Role of Endomyocardial Biopsy in Diagnostics of Myocarditis
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Definitive Diagnostic Methods of Myocarditis
3.1.1. Cardiac Magnetic Resonance
3.1.2. Endomyocardial Biopsy
3.2. Viral Myocarditis
3.2.1. Viral Myocarditis of Unspecified Etiology
3.2.2. COVID-19-Associated Myocarditis
3.3. Systemic Immune-Mediated Disease-Associated Myocarditis
3.4. Cardiotoxic Substance-Associated Myocarditis
3.5. Specific Histopathological Subtypes of Myocarditis
3.5.1. Eosinophilic Myocarditis
3.5.2. Giant Cell Myocarditis
3.5.3. Myocardial Tuberculosis
3.5.4. Lyme Carditis
3.5.5. Chronic Inflammatory Cardiomyopathy
3.5.6. Arrhythmogenic Cardiomyopathy
3.5.7. Myocardial Calcification
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ammirati, E.; Frigerio, M.; Adler, E.D.; Basso, C.; Birnie, D.H.; Brambatti, M.; Friedrich, M.G.; Klingel, K.; Lehtonen, J.; Moslehi, J.J.; et al. Management of acute myocarditis and chronic inflammatory cardiomyopathy: An expert consensus document. Circ. Heart Fail. 2020, 13, e007405. [Google Scholar] [CrossRef] [PubMed]
- Caforio, A.L.P.; Pankuweit, S.; Arbustini, E.; Basso, C.; Gimeno-Blanes, J.; Felix, S.B.; Fu, M.; Heliö, T.; Heymans, S.; Jahns, R.; et al. Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: A position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur. Heart J. 2013, 34, 2636–2648. [Google Scholar] [CrossRef] [PubMed]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef] [PubMed]
- Dominguez, F.; Kühl, U.; Pieske, B.; Garcia-Pavia, P.; Tschöpe, C. Update on myocarditis and inflammatory cardiomyopathy: Reemergence of endomyocardial biopsy. Rev. Esp. Cardiol. (Engl. Ed.) 2016, 69, 178–187. [Google Scholar] [CrossRef]
- Cooper, L.T. Clinical Manifestations and Diagnosis of Myocarditis in Adults; UpToDate Post TW, Ed.; UpToDate: Waltham, MA, USA; Available online: https://www.uptodate.com/contents/clinical-manifestations-and-diagnosis-of-myocarditis-in-adults (accessed on 1 December 2021).
- Cheng, C.Y.; Cheng, G.Y.; Shan, Z.G.; Baritussio, A.; Lorenzoni, G.; Tyminska, A.; Ozieranski, K.; Iliceto, S.; Marcolongo, R.; Gregori, D.; et al. Efficacy of immunosuppressive therapy in myocarditis: A 30-year systematic review and meta-analysis. Autoimmun. Rev. 2021, 20, 102710. [Google Scholar] [CrossRef]
- Van den Boomen, M.; Slart, R.H.J.A.; Hulleman, E.V.; Dierckx, R.A.J.O.; Velthuis, B.K.; van der Harst, P.; Sosnovik, D.E.; Borra, R.J.H.; Prakken, N.H.J. Native T 1 reference values for nonischemic cardiomyopathies and populations with increased cardiovascular risk: A systematic review and meta-analysis. J. Magn. Reson. Imaging 2018, 45, 891–912. [Google Scholar] [CrossRef]
- Jia, Z.; Wang, L.; Jia, Y.; Liu, J.; Zhao, H.; Huo, L.; Zheng, B. Detection of acute myocarditis using T1 and T2 mapping cardiovascular magnetic resonance: A systematic review and meta-analysis. J. Appl. Clin. Med. Phys. 2021, 22, 239–248. [Google Scholar] [CrossRef]
