Pediatric Diffuse Midline Gliomas: An Unfinished Puzzle
Abstract
:1. Introduction
2. Diagnosis
2.1. Clinical Features
2.2. Biological Landscape
2.3. Radiological Findings
3. Current Treatments
4. Target Therapies for DMG
Mechanisms of Targeting DMG: Where We Are
5. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hayden, E.; Holliday, H.; Lehmann, R.; Khan, A.; Tsoli, M.; Rayner, B.S.; Ziegler, D.S. Therapeutic Targets in Diffuse Midline Gliomas—An Emerging Landscape. Cancers 2021, 13, 6251. [Google Scholar] [CrossRef] [PubMed]
- Warren, K.E. Diffuse Intrinsic Pontine Glioma: Poised for Progress. Front. Oncol. 2012, 2, 205. [Google Scholar] [CrossRef]
- Rashed, W.M.; Maher, E.; Adel, M.; Saber, O.; Zaghloul, M.S. Pediatric Diffuse Intrinsic Pontine Glioma: Where Do We Stand? Cancer Metastasis Rev. 2019, 38, 759–770. [Google Scholar] [CrossRef] [PubMed]
- Schwartzentruber, J.; Korshunov, A.; Liu, X.-Y.; Jones, D.T.W.; Pfaff, E.; Jacob, K.; Sturm, D.; Fontebasso, A.M.; Quang, D.-A.K.; Tönjes, M.; et al. Driver Mutations in Histone H3.3 and Chromatin Remodelling Genes in Paediatric Glioblastoma. Nature 2012, 482, 226–231. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, R.S.; Kulanthaivelu, K.; Kathrani, N.; Kotwal, A.; Bhat, M.D.; Saini, J.; Prasad, C.; Chakrabarti, D.; Santosh, V.; Uppar, A.M.; et al. Prediction of H3K27M Mutation Status of Diffuse Midline Gliomas Using MRI Features. J. Neuroimaging 2021, 31, 1201–1210. [Google Scholar] [CrossRef]
- Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.K.; Pfister, S.M.; Reifenberger, G.; et al. The2021 WHO Classification of Tumors of the Central Nervous System: A Summary. Neuro-Oncology 2021, 23, 1231–1251. [Google Scholar] [CrossRef]
- Khuong-Quang, D.-A.; Buczkowicz, P.; Rakopoulos, P.; Liu, X.-Y.; Fontebasso, A.M.; Bouffet, E.; Bartels, U.; Albrecht, S.; Schwartzentruber, J.; Letourneau, L.; et al. K27M Mutation in Histone H3.3 Defines Clinically and Biologically Distinct Subgroups of Pediatric Diffuse Intrinsic Pontine Gliomas. Acta Neuropathol. 2012, 124, 439–447. [Google Scholar] [CrossRef]
- Werbrouck, C.; Evangelista, C.C.S.; Lobón-Iglesias, M.-J.; Barret, E.; Le Teuff, G.; Merlevede, J.; Brusini, R.; Kergrohen, T.; Mondini, M.; Bolle, S.; et al. TP53 Pathway Alterations Drive Radioresistance in Diffuse Intrinsic Pontine Gliomas (DIPG). Clin. Cancer Res. 2019, 25, 6788–6800. [Google Scholar] [CrossRef]
- Jones, C.; Baker, S.J. Unique Genetic and Epigenetic Mechanisms Driving Paediatric Diffuse High-Grade Glioma. Nat. Rev. Cancer 2014, 14, 651–661. [Google Scholar] [CrossRef]
- Louis, D.N.; Giannini, C.; Capper, D.; Paulus, W.; Figarella-Branger, D.; Lopes, M.B.; Batchelor, T.T.; Cairncross, J.G.; van den Bent, M.; Wick, W.; et al. CIMPACT-NOW Update 2: Diagnostic Clarifications for Diffuse Midline Glioma, H3 K27M-Mutant and Diffuse Astrocytoma/Anaplastic Astrocytoma, IDH-Mutant. Acta Neuropathol. 2018, 135, 639–642. [Google Scholar] [CrossRef]
- Caretti, V.; Bugiani, M.; Freret, M.; Schellen, P.; Jansen, M.; van Vuurden, D.; Kaspers, G.; Fisher, P.G.; Hulleman, E.; Wesseling, P.; et al. Subventricular Spread of Diffuse Intrinsic Pontine Glioma. Acta Neuropathol. 2014, 128, 605–607. [Google Scholar] [CrossRef]
- Benesch, M.; Wagner, S.; Berthold, F.; Wolff, J.E.A. Primary Dissemination of High-Grade Gliomas in Children: Experiences from Four Studies of the Pediatric Oncology and Hematology Society of the German Language Group (GPOH). J. Neurooncol. 2005, 72, 179–183. [Google Scholar] [CrossRef]
- Wagner, S.; Benesch, M.; Berthold, F.; Gnekow, A.K.; Rutkowski, S.; Sträter, R.; Warmuth-Metz, M.; Kortmann, R.-D.; Pietsch, T.; Wolff, J.E.A. Secondary Dissemination in Children with High-Grade Malignant Gliomas and Diffuse Intrinsic Pontine Gliomas. Br. J. Cancer 2006, 95, 991–997. [Google Scholar] [CrossRef]
- Chan, K.-M.; Fang, D.; Gan, H.; Hashizume, R.; Yu, C.; Schroeder, M.; Gupta, N.; Mueller, S.; James, C.D.; Jenkins, R.; et al. The Histone H3.3K27M Mutation in Pediatric Glioma Reprograms H3K27 Methylation and Gene Expression. Genes Dev. 2013, 27, 985–990. [Google Scholar] [CrossRef]
- Bender, S.; Tang, Y.; Lindroth, A.M.; Hovestadt, V.; Jones, D.T.W.; Kool, M.; Zapatka, M.; Northcott, P.A.; Sturm, D.; Wang, W.; et al. Reduced H3K27me3 and DNA Hypomethylation Are Major Drivers of Gene Expression in K27M Mutant Pediatric High-Grade Gliomas. Cancer Cell 2013, 24, 660–672. [Google Scholar] [CrossRef]
- Castel, D.; Philippe, C.; Calmon, R.; Le Dret, L.; Truffaux, N.; Boddaert, N.; Pagès, M.; Taylor, K.R.; Saulnier, P.; Lacroix, L.; et al. Histone H3F3A and HIST1H3B K27M mutations define two subgroups of diffuse intrinsic pontine gliomas with different prognosis and phenotypes. Acta Neuropathol. 2015, 130, 815–827. [Google Scholar] [CrossRef]
- Mackay, A.; Burford, A.; Carvalho, D.; Izquierdo, E.; Fazal-Salom, J.; Taylor, K.R.; Bjerke, L.; Clarke, M.; Vinci, M.; Nandhabalan, M.; et al. Integrated Molecular Meta-Analysis of 1000 Pediatric High-Grade and Diffuse Intrinsic Pontine Glioma. Cancer Cell 2017, 32, 520–537.e5. [Google Scholar] [CrossRef]
- Buczkowicz, P.; Hawkins, C. Pathology, Molecular Genetics, and Epigenetics of Diffuse Intrinsic Pontine Glioma. Front. Oncol. 2015, 5, 147. [Google Scholar] [CrossRef]
- Puget, S.; Philippe, C.; Bax, D.A.; Job, B.; Varlet, P.; Junier, M.-P.; Andreiuolo, F.; Carvalho, D.; Reis, R.; Guerrini-Rousseau, L.; et al. Mesenchymal Transition and PDGFRA Amplification/Mutation Are Key Distinct Oncogenic Events in Pediatric Diffuse Intrinsic Pontine Gliomas. PLoS ONE 2012, 7, e30313. [Google Scholar] [CrossRef]
- Buczkowicz, P.; Bartels, U.; Bouffet, E.; Becher, O.; Hawkins, C. Histopathological Spectrum of Paediatric Diffuse Intrinsic Pontine Glioma: Diagnostic and Therapeutic Implications. Acta Neuropathol. 2014, 128, 573–581. [Google Scholar] [CrossRef] [Green Version]
- Paugh, B.S.; Broniscer, A.; Qu, C.; Miller, C.P.; Zhang, J.; Tatevossian, R.G.; Olson, J.M.; Geyer, J.R.; Chi, S.N.; da Silva, N.S.; et al. Genome-Wide Analyses Identify Recurrent Amplifications of Receptor Tyrosine Kinases and Cell-Cycle Regulatory Genes in Diffuse Intrinsic Pontine Glioma. JCO 2011, 29, 3999–4006. [Google Scholar] [CrossRef] [PubMed]
- Castel, D.; Philippe, C.; Kergrohen, T.; Sill, M.; Merlevede, J.; Barret, E.; Puget, S.; Sainte-Rose, C.; Kramm, C.M.; Jones, C.; et al. Transcriptomic and epigenetic profiling of ‘diffuse midline gliomas, H3 K27M-mutant’ discriminate two subgroups based on the type of histone H3 mutated and not supratentorial or infratentorial location. Acta Neuropathol. Commun. 2018, 6, 117. [Google Scholar] [CrossRef] [PubMed]
- Zarghooni, M.; Bartels, U.; Lee, E.; Buczkowicz, P.; Morrison, A.; Huang, A.; Bouffet, E.; Hawkins, C. Whole-Genome Profiling of Pediatric Diffuse Intrinsic Pontine Gliomas Highlights Platelet-Derived Growth Factor Receptor α and Poly (ADP-Ribose) Polymerase As Potential Therapeutic Targets. JCO 2010, 28, 1337–1344. [Google Scholar] [CrossRef] [PubMed]
- Buczkowicz, P.; Hoeman, C.; Rakopoulos, P.; Pajovic, S.; Letourneau, L.; Dzamba, M.; Morrison, A.; Lewis, P.; Bouffet, E.; Bartels, U.; et al. Genomic Analysis of Diffuse Intrinsic Pontine Gliomas Identifies Three Molecular Subgroups and Recurrent Activating ACVR1 Mutations. Nat. Genet. 2014, 46, 451–456. [Google Scholar] [CrossRef]
