 78 *↑ |
CD27 MFI | 1313 | 2523 | 1118 *↓ | 2532 *↑ | 1123 | 2442 | 2624 | 2323 | 1123 *↓ | 2619 *↑ |
CD38 MFI | 11,146 | 13,033 | 10,679 | 12594 | 12,006 | 11,848 | 10,726 | 12,006 | 10,965 | 11,945 |
CD45 % | 48.5 | 62.5 | 32 | 42 | 30 | 41 | 31.5 | 41.5 | 42 | 40.5 |
CD45 MFI | 1162 | 1524 | 1089 | 900 | 1089 | 908 | 865 | 919 | 916 | 911 |
CD56 % | 100 | 100 | 100 | 98 | 100 | 97 | 95 | 99 | 100 | 97.5 |
CD56 MFI | 19,210 | 21,590 | 11,271 | 9452 | 11,645 | 8885 | 6634 | 11,314 | 11,271 | 9966 |
CD117 % | 31 | 61 | 2 *↓ | 20 *↑ | 1 *↓ | 21 *↑ | 1 *↓ | 19 *↑ | 4 | 21 |
CD117 MFI | 929 | 1494 | 326 *↓ | 657 *↑ | 225 | 649 | 215 *↓ | 632 *↑ | 408 | 649 |
CD138 MFI | 45,732 | 47,978 | 39,489 | 38436 | 31,296 | 39,003 | 34,173 | 39,321 | 37,720 | 39,338 |
MMPC % in BM | 16.7 *↑ | 4.1 *↓ | 7.3 | 8,4 | 6.1 | 7.0 | 21.8 *↑ | 7.2 *↓ | 20.5 *↑ | 6.0 *↓ |
NPC % in BM | 0.026 *↓ | 0.068 *↑ | 0.013 *↓ | 0.033 *↑ | 0.012 *↓ | 0.033 *↑ | 0.012 | 0.031 | 0.012 *↓ | 0.035 *↑ |
MMPC/NPC ratio | 538.2 *↑ | 71.3 *↓ | 566.3 *↑ | 168.5 *↓ | 317.0 | 189.0 | 1145.7 *↑ | 168.5 *↓ | 1938.6 *↑ | 157.7 *↓ |
CD56+ T/NK cell % | 29.9 *↑ | 21.4 *↓ | 25.3 | 24,6 | 26.3 | 24.6 | 26.8 | 24.5 | 32.9 *↑ | 24.3 *↓ |
CD27+ T cells percentage | 40 *↓ | 47 *↑ | 41 | 44 | 41.3 | 43.9 | 43.7 | 43.8 | 41.3 | 44.1 |
B lymph percentage | 6.8 | 11.7 | 6.8 | 9,4 | 11.4 | 8.6 | 4.7*↓ | 9.4*↑ | 5.6 | 9.1 |
Beta-2-microglobulin | 6.4 *↑ | 3.3 *↓ | 5.8 | 4,5 | 5.7 | 4.7 | 7.4 | 4.9 | 14.3 *↑ | 4.1 *↓ |
Hemoglobin (g/L) | 97.5 *↓ | 123 *↑ | 96.5 *↓ | 115 *↑ | 97 *↓ | 113 *↑ | 100.5 | 110 | 98 *↓ | 113 *↑ |
Marker Expression (%, MFI), Median (Total = 73 Patients) | MSMART (2007) High Risk 35 (48%) | MSMART (2007) Standard Risk 38 (52%) | R-ISS Stage | ISS stage | ||||
---|---|---|---|---|---|---|---|---|
1 10 (14%) | 2 42 (58%) | 3 19 (26%) | 1 25 (34%) | 2 16 (22%) | 3 30 (41%) | |||
CD27 % | 64 *↓ | 85 *↑ | 86 *↑ | 78 *↑ | 55 *↓ | 74 *↑ | 94 *↑ | 57 *↓ |
CD27 MFI | 2017 | 2626 | 2442 *↑ | 2813 *↑ | 1103 *↓ | 2531 *↑ | 3897 *↑ | 1373 *↓ |
CD38 MFI | 11,667 | 11,884 | 14,560 *↑ | 12,783 *↑↓ | 10,238 *↓ | 14,895 *↑ | 12,440 *↓↑ | 10,106 *↓ |
CD45 % | 34 | 44 | 36 | 44 | 37 | 36 | 38 | 45 |
CD45 MFI | 919 | 900 | 794 | 1129 | 919 | 871 | 972 | 1006 |
CD56 % | 98.5 | 98 | 99 | 97 | 99.5 | 99 | 93 | 99 |
CD56 MFI | 10,097 | 11,691 | 15,159 | 6622 | 11,050 | 11,691 | 9903 | 9017 |
CD117 % | 13 | 32 | 41 | 6 | 22 | 23 | 4 | 18 |
CD117 MFI | 451 | 781 | 1111 | 411 | 691 | 693 | 291 | 613 |
CD138 MFI | 37,536 | 41,261 | 36,217 *↑ | 41,261 *↓↑ | 27,662 *↓ | 40,490 | 38,792 | 32,820 |
MMPC % in BM | 8.4 *↑ | 2.5 *↓ | 3.5 *↓ | 6.8 *↑ | 14.4 *↑ | 3.5 *↓ | 2.6 *↓ | 16.7 *↑ |
NPC % in BM | 0.022 *↓ | 0.044 *↑ | 0.041 *↑ | 0.034 *↓↑ | 0.013 *↓ | 0.042 | 0.032 | 0.022 |
MMPC/NPC ratio | 317 *↑ | 88.1 *↓ | 42 *↓ | 169 *↑ | 501 *↑ | 65.7 *↓ | 140.6 *↓ | 435.2 *↑ |
CD56+ T/NK cell percentage | 26 *↑ | 23.5 *↓ | 28.8 | 24 | 30 | 25.9 | 22.9 | 28.0 |
B lymph percentage | 6.7 | 9.7 | 13.8 *↑ | 9.4 *↓↑ | 5.5 *↓ | 9.9 | 7.4 | 5.9 |
Beta-2-microglobulin | 5.8 | 3.7 | ||||||
Hemoglobin (g/L) | 99.5 *↓ | 116 *↑ | 119.5 *↑ | 113 *↓↑ | 94 *↓ | 124 *↑ | 118 *↓↑ | 97 *↓ |
Albumin | 40.1 | 39.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radzevičius, M.; Dirsė, V.; Klimienė, I.; Matuzevičienė, R.; Kučinskienė, Z.A.; Pečeliūnas, V. Multiple Myeloma Immunophenotype Related to Chromosomal Abnormalities Used in Risk Assessment. Diagnostics 2022, 12, 2049. https://doi.org/10.3390/diagnostics12092049
Radzevičius M, Dirsė V, Klimienė I, Matuzevičienė R, Kučinskienė ZA, Pečeliūnas V. Multiple Myeloma Immunophenotype Related to Chromosomal Abnormalities Used in Risk Assessment. Diagnostics. 2022; 12(9):2049. https://doi.org/10.3390/diagnostics12092049
Chicago/Turabian StyleRadzevičius, Mantas, Vaidas Dirsė, Indrė Klimienė, Rėda Matuzevičienė, Zita Aušrelė Kučinskienė, and Valdas Pečeliūnas. 2022. "Multiple Myeloma Immunophenotype Related to Chromosomal Abnormalities Used in Risk Assessment" Diagnostics 12, no. 9: 2049. https://doi.org/10.3390/diagnostics12092049