- Snel, G.J.H.; van den Boomen, M.; Hernandez, L.M.; Nguyen, C.T.; Sosnovik, D.E.; Velthuis, B.K.; Slart, R.H.J.A.; Borra, R.J.H.; Prakken, N.H.J. Cardiovascular magnetic resonance native T2 and T2* quantitative values for cardiomyopathies and heart transplantations: A systematic review and meta-analysis. J. Cardiovasc. Magn. Reson. 2020, 22, 34. [Google Scholar] [CrossRef]
- Blissett, S.; Chocron, Y.; Kovacina, B.; Afilalo, J. Diagnostic and prognostic value of cardiac magnetic resonance in acute myocarditis: A systematic review and meta-analysis. Int. J. Cardiovasc. Imaging 2019, 35, 2221–2229. [Google Scholar] [CrossRef]
- Pan, J.A.; Lee, Y.J.; Salerno, M. Diagnostic performance of extracellular volume, native T1, and T2 mapping versus Lake Louise criteria by cardiac magnetic resonance for detection of acute myocarditis: A meta-analysis. Circ. Cardiovasc. Imaging 2018, 11, e007598. [Google Scholar] [CrossRef] [Green Version]
- Machanahalli Balakrishna, A.; Ismayl, M.; Thandra, A.; Walters, R.; Ganesan, V.; Anugula, D.; Shah, D.J.; Aboeata, A. Diagnostic value of cardiac magnetic resonance imaging and intracoronary optical coherence tomography in patients with a working diagnosis of myocardial infarction with non-obstructive coronary arteries—A systematic review and meta-analysis. Curr. Probl. Cardiol. 2022, 101126. [Google Scholar] [CrossRef]
- Kotanidis, C.P.; Bazmpani, M.A.; Haidich, A.B.; Karvounis, C.; Antoniades, C.; Karamitsos, T.D. Diagnostic accuracy of cardiovascular magnetic resonance in acute myocarditis: A systematic review and meta-analysis. JACC Cardiovasc. Imaging 2018, 11, 1583–1590. [Google Scholar] [CrossRef] [PubMed]
- Georgiopoulos, G.; Figliozzi, S.; Sanguineti, F.; Aquaro, G.D.; di Bella, G.; Stamatelopoulos, K.; Chiribiri, A.; Garot, J.; Masci, P.G.; Ismail, T.F. Prognostic impact of late gadolinium enhancement by cardiovascular magnetic resonance in myocarditis: A systematic review and meta-analysis. Circ. Cardiovasc. Imaging 2021, 14, e011492. [Google Scholar] [CrossRef] [PubMed]
- Silverblatt, J.A.; Ziff, O.J.; Dancy, L.; Daniel, A.; Carter, B.; Scott, P.; Sado, D.M.; Shah, A.; Bromage, D.I. Therapies to limit myocardial injury in animal models of myocarditis: A systematic review and meta-analysis. Basic Res. Cardiol. 2019, 114, 48. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Wang, J.; Li, W.; Xu, Y.; Wan, K.; Zeng, R.; Chen, Y. The prognostic value of late gadolinium enhancement in myocarditis and clinically suspected myocarditis: Systematic review and meta-analysis. Eur. Radiol. 2020, 30, 2616–2626. [Google Scholar] [CrossRef]
- Tymińska, A.; Ozierański, K.; Skwarek, A.; Kapłon-Cieślicka, A.; Baritussio, A.; Grabowski, M.; Marcolongo, R.; Caforio, A.L. Personalized management of myocarditis and inflammatory cardiomyopathy in clinical practice. J. Pers. Med. 2022, 12, 183. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Ochoa, S.A.; Rojas, L.Z.; Hernández-Vargas, J.A.; Largo, J.; Muka, T.; Echeverría, L.E. Longitudinal speckle tracking strain abnormalities in Chagas disease: A systematic review and meta-analysis. J. Clin. Med. 2022, 11, 769. [Google Scholar] [CrossRef]