- The St. Jude Children’s Research Hospital–Washington University Pediatric Cancer Genome Project. The Genomic Landscape of Diffuse Intrinsic Pontine Glioma and Pediatric Non-Brainstem High-Grade Glioma. Nat. Genet. 2014, 46, 444–450. [Google Scholar] [CrossRef]
- Nicolaides TP, T.A. Targeted Therapy for MAPK Alterations in Pediatric Gliomas. Brain Disord. Ther. 2015, 4, 1–5. [Google Scholar] [CrossRef]
- Saratsis, A.M.; Kambhampati, M.; Snyder, K.; Yadavilli, S.; Devaney, J.M.; Harmon, B.; Hall, J.; Raabe, E.H.; An, P.; Weingart, M.; et al. Comparative Multidimensional Molecular Analyses of Pediatric Diffuse Intrinsic Pontine Glioma Reveals Distinct Molecular Subtypes. Acta Neuropathol. 2014, 127, 881–895. [Google Scholar] [CrossRef]
- Barkovich, A.J.; Krischer, J.; Kun, L.E.; Packer, R.; Zimmerman, R.A.; Freeman, C.R.; Wara, W.M.; Albright, L.; Allen, J.C.; Hoffman, H.J. of Brain Stem Gliomas: A Classification System Based on Magnetic Resonance Imaging. Pediatr. Neurosurg. 1990, 16, 73–83. [Google Scholar] [CrossRef]
- Fonseca, A.; Afzal, S.; Bowes, L.; Crooks, B.; Larouche, V.; Jabado, N.; Perreault, S.; Johnston, D.L.; Zelcer, S.; Fleming, A.; et al. Pontine Gliomas a 10-Year Population-Based Study: A Report from The Canadian Paediatric Brain Tumour Consortium (CPBTC). J. Neurooncol. 2020, 149, 45–54. [Google Scholar] [CrossRef]
- Prabhu, S.P.; Ng, S.; Vajapeyam, S.; Kieran, M.W.; Pollack, I.F.; Geyer, R.; Haas-Kogan, D.; Boyett, J.M.; Kun, L.; Poussaint, T.Y. DTI Assessment of the Brainstem White Matter Tracts in Pediatric BSG before and after Therapy: A Report from the Pediatric Brain Tumor Consortium. Child‘s Nerv. Syst. 2011, 27, 11–18. [Google Scholar] [CrossRef] [Green Version]
- Giagnacovo, M.; Antonelli, M.; Biassoni, V.; Schiavello, E.; Warmuth-Metz, M.; Buttarelli, F.R.; Modena, P.; Massimino, M. Retrospective Analysis on the Consistency of MRI Features with Histological and Molecular Markers in Diffuse Intrinsic Pontine Glioma (DIPG). Child‘s Nerv. Syst. 2020, 36, 697–704. [Google Scholar] [CrossRef] [PubMed]
- Erker, C.; Tamrazi, B.; Poussaint, T.Y.; Mueller, S.; Mata-Mbemba, D.; Franceschi, E.; Brandes, A.A.; Rao, A.; Haworth, K.B.; Wen, P.Y.; et al. Response Assessment in Paediatric High-Grade Glioma: Recommendations from the Response Assessment in Pediatric Neuro-Oncology (RAPNO) Working Group. Lancet Oncol. 2020, 21, e317–e329. [Google Scholar] [CrossRef]
- Morana, G.; Tortora, D.; Bottoni, G.; Puntoni, M.; Piatelli, G.; Garibotto, F.; Barra, S.; Giannelli, F.; Cistaro, A.; Severino, M.; et al. Correlation of Multimodal 18 F-DOPA PET and Conventional MRI with Treatment Response and Survival in Children with Diffuse Intrinsic Pontine Gliomas. Theranostics 2020, 10, 11881–11891. [Google Scholar] [CrossRef] [PubMed]
- Zukotynski, K.A.; Fahey, F.H.; Kocak, M.; Alavi, A.; Wong, T.Z.; Treves, S.T.; Shulkin, B.L.; Haas-Kogan, D.A.; Geyer, J.R.; Vajapeyam, S.; et al. Evaluation of 18 F-FDG PET and MRI Associations in Pediatric Diffuse Intrinsic Brain Stem Glioma: A Report from the Pediatric Brain Tumor Consortium. J. Nucl. Med. 2011, 52, 188–195. [Google Scholar] [CrossRef] [PubMed]
- Duffner, P.K.; Cohen, M.E.; Freeman, A.I. Pediatric Brain Tumors: An Overview. CA Cancer J. Clin. 1985, 35, 287–301. [Google Scholar] [CrossRef]
- Cohen, M.E.; Duffner, P.K.; Heffner, R.R.; Lacey, D.J.; Brecher, M. Prognostic Factors in Brainstem Gliomas. Neurology 1986, 36, 602. [Google Scholar] [CrossRef]
- Broniscer, A.; Laningham, F.H.; Sanders, R.P.; Kun, L.E.; Ellison, D.W.; Gajjar, A. Young Age May Predict a Better Outcome for Children with Diffuse Pontine Glioma. Cancer 2008, 113, 566–572. [Google Scholar] [CrossRef]
- Ueoka, D.I.; Nogueira, J.; Campos, J.C.; Filho, P.M.; Ferman, S.; Lima, M.A. Brainstem Gliomas—Retrospective Analysis of 86 Patients. J. Neurol. Sci. 2009, 281, 20–23. [Google Scholar] [CrossRef]
- Hoffman, L.M.; Veldhuijzen van Zanten, S.E.M.; Colditz, N.; Baugh, J.; Chaney, B.; Hoffmann, M.; Lane, A.; Fuller, C.; Miles, L.; Hawkins, C.; et al. Clinical, Radiologic, Pathologic, and Molecular Characteristics of Long-Term Survivors of Diffuse Intrinsic Pontine Glioma (DIPG): A Collaborative Report From the International and European Society for Pediatric Oncology DIPG Registries. JCO 2018, 36, 1963–1972. [Google Scholar] [CrossRef]
- Vanan, M.I.; Eisenstat, D.D. DIPG in Children—What Can We Learn from the Past? Front. Oncol. 2015, 5, 237. [Google Scholar] [CrossRef] [Green Version]
- Sedlacik, J.; Winchell, A.; Kocak, M.; Loeffler, R.B.; Broniscer, A.; Hillenbrand, C.M. MR Imaging Assessment of Tumor Perfusion and 3D Segmented Volume at Baseline, during Treatment, and at Tumor Progression in Children with Newly Diagnosed Diffuse Intrinsic Pontine Glioma. AJNR Am. J. Neuroradiol. 2013, 34, 1450–1455. [Google Scholar] [CrossRef] [PubMed]
- Hipp, S.J.; Steffen-Smith, E.; Hammoud, D.; Shih, J.H.; Bent, R.; Warren, K.E. Predicting Outcome of Children with Diffuse Intrinsic Pontine Gliomas Using Multiparametric Imaging. Neuro-Oncology 2011, 13, 904–909. [Google Scholar] [CrossRef] [PubMed]
- Löbel, U.; Sedlacik, J.; Reddick, W.E.; Kocak, M.; Ji, Q.; Broniscer, A.; Hillenbrand, C.M.; Patay, Z. Quantitative Diffusion-Weighted and Dynamic Susceptibility-Weighted Contrast-Enhanced Perfusion MR Imaging Analysis of T2 Hypointense Lesion Components in Pediatric Diffuse Intrinsic Pontine Glioma. AJNR Am. J. Neuroradiol. 2011, 32, 315–322. [Google Scholar] [CrossRef] [PubMed]
- Cooney, T.M.; Cohen, K.J.; Guimaraes, C.V.; Dhall, G.; Leach, J.; Massimino, M.; Erbetta, A.; Chiapparini, L.; Malbari, F.; Kramer, K.; et al. Response Assessment in Diffuse Intrinsic Pontine Glioma: Recommendations from the Response Assessment in Pediatric Neuro-Oncology (RAPNO) Working Group. Lancet Oncol. 2020, 21, e330–e336. [Google Scholar] [CrossRef]
- Steffen-Smith, E.A.; Venzon, D.J.; Bent, R.S.; Hipp, S.J.; Warren, K.E. Single- and Multivoxel Proton Spectroscopy in Pediatric Patients With Diffuse Intrinsic Pontine Glioma. Int. J. Radiat. Oncol. Biol. Phys. 2012, 84, 774–779. [Google Scholar] [CrossRef]
- Poussaint, T.Y.; Kocak, M.; Vajapeyam, S.; Packer, R.I.; Robertson, R.L.; Geyer, R.; Haas-Kogan, D.; Pollack, I.F.; Vezina, G.; Zimmerman, R.; et al. MRI as a Central Component of Clinical Trials Analysis in Brainstem Glioma: A Report from the Pediatric Brain Tumor Consortium (PBTC). Neuro-Oncology 2011, 13, 417–427. [Google Scholar] [CrossRef]
- Sethi, R.; Allen, J.; Donahue, B.; Karajannis, M.; Gardner, S.; Wisoff, J.; Kunnakkat, S.; Mathew, J.; Zagzag, D.; Newman, K.; et al. Prospective Neuraxis MRI Surveillance Reveals a High Risk of Leptomeningeal Dissemination in Diffuse Intrinsic Pontine Glioma. J. Neurooncol. 2011, 102, 121–127. [Google Scholar] [CrossRef]
- Leach, J.L.; Roebker, J.; Schafer, A.; Baugh, J.; Chaney, B.; Fuller, C.; Fouladi, M.; Lane, A.; Doughman, R.; Drissi, R.; et al. MR Imaging Features of Diffuse Intrinsic Pontine Glioma and Relationship to Overall Survival: Report from the International DIPG Registry. Neuro-Oncology 2020, 22, 1647–1657. [Google Scholar] [CrossRef]