- Pilati, M.; Rebonato, M.; Formigari, R.; Butera, G. Endomyocardial biopsy in pediatric myocarditis and dilated cardiomyopathy: A tool in search for a role. J. Cardiovasc. Dev. Dis. 2022, 9, 24. [Google Scholar] [CrossRef]
- Cheng, C.Y.; Baritussio, A.; Giordani, A.S.; Iliceto, S.; Marcolongo, R.; Caforio, A.L.P. Myocarditis in systemic immune-mediated diseases: Prevalence, characteristics and prognosis. A systematic review. Autoimmun. Rev. 2022, 21, 103037. [Google Scholar] [CrossRef]
- Robinson, J.; Harting, L.; Vandermeer, B.; Sebastianski, M.; Klassen, T.P. Intravenous immunoglobulin for presumed viral myocarditis in children and adults. Cochrane Database Syst. Rev. 2020, 8, CD004370. [Google Scholar] [CrossRef]
- Vaidya, V.R.; Abudan, A.A.; Vasudevan, K.; Shantha, G.; Cooper, L.T.; Kapa, S.; Noseworthy, P.A.; Cha, Y.M.; Asirvatham, S.J.; Deshmukh, A.J. The efficacy and safety of electroanatomic mapping-guided endomyocardial biopsy: A systematic review. J. Interv. Card. Electrophysiol. 2018, 53, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Schultheiss, H.P.; Baumeier, C.; Aleshcheva, G.; Bock, C.T.; Escher, F. Viral myocarditis—From pathophysiology to treatment. J. Clin. Med. 2021, 10, 5240. [Google Scholar] [CrossRef] [PubMed]
- Hausvater, A.; Smilowitz, N.R.; Li, B.; Redel-Traub, G.; Quien, M.; Qian, Y.; Zhong, J.; Nicholson, J.M.; Camastra, G.; Bière, L.; et al. Myocarditis in relation to angiographic findings in patients with provisional diagnoses of MINOCA. JACC Cardiovasc. Imaging 2020, 13, 1906–1913. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Q.; Zhuang, Z.; Wang, Z.H.; Deng, L.H.; Jin, W.J.; Huang, Z.J.; Zheng, G.Q.; Wang, Y. Clinical and preclinical systematic review of Astragalus membranaceus for viral myocarditis. Oxidative Med. Cell. Longev. 2020, 2020, 1560353. [Google Scholar] [CrossRef]
- Shafi, A.M.A.; Shaikh, S.A.; Shirke, M.M.; Iddawela, S.; Harky, A. Cardiac manifestations in COVID-19 patients—A systematic review. J. Card. Surg. 2020, 35, 1988–2008. [Google Scholar] [CrossRef]
- Scatularo, C.E.; Ballesteros, O.A.; Saldarriaga, C.; Mendoza, I.; Wyss, F.; Liprandi, A.S.; Munera, A.; Liendro, M.C.; Baranchuk, A.; Neglected Tropical Diseases and other Infectious Diseases affecting the Heart (NET-Heart project). Zika & heart: A systematic review. Trends Cardiovasc. Med. 2022, 32, 52–58. [Google Scholar] [CrossRef]
- Lippi, G.; Sanchis-Gomar, F. Cardiac troponin elevation in patients with influenza virus infections. Biomed. J. 2021, 44, 183–189. [Google Scholar] [CrossRef]
- Araiza-Garaygordobil, D.; García-Martínez, C.E.; Burgos, L.M.; Saldarriaga, C.; Liblik, K.; Mendoza, I.; Martinez-Selles, M.; Scatularo, C.E.; Farina, J.M.; Baranchuk, A.; et al. Dengue and the heart. Cardiovasc. J. Afr. 2021, 32, 276–283. [Google Scholar] [CrossRef]