- Yamasaki, F.; Kurisu, K.; Kajiwara, Y.; Watanabe, Y.; Takayasu, T.; Akiyama, Y.; Saito, T.; Hanaya, R.; Sugiyama, K. Magnetic Resonance Spectroscopic Detection of Lactate Is Predictive of a Poor Prognosis in Patients with Diffuse Intrinsic Pontine Glioma. Neuro-Oncology 2011, 13, 791–801. [Google Scholar] [CrossRef]
- Steffen-Smith, E.A.; Shih, J.H.; Hipp, S.J.; Bent, R.; Warren, K.E. Proton Magnetic Resonance Spectroscopy Predicts Survival in Children with Diffuse Intrinsic Pontine Glioma. J. Neurooncol. 2011, 105, 365–373. [Google Scholar] [CrossRef] [Green Version]
- Frazier, J.L.; Lee, J.; Thomale, U.W.; Noggle, J.C.; Cohen, K.J.; Jallo, G.I. Treatment of Diffuse Intrinsic Brainstem Gliomas: Failed Approaches and Future Strategies: A Review. PED 2009, 3, 259–269. [Google Scholar] [CrossRef] [PubMed]
- Gallitto, M.; Lazarev, S.; Wasserman, I.; Stafford, J.M.; Wolden, S.L.; Terezakis, S.A.; Bindra, R.S.; Bakst, R.L. Role of Radiation Therapy in the Management of Diffuse Intrinsic Pontine Glioma: A Systematic Review. Adv. Radiat. Oncol. 2019, 4, 520–531. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Yea, J.W.; Park, J.W. Hypofractionated Radiotherapy versus Conventional Radiotherapy for Diffuse Intrinsic Pontine Glioma: A Systematic Review and Meta-Analysis. Medicine 2020, 99, e22721. [Google Scholar] [CrossRef]
- Packer, R.J.; Boyett, J.M.; Zimmerman, R.A.; Albright, A.L.; Kaplan, A.M.; Rorke, L.B.; Selch, M.T.; Cherlow, J.M.; Finlay, J.L.; Wara, W.M. Outcome of Children with Brain Stem Gliomas after Treatment with7800 CGy of Hyperfractionated Radiotherapy. A Childrens Cancer Group Phase 1/11 Trial. Cancer 1994, 74, 1827–1834. [Google Scholar] [CrossRef]
- Mandell, L.R.; Kadota, R.; Freeman, C.; Douglass, E.C.; Fontanesi, J.; Cohen, M.E.; Kovnar, E.; Burger, P.; Sanford, R.A.; Kepner, J.; et al. There Is No Role for Hyperfractionated Radiotherapy in the Management of Children with Newly Diagnosed Diffuse Intrinsic Brainstem Tumors: Results of a Pediatric Oncology Group Phase III Trial Comparing Conventional vs. Hyperfractionated Radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 1999, 43, 959–964. [Google Scholar] [CrossRef]
- Janssens, G.O.; Timmermann, B.; Laprie, A.; Mandeville, H.; Padovani, L.; Chargari, C.; Journy, N.; Kameric, L.; Kienesberger, A.; Brunhofer, M.; et al. Recommendations for the Organisation of Care in Paediatric Radiation Oncology across Europe: A SIOPE–ESTRO–PROS–CCI-Europe Collaborative Project in the Framework of the JARC. Eur. J. Cancer 2019, 114, 47–54. [Google Scholar] [CrossRef]
- Cacciotti, C.; Liu, K.X.; Haas-Kogan, D.A.; Warren, K.E. Reirradiation Practices for Children with Diffuse Intrinsic Pontine Glioma. Neuro-Oncol. Pract. 2021, 8, 68–74. [Google Scholar] [CrossRef]
- Bradley, K.A.; Zhou, T.; McNall-Knapp, R.Y.; Jakacki, R.I.; Levy, A.S.; Vezina, G.; Pollack, I.F. Motexafin-Gadolinium and Involved Field Radiation Therapy for Intrinsic Pontine Glioma of Childhood: A Children’s Oncology Group Phase 2 Study. Int. J. Radiat. Oncol. Biol. Phys. 2013, 85, e55–e60. [Google Scholar] [CrossRef]
- Bernier-Chastagner, V.; Grill, J.; Doz, F.; Bracard, S.; Gentet, J.C.; Marie-Cardine, A.; Luporsi, E.; Margueritte, G.; Lejars, O.; Laithier, V.; et al. Topotecan as a Radiosensitizer in the Treatment of Children with Malignant Diffuse Brainstem Gliomas: Results of a French Society of Paediatric Oncology Phase II Study. Cancer 2005, 104, 2792–2797. [Google Scholar] [CrossRef]
- Cohen, K.J.; Heideman, R.L.; Zhou, T.; Holmes, E.J.; Lavey, R.S.; Bouffet, E.; Pollack, I.F. Temozolomide in the Treatment of Children with Newly Diagnosed Diffuse Intrinsic Pontine Gliomas: A Report from the Children’s Oncology Group. Neuro-Oncology 2011, 13, 410–416. [Google Scholar] [CrossRef] [Green Version]
- Sirachainan, N.; Pakakasama, S.; Visudithbhan, A.; Chiamchanya, S.; Tuntiyatorn, L.; Dhanachai, M.; Laothamatas, J.; Hongeng, S. Concurrent Radiotherapy with Temozolomide Followed by Adjuvant Temozolomide and Cis-Retinoic Acid in Children with Diffuse Intrinsic Pontine Glioma. Neuro-Oncology 2008, 10, 577–582. [Google Scholar] [CrossRef] [PubMed]
- Doz, F.; Neuenschwander, S.; Bouffet, E.; Gentet, J.C.; Schneider, P.; Kalifa, C.; Mechinaud, F.; Chastagner, P.; De Lumley, L.; Sariban, E.; et al. Carboplatin before and during Radiation Therapy for the Treatment of Malignant Brain Stem Tumours. Eur. J. Cancer 2002, 38, 815–819. [Google Scholar] [CrossRef]
- Frappaz, D.; Schell, M.; Thiesse, P.; Marec-Bérard, P.; Mottolese, C.; Perol, D.; Bergeron, C.; Philip, T.; Ricci, A.C.; Galand-Desme, S.; et al. Preradiation Chemotherapy May Improve Survival in Pediatric Diffuse Intrinsic Brainstem Gliomas: Final Results of BSG 98 Prospective Trial. Neuro-Oncology 2008, 10, 599–607. [Google Scholar] [CrossRef]
- Wolff, J.E.A.; Driever, P.H.; Erdlenbruch, B.; Kortmann, R.D.; Rutkowski, S.; Pietsch, T.; Parker, C.; Metz, M.W.; Gnekow, A.; Kramm, C.M. Intensive Chemotherapy Improves Survival in Pediatric High-Grade Glioma after Gross Total Resection: Results of the HIT-GBM-C Protocol. Cancer 2010, 116, 705–712. [Google Scholar] [CrossRef]
- Massimino, M.; Spreafico, F.; Biassoni, V.; Simonetti, F.; Riva, D.; Trecate, G.; Giombini, S.; Poggi, G.; Pecori, E.; Pignoli, E.; et al. Diffuse Pontine Gliomas in Children: Changing Strategies, Changing Results? A Mono-Institutional 20-Year Experience. J. Neurooncol. 2008, 87, 355–361. [Google Scholar] [CrossRef] [PubMed]
- Bailey, S.; Howman, A.; Wheatley, K.; Wherton, D.; Boota, N.; Pizer, B.; Fisher, D.; Kearns, P.; Picton, S.; Saran, F.; et al. Diffuse Intrinsic Pontine Glioma Treated with Prolonged Temozolomide and Radiotherapy—Results of a United Kingdom Phase II Trial (CNS2007 04). Eur. J. Cancer 2013, 49, 3856–3862. [Google Scholar] [CrossRef]
- Hegi, M.E.; Diserens, A.-C.; Gorlia, T.; Hamou, M.-F.; de Tribolet, N.; Weller, M.; Kros, J.M.; Hainfellner, J.A.; Mason, W.; Mariani, L.; et al. MGMT Gene Silencing and Benefit from Temozolomide in Glioblastoma. N. Engl. J. Med. 2005, 352, 997–1003. [Google Scholar] [CrossRef]
- Rizzo, D.; Scalzone, M.; Ruggiero, A.; Maurizi, P.; Attinà, G.; Mastrangelo, S.; Lazzareschi, I.; Ridola, V.; Colosimo, C.; Caldarelli, M.; et al. Temozolomide in the Treatment of Newly Diagnosed Diffuse Brainstem Glioma in Children: A Broken Promise? J. Chemother. 2015, 27, 106–110. [Google Scholar] [CrossRef]
- Chassot, A.; Canale, S.; Varlet, P.; Puget, S.; Roujeau, T.; Negretti, L.; Dhermain, F.; Rialland, X.; Raquin, M.A.; Grill, J.; et al. Radiotherapy with Concurrent and Adjuvant Temozolomide in Children with Newly Diagnosed Diffuse Intrinsic Pontine Glioma. J. Neuro-oncol. 2012, 106, 399–407. [Google Scholar] [CrossRef]
- Hargrave, D.; Bartels, U.; Bouffet, E. Diffuse Brainstem Glioma in Children: Critical Review of Clinical Trials. The Lancet Oncology 2006, 7, 241–248. [Google Scholar] [CrossRef]
- Wagner, S.; Reinert, C.; Schmid, H.-J.; Liebeskind, A.-K.; Jorch, N.; Längler, A.; Graf, N.; Warmuth-Metz, M.; Pietsch, T.; Peters, O.; et al. High-Dose Methotrexate Prior to Simultaneous Radiochemotherapy in Children with Malignant High-Grade Gliomas. Anticancer Res. 2005, 25, 2583–2587. [Google Scholar]