- Heymans, S.; Eriksson, U.; Lehtonen, J.; Cooper, L.T. The Quest for New Approaches in Myocarditis and Inflammatory Cardiomyopathy. J. Am. Coll. Cardiol. 2016, 68, 2348–2364. [Google Scholar] [CrossRef]
- Rigopoulos, A.G.; Klutt, B.; Matiakis, M.; Apostolou, A.; Mavrogeni, S.; Noutsias, M. Systematic review of PCR proof of parvovirus B19 genomes in endomyocardial biopsies of patients presenting with myocarditis or dilated cardiomyopathy. Viruses 2019, 11, 566. [Google Scholar] [CrossRef] [Green Version]
- Dick, S.A.; Epelman, S. Chronic Heart Failure and Inflammation: What Do We Really Know? Cir. Res. 2016, 119, 159–176. [Google Scholar] [CrossRef]
- Tschope, C.; Ammirati, E.; Bozkurt, B.; Caforio, A.L.P.; Cooper, L.T.; Felix, S.B.; Hare, J.M.; Heidecker, B.; Heymans, S.; Hubner, N.; et al. Myocarditis and inflammatory cardiomyopathy: Current evidence and future directions. Nat. Rev. Cardiol. 2021, 18, 169–193. [Google Scholar] [CrossRef] [PubMed]
- Fung, G.; Luo, H.; Qiu, Y.; Yang, D.; McManus, B. Myocarditis. Circ. Res. 2016, 118, 496–514. [Google Scholar] [CrossRef] [PubMed]
- Winter, M.P.; Sulzgruber, P.; Koller, L.; Bartko, P.; Goliasch, G.; Niessner, A. Immunomodulatory treatment for lymphocytic myocarditis—A systematic review and meta-analysis. Heart Fail. Rev. 2018, 23, 573–581. [Google Scholar] [CrossRef]
- Yen, C.Y.; Hung, M.C.; Wong, Y.C.; Chang, C.Y.; Lai, C.C.; Wu, K.G. Role of intravenous immunoglobulin therapy in the survival rate of pediatric patients with acute myocarditis: A systematic review and meta-analysis. Sci. Rep. 2019, 9, 10459. [Google Scholar] [CrossRef]
- He, B.; Li, X.; Li, D. Immunosuppressive treatment for myocarditis in the pediatric population: A meta-analysis. Front. Pediatr. 2019, 7, 430. [Google Scholar] [CrossRef]
- Li, Y.; Yu, Y.; Chen, S.; Liao, Y.; Du, J. Corticosteroids and intravenous immunoglobulin in pediatric myocarditis: A meta-analysis. Front. Pediatr. 2019, 7, 342. [Google Scholar] [CrossRef]
- Chen, W.H.; Guo, Y.S.; Zhang, D.H.; Zhang, H.J. Long-term prognosis of suspected myocarditis and cardiomyopathy associated with viral infection of the myocardial tissue: A meta-analysis of cohort studies. Cardiovasc. Ther. 2019, 2019, 9342792. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, H.; Tang, J.; He, Y.; Xiong, T.; Li, W.; Qu, Y.; Mu, D. Clinical characteristics of severe neonatal enterovirus infection: A systematic review. BMC Pediatr. 2021, 21, 127. [Google Scholar] [CrossRef]
- Raukar, N.P.; Cooper, L.T. Implications of SARS-CoV-2-associated myocarditis in the medical evaluation of athletes. Sports Health 2021, 13, 145–148. [Google Scholar] [CrossRef]
- Van Hattum, J.C.; Spies, J.L.; Verwijs, S.M.; Verwoert, G.C.; Planken, R.N.; Boekholdt, S.M.; Groenink, M.; Malekzadeh, A.; Pinto, Y.M.; Wilde, A.A.M.; et al. Cardiac abnormalities in athletes after SARS-CoV-2 infection: A systematic review. BMJ Open Sport Exerc. Med. 2021, 7, e001164. [Google Scholar] [CrossRef] [PubMed]