- Gokce-Samar, Z.; Beuriat, P.A.; Faure-Conter, C.; Carrie, C.; Chabaud, S.; Claude, L.; Di Rocco, F.; Mottolese, C.; Szathmari, A.; Chabert, C.; et al. Pre-Radiation Chemotherapy Improves Survival in Pediatric Diffuse Intrinsic Pontine Gliomas. Child‘s Nerv. Syst. 2016, 32, 1415–1423. [Google Scholar] [CrossRef] [PubMed]
- Wagner, S.; Warmuth-Metz, M.; Emser, A.; Gnekow, A.-K.; Sträter, R.; Rutkowski, S.; Jorch, N.; Schmid, H.-J.; Berthold, F.; Graf, N.; et al. Treatment Options in Childhood Pontine Gliomas. J. Neurooncol. 2006, 79, 281–287. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, D.; Calmon, R.; Aliaga, E.S.; Warren, D.; Warmuth-Metz, M.; Jones, C.; Mackay, A.; Varlet, P.; Le Deley, M.-C.; Hargrave, D.; et al. MRI and Molecular Characterization of Pediatric High-Grade Midline Thalamic Gliomas: The HERBY Phase II Trial. Radiology 2022, 304, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Dorfer, C.; Czech, T.; Gojo, J.; Hosmann, A.; Peyrl, A.; Azizi, A.A.; Kasprian, G.; Dieckmann, K.; Filbin, M.G.; Haberler, C.; et al. Infiltrative Gliomas of the Thalamus in Children: The Role of Surgery in the Era of H3 K27M Mutant Midline Gliomas. Acta Neurochir. 2021, 163, 2025–2035. [Google Scholar] [CrossRef]
- Long, W.; Yi, Y.; Chen, S.; Cao, Q.; Zhao, W.; Liu, Q. Potential New Therapies for Pediatric Diffuse Intrinsic Pontine Glioma. Front. Pharmacol. 2017, 8, 495. [Google Scholar] [CrossRef] [PubMed]
- Singleton, W.G.B.; Bienemann, A.S.; Woolley, M.; Johnson, D.; Lewis, O.; Wyatt, M.J.; Damment, S.J.P.; Boulter, L.J.; Killick-Cole, C.L.; Asby, D.J.; et al. The Distribution, Clearance, and Brainstem Toxicity of Panobinostat Administered by Convection-Enhanced Delivery. J. Neurosurg. Pediatrics 2018, 22, 288–296. [Google Scholar] [CrossRef]
- Anastas, J.N.; Zee, B.M.; Kalin, J.H.; Kim, M.; Guo, R.; Alexandrescu, S.; Blanco, M.A.; Giera, S.; Gillespie, S.M.; Das, J.; et al. Re-Programing Chromatin with a Bifunctional LSD1/HDAC Inhibitor Induces Therapeutic Differentiation in DIPG. Cancer Cell 2019, 36, 528–544.e10. [Google Scholar] [CrossRef]
- Hashizume, R.; Andor, N.; Ihara, Y.; Lerner, R.; Gan, H.; Chen, X.; Fang, D.; Huang, X.; Tom, M.W.; Ngo, V.; et al. Pharmacologic Inhibition of Histone Demethylation as a Therapy for Pediatric Brainstem Glioma. Nat. Med. 2014, 20, 1394–1396. [Google Scholar] [CrossRef]
- Wiese, M.; Schill, F.; Sturm, D.; Pfister, S.; Hulleman, E.; Johnsen, S.; Kramm, C. No Significant Cytotoxic Effect of the EZH2 Inhibitor Tazemetostat (EPZ-6438) on Pediatric Glioma Cells with Wildtype Histone 3 or Mutated Histone 3.3. Klin. Padiatr. 2016, 228, 113–117. [Google Scholar] [CrossRef]
- Su, J.M.; Kilburn, L.B.; Mansur, D.B.; Krailo, M.; Buxton, A.; Adekunle, A.; Gajjar, A.; Adamson, P.C.; Weigel, B.; Fox, E.; et al. Phase I/II Trial of Vorinostat and Radiation and Maintenance Vorinostat in Children with Diffuse Intrinsic Pontine Glioma: A Children’s Oncology Group Report. Neuro-Oncology 2021, 24, 655–664. [Google Scholar] [CrossRef] [PubMed]
- Bartels, U.; Wolff, J.; Gore, L.; Dunkel, I.; Gilheeney, S.; Allen, J.; Goldman, S.; Yalon, M.; Packer, R.J.; Korones, D.N.; et al. Phase 2 Study of Safety and Efficacy of Nimotuzumab in Pediatric Patients with Progressive Diffuse Intrinsic Pontine Glioma. Neuro-Oncology 2014, 16, 1554–1559. [Google Scholar] [CrossRef] [PubMed]
- Massimino, M.; Biassoni, V.; Miceli, R.; Schiavello, E.; Warmuth-Metz, M.; Modena, P.; Casanova, M.; Pecori, E.; Giangaspero, F.; Antonelli, M.; et al. Results of Nimotuzumab and Vinorelbine, Radiation and Re-Irradiation for Diffuse Pontine Glioma in Childhood. J. Neurooncol. 2014, 118, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Geoerger, B.; Hargrave, D.; Thomas, F.; Ndiaye, A.; Frappaz, D.; Andreiuolo, F.; Varlet, P.; Aerts, I.; Riccardi, R.; Jaspan, T.; et al. Innovative Therapies for Children with Cancer Pediatric Phase I Study of Erlotinib in Brainstem Glioma and Relapsing/Refractory Brain Tumors. Neuro-Oncology 2011, 13, 109–118. [Google Scholar] [CrossRef]
- El-Khouly, F.E.; Veldhuijzen van Zanten, S.E.M.; Jansen, M.H.A.; Bakker, D.P.; Sanchez Aliaga, E.; Hendrikse, N.H.; Vandertop, W.P.; van Vuurden, D.G.; Kaspers, G.J.L. A Phase I/II Study of Bevacizumab, Irinotecan and Erlotinib in Children with Progressive Diffuse Intrinsic Pontine Glioma. J. Neurooncol. 2021, 153, 263–271. [Google Scholar] [CrossRef]
- Pollack, I.F.; Stewart, C.F.; Kocak, M.; Poussaint, T.Y.; Broniscer, A.; Banerjee, A.; Douglas, J.G.; Kun, L.E.; Boyett, J.M.; Geyer, J.R. A Phase II Study of Gefitinib and Irradiation in Children with Newly Diagnosed Brainstem Gliomas: A Report from the Pediatric Brain Tumor Consortium. Neuro-Oncology 2011, 13, 290–297. [Google Scholar] [CrossRef]
- Broniscer, A.; Baker, J.N.; Tagen, M.; Onar-Thomas, A.; Gilbertson, R.J.; Davidoff, A.M.; Pai Panandiker, A.S.; Panandiker, A.P.; Leung, W.; Chin, T.K.; et al. Phase I Study of Vandetanib during and after Radiotherapy in Children with Diffuse Intrinsic Pontine Glioma. J. Clin. Oncol. 2010, 28, 4762–4768. [Google Scholar] [CrossRef]
- Hoeman, C.M.; Cordero, F.J.; Hu, G.; Misuraca, K.; Romero, M.M.; Cardona, H.J.; Nazarian, J.; Hashizume, R.; McLendon, R.; Yu, P.; et al. ACVR1 R206H Cooperates with H3.1K27M in Promoting Diffuse Intrinsic Pontine Glioma Pathogenesis. Nat. Commun. 2019, 10, 1023. [Google Scholar] [CrossRef]
- Carvalho, D.; Taylor, K.R.; Olaciregui, N.G.; Molinari, V.; Clarke, M.; Mackay, A.; Ruddle, R.; Henley, A.; Valenti, M.; Hayes, A.; et al. ALK2 Inhibitors Display Beneficial Effects in Preclinical Models of ACVR1 Mutant Diffuse Intrinsic Pontine Glioma. Commun. Biol. 2019, 2, 156. [Google Scholar] [CrossRef]
- Madhavan, K.; Balakrishnan, I.; Lakshmanachetty, S.; Pierce, A.; Sanford, B.; Fosmire, S.; Elajaili, H.B.; Walker, F.; Wang, D.; Nozik, E.S.; et al. Venetoclax Cooperates with Ionizing Radiation to Attenuate Diffuse Midline Glioma Tumor Growth. Clin. Cancer Res. 2022, 28, 2409–2424. [Google Scholar] [CrossRef]
- Van Mater, D.; Gururangan, S.; Becher, O.; Campagne, O.; Leary, S.; Phillips, J.J.; Huang, J.; Lin, T.; Poussaint, T.Y.; Goldman, S.; et al. A Phase I Trial of the CDK 4/6 Inhibitor Palbociclib in Pediatric Patients with Progressive Brain Tumors: A Pediatric Brain Tumor Consortium Study (PBTC-042). Pediatr. Blood Cancer 2021, 68, e28879. [Google Scholar] [CrossRef] [PubMed]
- DeWire, M.; Fuller, C.; Hummel, T.R.; Chow, L.M.L.; Salloum, R.; de Blank, P.; Pater, L.; Lawson, S.; Zhu, X.; Dexheimer, P.; et al. A Phase I/II Study of Ribociclib Following Radiation Therapy in Children with Newly Diagnosed Diffuse Intrinsic Pontine Glioma (DIPG). J. Neurooncol. 2020, 149, 511–522. [Google Scholar] [CrossRef]
- Chornenkyy, Y.; Agnihotri, S.; Yu, M.; Buczkowicz, P.; Rakopoulos, P.; Golbourn, B.; Garzia, L.; Siddaway, R.; Leung, S.; Rutka, J.T.; et al. Poly-ADP-Ribose Polymerase as a Therapeutic Target in Pediatric Diffuse Intrinsic Pontine Glioma and Pediatric High-Grade Astrocytoma. Mol. Cancer Ther. 2015, 14, 2560–2568. [Google Scholar] [CrossRef] [PubMed]
- Wahba, A.; Rath, B.H.; O’Neill, J.W.; Camphausen, K.; Tofilon, P.J. The XPO1 Inhibitor Selinexor Inhibits Translation and Enhances the Radiosensitivity of Glioblastoma Cells Grown In Vitro and In Vivo. Mol. Cancer Ther. 2018, 17, 1717–1726. [Google Scholar] [CrossRef] [PubMed]
- Chittiboina, P.; Heiss, J.D.; Warren, K.E.; Lonser, R.R. Magnetic Resonance Imaging Properties of Convective Delivery in Diffuse Intrinsic Pontine Gliomas: Clinical Article. PED 2014, 13, 276–282. [Google Scholar] [CrossRef]
- Stein, M.N.; Bertino, J.R.; Kaufman, H.L.; Mayer, T.; Moss, R.; Silk, A.; Chan, N.; Malhotra, J.; Rodriguez, L.; Aisner, J.; et al. First-in-Human Clinical Trial of Oral ONC201 in Patients with Refractory Solid Tumors. Clin. Cancer Res. 2017, 23, 4163–4169. [Google Scholar] [CrossRef]
- Chi, A.S.; Tarapore, R.S.; Hall, M.D.; Shonka, N.; Gardner, S.; Umemura, Y.; Sumrall, A.; Khatib, Z.; Mueller, S.; Kline, C.; et al. Pediatric and Adult H3 K27M-Mutant Diffuse Midline Glioma Treated with the Selective DRD2 Antagonist ONC201. J. Neurooncol. 2019, 145, 97–105. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, L.; Safran, H.; Borsuk, R.; Lulla, R.; Tapinos, N.; Seyhan, A.A.; El-Deiry, W.S. EZH2i EPZ-6438 and HDACi Vorinostat Synergize with ONC201/TIC10 to Activate Integrated Stress Response, DR5, Reduce H3K27 Methylation, ClpX and Promote Apoptosis of Multiple Tumor Types Including DIPG. Neoplasia 2021, 23, 792–810. [Google Scholar] [CrossRef]
- Przystal, J.M.; Cianciolo Cosentino, C.; Yadavilli, S.; Zhang, J.; Laternser, S.; Bonner, E.R.; Prasad, R.; Dawood, A.A.; Lobeto, N.; Chin Chong, W.; et al. Imipridones Affect Tumor Bioenergetics and Promote Cell Lineage Differentiation in Diffuse Midline Gliomas. Neuro-Oncology 2022, noac041. [Google Scholar] [CrossRef]
- Park, J.; Lee, W.; Yun, S.; Kim, S.P.; Kim, K.H.; Kim, J.-I.; Kim, S.-K.; Wang, K.-C.; Lee, J.Y. STAT3 Is a Key Molecule in the Oncogenic Behavior of Diffuse Intrinsic Pontine Glioma. Oncol. Lett. 2020, 20, 1989–1998. [Google Scholar] [CrossRef]
- Metselaar, D.S.; du Chatinier, A.; Meel, M.H.; Ter Huizen, G.; Waranecki, P.; Goulding, J.R.; Bugiani, M.; Koster, J.; Kaspers, G.J.L.; Hulleman, E. AURKA and PLK1 Inhibition Selectively and Synergistically Block Cell Cycle Progression in Diffuse Midline Glioma. iScience 2022, 25, 104398. [Google Scholar] [CrossRef]
- Amani, V.; Prince, E.W.; Alimova, I.; Balakrishnan, I.; Birks, D.; Donson, A.M.; Harris, P.; Levy, J.M.M.; Handler, M.; Foreman, N.K.; et al. Polo-like Kinase 1 as a Potential Therapeutic Target in Diffuse Intrinsic Pontine Glioma. BMC Cancer 2016, 16, 647. [Google Scholar] [CrossRef] [PubMed]
- Ghajar-Rahimi, G.; Kang, K.-D.; Totsch, S.K.; Gary, S.; Rocco, A.; Blitz, S.; Kachurak, K.; Chambers, M.R.; Li, R.; Beierle, E.A.; et al. Clinical Advances in Oncolytic Virotherapy for Pediatric Brain Tumors. Pharmacol. Ther. 2022, 239, 108193. [Google Scholar] [CrossRef] [PubMed]
- Gállego Pérez-Larraya, J.; Garcia-Moure, M.; Labiano, S.; Patiño-García, A.; Dobbs, J.; Gonzalez-Huarriz, M.; Zalacain, M.; Marrodan, L.; Martinez-Velez, N.; Puigdelloses, M.; et al. Oncolytic DNX-2401 Virus for Pediatric Diffuse Intrinsic Pontine Glioma. N. Engl. J. Med. 2022, 386, 2471–2481. [Google Scholar] [CrossRef] [PubMed]
- Majzner, R.G.; Ramakrishna, S.; Yeom, K.W.; Patel, S.; Chinnasamy, H.; Schultz, L.M.; Richards, R.M.; Jiang, L.; Barsan, V.; Mancusi, R.; et al. GD2-CAR T Cell Therapy for H3K27M-Mutated Diffuse Midline Gliomas. Nature 2022, 603, 934–941. [Google Scholar] [CrossRef]
- O’Rourke, D.M.; Nasrallah, M.P.; Desai, A.; Melenhorst, J.J.; Mansfield, K.; Morrissette, J.J.D.; Martinez-Lage, M.; Brem, S.; Maloney, E.; Shen, A.; et al. A Single Dose of Peripherally Infused EGFRvIII-Directed CAR T Cells Mediates Antigen Loss and Induces Adaptive Resistance in Patients with Recurrent Glioblastoma. Sci. Transl. Med. 2017, 9, eaaa0984. [Google Scholar] [CrossRef]
- Kitange, G.J.; Mladek, A.C.; Carlson, B.L.; Schroeder, M.A.; Pokorny, J.L.; Cen, L.; Decker, P.A.; Wu, W.; Lomberk, G.A.; Gupta, S.K.; et al. Inhibition of Histone Deacetylation Potentiates the Evolution of Acquired Temozolomide Resistance Linked to MGMT Upregulation in Glioblastoma Xenografts. Clin. Cancer Res. 2012, 18, 4070–4079. [Google Scholar] [CrossRef]
- Vitanza, N.A.; Biery, M.C.; Myers, C.; Ferguson, E.; Zheng, Y.; Girard, E.J.; Przystal, J.M.; Park, G.; Noll, A.; Pakiam, F.; et al. Optimal Therapeutic Targeting by HDAC Inhibition in Biopsy-Derived Treatment-Naïve Diffuse Midline Glioma Models. Neuro-Oncology 2021, 23, 376–386. [Google Scholar] [CrossRef]
- Grasso, C.S.; Tang, Y.; Truffaux, N.; Berlow, N.E.; Liu, L.; Debily, M.-A.; Quist, M.J.; Davis, L.E.; Huang, E.C.; Woo, P.J.; et al. Functionally Defined Therapeutic Targets in Diffuse Intrinsic Pontine Glioma. Nat. Med. 2015, 21, 555–559. [Google Scholar] [CrossRef]
- Jin, M.-Z.; Xia, B.-R.; Xu, Y.; Jin, W.-L. Curaxin CBL0137 Exerts Anticancer Activity via Diverse Mechanisms. Front. Oncol. 2018, 8, 598. [Google Scholar] [CrossRef]
- Bredel, M.; Pollack, I.F.; Hamilton, R.L.; James, C.D. Epidermal Growth Factor Receptor Expression and Gene Amplification in High-Grade Non-Brainstem Gliomas of Childhood. Clin. Cancer Res. 1999, 5, 1786–1792. [Google Scholar] [PubMed]
- Parenrengi, M.A.; Suryaningtyas, W.; Al Fauzi, A.; Hafid Bajamal, A.; Kusumastuti, K.; Utomo, B.; Muslim Hidayat Thamrin, A.; Sulistiono, B. Nimotuzumab as Additional Therapy for GLIOMA in Pediatric and Adolescent: A Systematic Review. Cancer Control 2022, 29, 107327482110539. [Google Scholar] [CrossRef]
- Su, J.M.; Murray, J.C.; McNall-Knapp, R.Y.; Bowers, D.C.; Shah, S.; Adesina, A.M.; Paulino, A.C.; Jo, E.; Mo, Q.; Baxter, P.A.; et al. A Phase 2 Study of Valproic Acid and Radiation, Followed by Maintenance Valproic Acid and Bevacizumab in Children with Newly Diagnosed Diffuse Intrinsic Pontine Glioma or High-grade Glioma. Pediatr. Blood Cancer 2020, 67, e28283. [Google Scholar] [CrossRef]
- Del Baldo, G.; Carai, A.; Abbas, R.; Cacchione, A.; Vinci, M.; Di Ruscio, V.; Colafati, G.S.; Rossi, S.; Diomedi, F.; Maestro, N.; et al. Targeted therapy for pediatric diffuse intrinsic pontine glioma: A single-center experience. Ther. Adv. Med. Oncol. 2022; in press. [Google Scholar]
- Matthews, H.K.; Bertoli, C.; de Bruin, R.A.M. Cell Cycle Control in Cancer. Nat. Rev. Mol. Cell Biol. 2022, 23, 74–88. [Google Scholar] [CrossRef]
- Veringa, S.J.E.; Biesmans, D.; van Vuurden, D.G.; Jansen, M.H.A.; Wedekind, L.E.; Horsman, I.; Wesseling, P.; Vandertop, W.P.; Noske, D.P.; Kaspers, G.J.L.; et al. In Vitro Drug Response and Efflux Transporters Associated with Drug Resistance in Pediatric High Grade Glioma and Diffuse Intrinsic Pontine Glioma. PLoS ONE 2013, 8, e61512. [Google Scholar] [CrossRef]
- Davis, H.W.; Vallabhapurapu, S.D.; Chu, Z.; Wyder, M.A.; Greis, K.D.; Fannin, V.; Sun, Y.; Desai, P.B.; Pak, K.Y.; Gray, B.D.; et al. Biotherapy of Brain Tumors with Phosphatidylserine-Targeted Radioiodinated SapC-DOPS Nanovesicles. Cells 2020, 9, 1960. [Google Scholar] [CrossRef] [PubMed]
- Tosi, U.; Souweidane, M. Convection Enhanced Delivery for Diffuse Intrinsic Pontine Glioma: Review of a Single Institution Experience. Pharmaceutics 2020, 12, 660. [Google Scholar] [CrossRef]
- Zhou, Z.; Luther, N.; Ibrahim, G.M.; Hawkins, C.; Vibhakar, R.; Handler, M.H.; Souweidane, M.M. B7-H3, a Potential Therapeutic Target, Is Expressed in Diffuse Intrinsic Pontine Glioma. J. Neurooncol. 2013, 111, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Alli, S.; Figueiredo, C.A.; Golbourn, B.; Sabha, N.; Wu, M.Y.; Bondoc, A.; Luck, A.; Coluccia, D.; Maslink, C.; Smith, C.; et al. Brainstem Blood Brain Barrier Disruption Using Focused Ultrasound: A Demonstration of Feasibility and Enhanced Doxorubicin Delivery. J. Control. Release 2018, 281, 29–41. [Google Scholar] [CrossRef] [PubMed]