- Davey, M.S.; Davey, M.G.; Hurley, R.; Hurley, E.T.; Pauzenberger, L. Return to play following COVID-19 infection—A systematic review of current evidence. J. Sport Rehabil. 2022, 31, 218–223. [Google Scholar] [CrossRef] [PubMed]
- Maiese, A.; Frati, P.; Del Duca, F.; Santoro, P.; Manetti, A.C.; La Russa, R.; Di Paolo, M.; Turillazzi, E.; Fineschi, V. Myocardial pathology in COVID-19-associated cardiac injury: A systematic review. Diagnostics 2021, 11, 1647. [Google Scholar] [CrossRef] [PubMed]
- Dou, Q.; Wei, X.; Zhou, K.; Yang, S.; Jia, P. Cardiovascular manifestations and mechanisms in patients with COVID-19. Trend Endocrinol. Metab. 2020, 31, 893–904. [Google Scholar] [CrossRef]
- Samavati, L.; Uhal, B.D. ACE2, much more than just a receptor for SARS-CoV-2. Front. Cell. Infect. Microbiol. 2020, 10, 371. [Google Scholar] [CrossRef]
- Diaz-Arocutipa, C.; Torres-Valencia, J.; Saucedo-Chinchay, J.; Cuevas, C. ST-segment elevation in patients with COVID-19: A systematic review. J. Thromb. Thrombolysis 2021, 52, 738–745. [Google Scholar] [CrossRef]
- Li, J.W.; Han, T.W.; Woodward, M.; Anderson, C.S.; Zhou, H.; Chen, Y.D.; Neal, B. The impact of 2019 novel coronavirus on heart injury: A systematic review and meta-analysis. Prog. Cardiovasc. Dis. 2020, 63, 518–524. [Google Scholar] [CrossRef]
- Shaw, P.; Senguttuvan, N.B.; Raymond, G.; Sankar, S.; Mukherjee, A.G.; Kunale, M.; Kodiveri Muthukaliannan, G.; Baxi, S.; Mani, R.R.; Rajagopal, M.; et al. COVID-19 outcomes in patients hospitalised with acute myocardial infarction (AMI): A protocol for systematic review and meta-analysis. COVID 2022, 2, 138–147. [Google Scholar] [CrossRef]
- Rodriguez-Gonzalez, M.; Castellano-Martinez, A.; Cascales-Poyatos, H.M.; Perez-Reviriego, A.A. Cardiovascular impact of COVID-19 with a focus on children: A systematic review. World J. Clin. Cases 2020, 8, 5250–5283. [Google Scholar] [CrossRef]
- Kang, Y.; Chen, T.; Mui, D.; Ferrari, V.; Jagasia, D.; Scherrer-Crosbie, M.; Chen, Y.; Han, Y. Cardiovascular manifestations and treatment considerations in COVID-19. Heart 2020, 106, 1132–1141. [Google Scholar] [CrossRef]
- Rathore, S.S.; Rojas, G.A.; Sondhi, M.; Pothuru, S.; Pydi, R.; Kancherla, N.; Singh, R.; Ahmed, N.K.; Shah, J.; Tousif, S.; et al. Myocarditis associated with Covid-19 disease: A systematic review of published case reports and case series. Int. J. Clin. Pract. 2021, 75, e14470. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, V.; Sarfraz, Z.; Sarfraz, A.; Mukherjee, D.; Batra, N.; Hitawala, G.; Yaqoob, S.; Patel, A.; Agarwala, P.; Ruchika; et al. COVID-19 infection and myocarditis: A state-of-the-art systematic review. J. Prim. Care Community Health 2021, 12, 21501327211056800. [Google Scholar] [CrossRef]
- Haussner, W.; DeRosa, A.P.; Haussner, D.; Tran, J.; Torres-Lavoro, J.; Kamler, J.; Shah, K. COVID-19 associated myocarditis: A systematic review. Am. J. Emerg. Med. 2022, 51, 150–155. [Google Scholar] [CrossRef]