- Marisetty, A.L.; Lu, L.; Veo, B.L.; Liu, B.; Coarfa, C.; Kamal, M.M.; Kassem, D.H.; Irshad, K.; Lu, Y.; Gumin, J.; et al. REST-DRD2 Mechanism Impacts Glioblastoma Stem Cell–Mediated Tumorigenesis. Neuro-Oncology 2019, 21, 775–785. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhu, S.; Kozono, D.; Ng, K.; Futalan, D.; Shen, Y.; Akers, J.C.; Steed, T.; Kushwaha, D.; Schlabach, M.; et al. Genome-Wide ShRNA Screen Revealed Integrated Mitogenic Signaling between Dopamine Receptor D2 (DRD2) and Epidermal Growth Factor Receptor (EGFR) in Glioblastoma. Oncotarget 2014, 5, 882–893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishizawa, J.; Kojima, K.; Chachad, D.; Ruvolo, P.; Ruvolo, V.; Jacamo, R.O.; Borthakur, G.; Mu, H.; Zeng, Z.; Tabe, Y.; et al. ATF4 Induction through an Atypical Integrated Stress Response to ONC201 Triggers P53-Independent Apoptosis in Hematological Malignancies. Sci. Signal. 2016, 9, ra17. [Google Scholar] [CrossRef] [PubMed]
- Veldhuijzen van Zanten, S.E.M.; El-Khouly, F.E.; Jansen, M.H.A.; Bakker, D.P.; Sanchez Aliaga, E.; Haasbeek, C.J.A.; Wolf, N.I.; Zwaan, C.M.; Vandertop, W.P.; van Vuurden, D.G.; et al. A Phase I/II Study of Gemcitabine during Radiotherapy in Children with Newly Diagnosed Diffuse Intrinsic Pontine Glioma. J. Neurooncol. 2017, 135, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Chao, M.P.; Takimoto, C.H.; Feng, D.D.; McKenna, K.; Gip, P.; Liu, J.; Volkmer, J.-P.; Weissman, I.L.; Majeti, R. Therapeutic Targeting of the Macrophage Immune Checkpoint CD47 in Myeloid Malignancies. Front. Oncol. 2020, 9, 1380. [Google Scholar] [CrossRef]
- Benitez-Ribas, D.; Cabezón, R.; Flórez-Grau, G.; Molero, M.C.; Puerta, P.; Guillen, A.; González-Navarro, E.A.; Paco, S.; Carcaboso, A.M.; Santa-Maria Lopez, V.; et al. Immune Response Generated With the Administration of Autologous Dendritic Cells Pulsed With an Allogenic Tumoral Cell-Lines Lysate in Patients With Newly Diagnosed Diffuse Intrinsic Pontine Glioma. Front. Oncol. 2018, 8, 127. [Google Scholar] [CrossRef]
- Mount, C.W.; Majzner, R.G.; Sundaresh, S.; Arnold, E.P.; Kadapakkam, M.; Haile, S.; Labanieh, L.; Hulleman, E.; Woo, P.J.; Rietberg, S.P.; et al. Potent Antitumor Efficacy of Anti-GD2 CAR T Cells in H3-K27M+ Diffuse Midline Gliomas. Nat. Med. 2018, 24, 572–579. [Google Scholar] [CrossRef]
- Ramello, M.C.; Haura, E.B.; Abate-Daga, D. CAR-T Cells and Combination Therapies: What’s next in the Immunotherapy Revolution? Pharmacol. Res. 2018, 129, 194–203. [Google Scholar] [CrossRef]
- El-Khouly, F.E.; Adil, S.M.; Wiese, M.; Hulleman, E.; Hendrikse, N.H.; Kaspers, G.J.; Kramm, C.M.; Veldhuijzen van Zanten, S.E.; van Vuurden, D.G.; SIOPE DIPG Network. Complementary and alternative medicine in children with diffuse intrinsic pontine glioma—A SIOPE DIPG Network and Registry study. Pediatr. Blood Cancer 2021, 68, e29061. [Google Scholar] [CrossRef]
- Veldhuijzen van Zanten, S.E.M.; Baugh, J.; Chaney, B.; De Jongh, D.; Sanchez Aliaga, E.; Barkhof, F.; Noltes, J.; De Wolf, R.; Van Dijk, J.; Cannarozzo, A.; et al. Development of the SIOPE DIPG network, registry and imaging repository: A collaborative effort to optimize research into a rare and lethal disease. J. Neurooncol. 2017, 132, 255–266. [Google Scholar] [CrossRef] [Green Version]
Favorable Prognostic Factors | Unfavorable Prognostic Factors |
---|---|
Age < 3 years [35,36,37] | Age > 10 years |
Duration of symptoms ≥ 3 months [38,39] | Duration of symptoms ≤ 3 months [32] |
Absence of cranial nerve palsies or long tract involvement at diagnosis [40] | Improved perfusion [41,42] Presence of a ring enhancement [22] |
Significant reduction in steroids needing | Restricted diffusion areas [43] |
Rapid amelioration of neurological signs [44] | Higher choline: N-acetylaspartate ratio than the median of 2.1 [45] |
H3.1 alteration | H3.3 alteration p53 mutation |
Tumor volume reduction after therapy [46] | LMM [47] or metastatic disease [48] |
Detection of lactate and N-acetyl aspartate in MRI spectroscopy (MRS) [49,50] |
Number of Trial | Study Name | Phase | Countries | Start-End Date | Enrollment Size | Primary Outcome | Secondary Outcome | Results |
---|---|---|---|---|---|---|---|---|
NCT03566199 | MTX110 by CED in Treating Participants with Newly Diagnosed Diffuse Intrinsic Pontine Glioma (PNOC015) | I | USA | 2019–2021 | 7 patients | Safety and tolerability of repeated MTX110 infusions | Clinical efficacy | 1 AE; 7/7 patients died for PD phase II expansion cohort was not activated at behest of pharmaceutical supplier |
NCT01182350 | Molecularly Determined Treatment of Diffuse Intrinsic Pontine Gliomas (DIPG-BATS) | II | USA | 2011–2016 | 53 patients | OS after biopsy | AE biopsy-related | No AE biopsy-related |
NCT02607124 | A Phase I/II Study of Ribociclib, a CDK4/6 Inhibitor, Following Radiation Therapy | II | USA | 2015–2020 | 11 patients | AE; 1-year OS | / | 4/11 patients developed SAE; 11/11 patients died for PD |
NCT01189266 | Vorinostat and Radiation Therapy Followed by Maintenance Therapy with Vorinostat in Treating Younger Patients With Newly Diagnosed Diffuse Intrinsic Pontine Glioma | I/II | USA | 2010–2021 | 79 patients | MTD, 2-year OS | 2 patients completed the trial; 50 patients left for lack of efficacy | |
NCT00036569 | A Phase II Study of Pegylated Interferon Alfa 2b (PEG-Intron(Trademark)) in Children With Diffuse Pontine Gliomas | II | USA | 2002–2012 | 32 patients | 2-year OS | Median TTP | No improvement in OS, probably delaying TTP |
NCT00879437 | Valproic Acid, Radiation, and Bevacizumab in Children with High-Grade Gliomas or Diffuse Intrinsic Pontine Glioma | II | USA | 2009–2021 | 38 patients | 1-year EFS, percentage of SAE grade ≥ 2 | Median EFS, median OS | No benefit on EFS and OS |
NCT01514201 | Veliparib, Radiation Therapy, and Temozolomide in Treating Younger Patients with Newly Diagnosed Diffuse Pontine Gliomas | I/II | USA | 2012–2019 | 66 patients | MTD; OS; DLTs | No SAE, but no benefits on EFS and OS | |
NCT01836549 | Imetelstat Sodium in Treating Younger Patients with Recurrent or Refractory Brain Tumors | I/II | USA | 2013–2018 | 43 patients | Objective response (at least 50%) | PFS | Terminated (due to several intracranial hemorrhages and recommendation by the PBTC DSMB) |
NCT01774253 | Erivedge (Vismodegib) in the Treatment of Pediatric Patients with Refractory Pontine Glioma | II | USA | 2013–2015 | 9 patients | PFS | SAE; OS, QoL | Terminated (lack of enrollment and commercial availability of drug) |
NCT03387020 | Ribociclib and Everolimus in Treating Children with Recurrent or Refractory Malignant Brain Tumors | I | USA | 2018–2020 | 22 patients | MTD | Objective responses | MTD identified |
NCT03257631 | A Study of Pomalidomide Monotherapy for Children and Young Adults with Recurrent or Progressive Primary Brain Tumors | II | USA/Europe | 2017–2022 | 52 patients | Objective responses | Long-term SD, PFS, OS | No patient in DIPG group achieved objective responses or SD |