- Sawalha, K.; Abozenah, M.; Kadado, A.J.; Battisha, A.; Al-Akchar, M.; Salerno, C.; Hernandez-Montfort, J.; Islam, A.M. Systematic review of COVID-19 related myocarditis: Insights on management and outcome. Cardiovasc. Revasc. Med. 2021, 23, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Willi, S.; Lüthold, R.; Hunt, A.; Hänggi, N.V.; Sejdiu, D.; Scaff, C.; Bender, N.; Staub, K.; Schlagenhauf, P. COVID-19 sequelae in adults aged less than 50 years: A systematic review. Travel Med. Infect. Dis. 2021, 40, 101995. [Google Scholar] [CrossRef] [PubMed]
- Castiello, T.; Georgiopoulos, G.; Finocchiaro, G.; Claudia, M.; Gianatti, A.; Delialis, D.; Aimo, A.; Prasad, S. COVID-19 and myocarditis: A systematic review and overview of current challenges. Heart Fail. Rev. 2022, 27, 251–261. [Google Scholar] [CrossRef]
- Thakkar, S.; Arora, S.; Kumar, A.; Jaswaney, R.; Faisaluddin, M.; Ammad Ud Din, M.; Shariff, M.; Barssoum, K.; Patel, H.P.; Nirav, A.; et al. A systematic review of the cardiovascular manifestations and outcomes in the setting of coronavirus-19 disease. Clin. Med. Insights Cardiol. 2020, 14, 1179546820977196. [Google Scholar] [CrossRef]
- Mahenthiran, A.K.; Mahenthiran, A.K.; Mahenthiran, J. Cardiovascular system and COVID-19: Manifestations and therapeutics. Rev. Cardiovasc. Med. 2020, 21, 399–409. [Google Scholar] [CrossRef]
- Imazio, M.; Klingel, K.; Kindermann, I.; Brucato, A.; De Rosa, F.G.; Adler, Y.; De Ferrari, G.M. COVID-19 pandemic and troponin: Indirect myocardial injury, myocardial inflammation or myocarditis? Heart 2020, 106, 1127–1131. [Google Scholar] [CrossRef]
- Roshdy, A.; Zaher, S.; Fayed, H.; Coghlan, J.G. COVID-19 and the heart: A systematic review of cardiac autopsies. Front. Cardiovasc. Med. 2021, 7, 626975. [Google Scholar] [CrossRef]
- Guzik, T.J.; Mohiddin, S.A.; Dimarco, A.; Patel, V.; Savvatis, K.; Marelli-Berg, F.M.; Madhur, M.S.; Tomaszevski, M.; Maffia, P.; D’Acquisto, F.D.; et al. COVID-19 and the cardiovascular system: Implications for risk assessment, diagnosis, and treatment options. Cardiovasc. Res. 2020, 116, 1666–1687. [Google Scholar] [CrossRef] [PubMed]
- Peiris, S.; Mesa, H.; Aysola, A.; Manivel, J.; Toledo, J.; Borges-Sa, M.; Aldighieri, S.; Reveiz, L. Pathological findings in organs and tissues of patients with COVID-19: A systematic review. PLoS ONE 2021, 16, e0250708. [Google Scholar] [CrossRef] [PubMed]
- Saed Aldien, A.; Ganesan, G.S.; Wahbeh, F.; Al-Nassr, N.; Altarawneh, H.; Al Theyab, L.; Saed Aldien, S.; Tomerak, S.; Naveed, H.; Elshazly, M.B.; et al. Systemic inflammation may induce cardiac injury in COVID-19 patients including children and adolescents without underlying cardiovascular diseases: A systematic review. Cardiovasc. Revasc. Med. 2022, 35, 169–178. [Google Scholar] [CrossRef]
- Vasquez-Bonilla, W.O.; Orozco, R.; Argueta, V.; Sierra, M.; Zambrano, L.I.; Muñoz-Lara, F.; López-Molina, D.S.; Arteaga-Livias, K.; Grimes, Z.; Bryce, C.; et al. A review of the main histopathological findings in coronavirus disease 2019. Hum. Pathol. 2020, 105, 74–83. [Google Scholar] [CrossRef]