NCT01502917 | Convection-Enhanced Delivery of 124I-Omburtamab for Patients with Non-Progressive Diffuse Pontine Gliomas Previously Treated with External Beam Radiation Therapy | I | USA | 2012–February 2022 | 50 patients (expected) | MTD; toxicity | OS | Terminated (stopping rule was met per protocol as a result of the last two subjects experiencing dose limiting toxicities) |
NCT00880061 | An Open-Label Dose Escalation Safety Study of CED of IL13-PE38QQR in Patients with Progressive Pediatric Diffuse Infiltrating Brainstem Glioma and Supratentorial High-Grade Glioma | I | USA | 2009–2015 | 7 patients | Feasibility and safety | Objective response on MRI, clinical and patient-specific | Terminated; preliminary results on 4 patients |
NCT03178032 | Brain Infusion of the DNX-2401 Virus Through the Cerebellar Peduncle | I | Spain | 2017–2021 | 12 patients | Safety, tolerability, and toxicity | OS at 12 months; complete/partial response in MRI | Terminated; results published |
Number of Trial | Study Name | Phase | Countries | Start Date | Enrollment Size | Primary Outcome | Secondary Outcome |
---|---|---|---|---|---|---|---|
DIPG/DMG | |||||||
NCT04250064 | A Study of Low-Dose Bevacizumab with Conventional Radiotherapy Alone in Diffuse Intrinsic Pontine Glioma | II | India | February 2020 | 40 patients | OS | PFS, AE, steroid use, pattern of relapse, QoL |
(LoBULarDIPG) | |||||||
NCT04532229 | Nimotuzumab in Combined with Concurrent Radiochemotherapy in the Treatment of Newly Diagnosed Diffuse Intrinsic Pontine Glioma (DIPG) in Children | III | China | April 2021 | 48 patients | OR | 1-year OS, PFS |
NCT04771897 | A Study of BXQ-350 in Children With Newly Diagnosed Diffuse Intrinsic Pontine Glioma (DIPG) or Diffuse Midline Glioma (DMG) (KONQUER) | I | USA | May 2021 | 22 patients | AE, MTD | OS, QoL |
NCT04943848 | rHSC-DIPGVax Plus Checkpoint Blockade for the Treatment of Newly Diagnosed DIPG and DMG | I | USA | January 2022 | 36 patients | MTD, DLT | 1-year OS, TTP |
NCT02992015 | Gemcitabine in Newly Diagnosed DIPG | Early I | USA | September 2016 | 10 patients | PK testing level | - |
NCT05077735 | Stereotactic Biopsy Split-Course Radiation Therapy in DMG (SPORT-DMG Study) | II | USA | October 2021 | 18 patients | TTP | QoL; PFS; OS; SAE |
NCT04749641 | Neoantigen Vaccine Therapy Against H3.3-K27M Diffuse Intrinsic Pontine Glioma (ENACTING) | I | China | March 2021 | 30 patients | Safety, 1 year-OS | MTD, median PFS and OS |
NCT04771897 | A Study of BXQ-350 in Children with Newly Diagnosed Diffuse Intrinsic Pontine Glioma (DIPG) or Diffuse Midline Glioma (DMG) (KONQUER) | I/II | USA | February 2021 | 22 patients | MTD; SAE, PK | OR; OS; QoL |
NCT03126266 | Re-Irradiation of Progressive or Recurrent DIPG | NA | Canada | April 2017 | 27 patients | Second PFS | OS |
NCT03396575 | Brain Stem Gliomas Treated with Adoptive Cellular Therapy During Focal Radiotherapy Recovery Alone or With Dose-Intensified Temozolomide (Phase I-BRAVO) | I | USA | May 2018 | 21 patients | Safety and feasibility, DLT | PFS, OS |
NCT03620032 | Study of Re-irradiation at Relapse Versus RT and Multiple Elective rt Courses (DIPG) | II | Italy | November 2015 | 54 patients | PFS | PFS, OS, RT toxicity, QoL |
NCT05009992 | Combination Therapy for DMG | II | USA | October 2021 | 216 patients | PFS, OS | |
NCT04264143 | CED of MTX110 Newly Diagnosed Diffuse Midline Gliomas | I | USA | March 2020 | 9 patients | AE, MTD | PFS, OS |
NCT05063357 | 131I-omburtamab Delivered by CED in DIPG Patients | I | USA | October 2021 | 36 patients | Safety | PFS |
NCT04804709 | Non-Invasive FUS With Oral Panobinostat in Children with Progressive DMG | I | USA | March 2021 | 3 patients | SAE | 6-month PFS; 6-month OS; |
NCT04196413 | GD2 CAR T Cells in Diffuse Intrinsic Pontine Gliomas (DIPG) and Spinal Diffuse Midline Glioma (DMG) | I | USA | September 2020 | 54 patients | Safety, feasibility, DLT | OS; PFS |
NCT05478837 | Genetically Modified Cells (KIND T Cells) for the Treatment of HLA-A*0201-Positive Patients With H3.3K27M-Mutated Glioma (PNOC018) | I | USA | July 2022 | 12 patients | MTD; safety | Manufacturing feasibility |
NCT05476939 | Biological Medicine for DIPG Eradication 2.0 (BIOMEDE 2) | I | France, USA | July 2022 | 368 patients | MTD, safety of infusions | Manufacturing feasibility |
DMG and other tumors | |||||||
NCT02960230 | H3.3K27M Peptide Vaccine with Nivolumab for Children With Newly Diagnosed DIPG and Other Gliomas | I/II | USA, Switzerland | November 2016 | 50 patients | AE; OS | - |
NCT03696355 | Study of GDC-0084 in Pediatric Patients with Newly Diagnosed Diffuse Intrinsic Pontine Glioma or Diffuse Midline Gliomas | I | USA | October 2018 | 27 patients | MTD; SAE; | RR; DoR; OS; PFS |
NCT01922076 | Adavosertib and Local Radiation Therapy in Treating Children with Newly Diagnosed DIPG | I | USA | April 2013 | 46 patients | MTD; SAE | PK; RR; PFS; OS; |
NCT04758533 | Clinical Trial to Assess the Safety and Efficacy of AloCELYVIR with Newly DIPG in Combination With Radiotherapy or Medulloblastoma in Monotherapy (AloCELYVIR) | I/II | Spain | April 2021 | 12 patients | DLT | OS, AE |
NCT03605550 | A Phase 1B Study of PTC596 in Children with Newly Diagnosed Diffuse Intrinsic Pontine Glioma and High-Grade Glioma | I | USA | August 2018 | 54 patients | MTD, AE, PK | PFS, OS |
NCT03652545 | Multi-antigen T Cell Infusion Against Neuro-Oncologic Disease (REMIND) | I | USA | December 2018 | 32 patients | Aes | OR |
NCT04049669 | Pediatric Trial of Indoximod with Chemotherapy and Radiation for Relapsed Brain Tumors or Newly Diagnosed DIPG | II | USA | October 2019 | 140 patients | 8 months PFS, | OS, PFS TTP |
12 months OS | |||||||
NCT04911621 | Adjuvant Dendritic Cell Immunotherapy for Pediatric Patients with HGG or DIPG (ADDICT-pedGLIO) | I/II | Belgium | September 2021 | 10 patients | Safety and feasibility | OS, PFS, TTP |
NCT04837547 | PEACH TRIAL Precision Medicine and Adoptive Cellular Therapy (PEACH) for Neuroblastoma and DIPG | I | USA | September 2021 | 24 patients | DLT | AE, safety, feasibility; OS, PFS, ORR |
NCT02644460 | Abemaciclib in Children with DIPG or Recurrent/Refractory Solid Tumors (AflacST1501) | I | USA | February 2016 | 60 patients | DLT, MTD, PK | AE, hematological toxicities |
NCT03416530 | ONC201 in Pediatric H3 K27M Gliomas | I | USA | January 2018 | 130 patients | RP2D | - |
NCT02525692 | Oral ONC201 in Recurrent GBM, H3 K27M Glioma, and Midline Glioma | II | USA | August 2015 | 89 patients | PFS | - |
NCT04541082 | Phase I Study of Oral ONC206 in Recurrent and Rare Primary Central Nervous System Neoplasms | I | USA | September 2020 | 102 patients | MTD | - |
NCT04732065 | ONC206 for the Treatment of Newly Diagnosed or Recurrent DMG and Other Recurrent Malignant CNS Tumors (PNOC 023) | I | USA, Switzerland | August 2021 | 250 patients | DLT, MTD | PK parameters |
NCT04185038 | Study of B7-H3-Specific CAR T Cell Locoregional Immunotherapy for DIPG/DMG and Recurrent or Refractory Pediatric Central Nervous System Tumors | I | USA | December 2019 | 90 patients | Safety and feasibility | Distribution of CNS-CART cells, RR |
NCT02359565 | Pembrolizumab in Treating Younger Patients with Recurrent, Progressive, Refractory HGG, DIPG, Hyper-Mutated tumors, Ependymoma, or Medulloblastoma | I | USA | May 2015 | 110 patients | AE, OR | PFS, EFS, OS, radiological response |
NCT05009992 | Combination Therapy for the Treatment of DMG | II | USA | August 2021 | 216 patients | 6-months PFS; 7-months OS | |
NCT03893487 | Fimepinostat in Treating Brain Tumors in Children and Young Adults (PNOC016) | I | USA | August 2019 | 30 patients | BBB penetration | - |
NCT03243461 | International Cooperative Phase III Trial of the HIT-HGG Study Group (HIT-HGG-2013) | III | Germany | July 2018 | 167 patients | EFS | - |
NCT03598244 | Volitinib in Treating Patients with Recurrent or Refractory Primary CNS Tumors | I | USA | October 2018 | 50 patients | MTD, RP2D | CR, PR, PK |
NCT03690869 | REGN2810 in Pediatric Patients With Relapsed, Refractory Solid, or Central Nervous System (CNS) Tumors and Safety and Efficacy of REGN2810 in Combination With Radiotherapy in Pediatric Patients With Newly Diagnosed or Recurrent Glioma | I/II | USA | October 2018 | 130 patients | AE, SAE, DLT, PK, OR, PFS | OR |
NCT04099797 | C7R-GD2.CAR T Cells for Patients with GD2-Expressing Brain Tumors (GAIL-B) | I | USA | February 2020 | 34 patients | DLT | RR |
NCT01837862 | A Phase I Study of Mebendazole for the Treatment of Pediatric Gliomas | I | USA | October 2013 | 36 patients | MTD | EFS, OS, PR o CRR |
NCT04239092 | 9-ING-41 in Pediatric Patients with Refractory Malignancies | I | USA | June 2020 | 68 patients | AE | - |
NCT03478462 | Dose Escalation Study of CLR 131 in Children, Adolescents, and Young Adults with Relapsed or Refractory Malignant Tumors Including, But Not Limited to, Neuroblastoma, Rhabdomyosarcoma, Ewing Sarcoma, and Osteosarcoma (CLOVER-2) | I | USA | April 2019 | 30 patients | DLT | EFS, OS, dosimetry |
NCT03389802 | Phase I Study of APX005M in Pediatric CNS Tumors | I | USA | February 2018 | 45 patients | AE, MTD, DLT, PK | ORR, PFS, OS |
NCT04295759 | INCB7839 in Treating Children with Recurrent/Progressive HGG | I | USA | May 2020 | 28 patients | AE, MTD, CMAX | PFS, OS, TTP |
NCT01884740 | Intraarterial Infusion of Erbitux and Bevacizumab for Relapsed/Refractory Intracranial Glioma In Patients Under 22 | I/II | USA | June 2013 | 30 patients | ORR | AE, PFS, OS |
NCT03709680 | Study Of Palbociclib Combined with Chemotherapy in Recurrent/Refractory Solid Tumors | I/II | USA | May 2019 | 167 patients | EFS, DLT, AE | AE, CR or PR, DoR, PFS, OS, PK, Tmax |
NCT04870944 | CBL0137 for the Treatment of Relapsed or Refractory Solid Tumors, Including CNS Tumors and Lymphoma | I/II | USA | January 2022 | 38 patients | DLT, anti-tumor effect | AE, min-max SC, clearance, IR, OS, PFS |
NCT05135975 | A Study of Cabozantinib as a Maintenance Agent to Prevent Progression or Recurrence in High-Risk Pediatric Solid Tumors | II | USA | October 2021 | 100 patients | 1-year PFS | 1–2–5 year OS, 2–5 year PFS, DoR, AE |
NCT04730349 | A Study of Bempegaldesleukin (BEMPEG: NKTR-214) in Combination with Nivolumab in Children, Adolescents, and Young Adults with Recurrent or Treatment-Resistant Cancer (PIVOT IO 020) | I/II | USA | June 2021 | 234 patients | DLT, AE, SAE, PK, ORR | PFS, OS |
NCT04238819 | A Study of Abemaciclib (LY2835219) in Combination with Temozolomide, Irinotecan, and Abemaciclib in Combination with Temozolomide in Children and Young Adult Participants with Solid Tumors | I | USA, Europe, Asia | November 2020 | 60 patients | DLT, PK | ORR, DoR, CBR, DCR |
NCT05298995 | GD2-CAR T Cells for Pediatric Brain Tumors | I | Italy | May 2022 | 54 patients | Safety and MTD | Expansion infiltration, TTP, EFS, OS |
NCT05099003 | A Study of the Drug Selinexor with Radiation Therapy in Patients with Newly Diagnosed DIPG H3K27M-Mutant HGG | I/II | USA | October 2021 | 36 patients | MTD, | - |
EFS | |||||||
OS, OR | |||||||
NCT05123534 | A Phase 1/2 Study of Sonodynamic Therapy Using SONALA-001 and Exablate 4000 Type 2 in DIPG Patients | II | USA | November 2021 | 18 patients | Safety; | OR, TTP, OS |
MTD | |||||||
NCT05169944 | Magrolimab in Children and Adults with Recurrent or Progressive Malignant Brain Tumors (PNOC025) | I | USA | December 2021 | 24 patients | Definition of phase II-MTD; | - |
SAE | |||||||
NCT05096481 | PEP-CMV Vaccine Targeting CMV Antigen to Treat Newly Diagnosed Pediatric HGG and DIPG and Recurrent Medulloblastoma | II | USA | October 2021 | 120 patients | 4-months PFS; 1-year PFS, 1 year-OS | 1-year PFS in rMB, 1-year OS in rHHG |
NCT05278208 | Lutathera for Treatment of Recurrent or Progressive High-Grade CNS Tumors or Meningiomas Expressing SST2A | I/II | USA | March 2022 | 65 patients | MTD, SAE | OR |
PFS |
Target | Therapeutic Agents | Study (Reference or Clinical Trial) |
---|---|---|
HDAC | panobinostat | [77] (NCT02717455) |
HDAC/LSD1 | corin | [78] |
H3K27M demethylase | GSKJ4 | [79] |
FACT complex | curaxin (CBL0137) | NCT04870944 |
EZH2 | tazemetostat | [80] |
HDAC | vorinostat | [81] |
PRC1 | PTC028 | NCT03605550 |
EGFR | nimotuzumab | [82,83], NCT03620032 |
EGFR | erlotinib | [84,85] |
EGFR | gefitinib | [86] |
PDGFRA | dasatanib | NCT00996723 |
PDGFRA | crenolanib | NCT01393912 |
VEGFR-2, EGFR | vandetanib | [87] |
PI3K/AKT/mTOR | everolimus | NCT03696355, NCT05009992, NCT02420613 |
ACVR1 | LDN-193189 or LDN-214117 | [88,89] |
BCL2 | venetoclax | [90] |
proteasome | marizomib | NCT03345095 |
CDK 4/6 | palbociclib, ribociclib | [91,92], NCT03434262 |
PARP1 | niraparib | [93] |
XPO1 | selinexor | [94] (NCT05099003) |
blood–brain barrier | BXQ-350 | NCT04771897 |
blood–brain barrier | CED | [95]; NCT00880061; NCT04264143; NCT03086616 |
blood–brain barrier | Focused ultrasound | NCT05123534 |
B7-H3 | omburtamab | NCT05063357; NCT01502917 |
DRD2/3 | ONC201 | [96,97,98,99], NCT03416530 |
STAT3 | AG490 | [100] |
AURKA | phthalazinone pyrazole | [101] |
PLK1 | volasertib | [101,102] |
Cancer vaccines | H3.3-K27M targeted neoantigen peptide | [103] |
Cancer vaccines | rHSC-DIPGVax | NCT0494384 |
Oncolytic adenovirus | AloCELYVIR | [103], NCT04758533 |
Oncolytic adenovirus | DNX-2401 | [104], NCT03178032 |
GD2 | CAR T cells | NCT04196413; NCT04099797; NCT0418503; NCT 05298995 [105] |
HER2 and EGFRvIII | CAR T cells | [106] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Ruscio, V.; Del Baldo, G.; Fabozzi, F.; Vinci, M.; Cacchione, A.; de Billy, E.; Megaro, G.; Carai, A.; Mastronuzzi, A. Pediatric Diffuse Midline Gliomas: An Unfinished Puzzle. Diagnostics 2022, 12, 2064. https://doi.org/10.3390/diagnostics12092064
Di Ruscio V, Del Baldo G, Fabozzi F, Vinci M, Cacchione A, de Billy E, Megaro G, Carai A, Mastronuzzi A. Pediatric Diffuse Midline Gliomas: An Unfinished Puzzle. Diagnostics. 2022; 12(9):2064. https://doi.org/10.3390/diagnostics12092064
Chicago/Turabian StyleDi Ruscio, Valentina, Giada Del Baldo, Francesco Fabozzi, Maria Vinci, Antonella Cacchione, Emmanuel de Billy, Giacomina Megaro, Andrea Carai, and Angela Mastronuzzi. 2022. "Pediatric Diffuse Midline Gliomas: An Unfinished Puzzle" Diagnostics 12, no. 9: 2064. https://doi.org/10.3390/diagnostics12092064
APA StyleDi Ruscio, V., Del Baldo, G., Fabozzi, F., Vinci, M., Cacchione, A., de Billy, E., Megaro, G., Carai, A., & Mastronuzzi, A. (2022). Pediatric Diffuse Midline Gliomas: An Unfinished Puzzle. Diagnostics, 12(9), 2064. https://doi.org/10.3390/diagnostics12092064