- Kamarullah, W.; Nurcahyani; Josephine, C.M.; Multazam, B.R.; Nawing, A.G.; Dharma, S. Corticosteroid therapy in management of myocarditis associated with COVID-19; a systematic review of current evidence. Arch. Acad. Emerg. Med. 2021, 9, e32. [Google Scholar] [CrossRef]
- Lang, J.P.; Wang, X.; Moura, F.A.; Siddiqi, H.A.; Morrow, D.A.; Bohula, E.A. A current review of COVID-19 for the cardiovascular specialist. Am. Heart J. 2020, 226, 29–44. [Google Scholar] [CrossRef]
- Mitrani, R.D.; Dabas, N.; Goldberg, J.J. COVID-19 cardiac injury: Implications for long-term surveillance and outcomes in survivors. Heart Rhythm 2020, 17, 1984–1990. [Google Scholar] [CrossRef]
- Lee, K.K.; Rahimi, O.; Lee, C.K.; Shafi, A.; Hawwass, D. A meta-analysis: Coronary artery calcium score and COVID-19 prognosis. Med. Sci. 2022, 10, 5. [Google Scholar] [CrossRef]
- Bustos, R.B.; Jaramillo-Bustamante, J.C.; Vasquez-Hoyos, P.; Cruces, P.; Díaz, F. Pediatric inflammatory multisystem syndrome associated with SARS-CoV-2: A case series quantitative systematic review. Pediatr. Emerg. Care 2021, 37, 44–47. [Google Scholar] [CrossRef]
- Wang, J.G.; Zhong, Z.J.; Li, M.; Fu, J.; Su, Y.H.; Ping, Y.M.; Xu, Z.J.; Li, H.; Chen, Y.H.; Huang, Y.L. Coronavirus disease 2019-related multisystem inflammatory syndrome in children: A systematic review and meta-analysis. Biochem. Res. Int. 2021, 2021, 5596727. [Google Scholar] [CrossRef]
- Dhar, D.; Dey, T.; Samim, M.M.; Padmanabha, H.; Chatterjee, A.; Naznin, P.; Chandra, S.R.; Mallesh, K.; Shah, R.; Siddiqui, S.; et al. Systemic inflammatory syndrome in COVID-19-SISCoV study: Systematic review and meta-analysis. Pediatr. Res. 2022, 91, 1334–1349. [Google Scholar] [CrossRef] [PubMed]
- Sood, M.; Sharma, S.; Sood, I.; Sharma, K.; Kaushik, A. Emerging evidence on multisystem inflammatory syndrome in children associated with SARS-CoV-2 infection: A systematic review with meta-analysis. SN Compr. Clin. Med. 2021, 3, 38–47. [Google Scholar] [CrossRef] [PubMed]
- Henrina, J.; Putra, I.C.S.; Lawrensia, S.; Marta, D.S.; Wijaya, E.; Saboe, A.; Cool, C.J.; Suciadi, L.P. Cardiac manifestations, treatment characteristics, and outcomes of paediatric inflammatory multisystem syndrome temporally associated with severe acute respiratory syndrome coronavirus-2: A systematic review. Prog. Pediatr. Cardiol. 2021, 63, 101365. [Google Scholar] [CrossRef]
- Sanna, G.; Serrau, G.; Bassero, P.P.; Neroni, P.; Fanos, V.; Marcialis, M.A. Children’s heart and COVID-19: Up-to-date evidence in the form of a systematic review. Eur. J. Pediatr. 2020, 179, 1079–1087. [Google Scholar] [CrossRef] [PubMed]
- Siripanthong, B.; Nazarian, S.; Muser, D.; Deo, R.; Satangeli, P.; Khanji, M.Y.; Cooper, L.T.; Chahal, C.A.A. Recognizing COVID-19–related myocarditis: The possible pathophysiology and proposed guideline for diagnosis and management. Heart Rhythm 2020, 17, 1463–1471. [Google Scholar] [CrossRef] [PubMed]
- Tomasoni, D.; Italia, L.; Adamo, M.; Inciardi, R.M.; Lombardi, C.M.; Solomon, S.D.; Metra, M. COVID-19 and heart failure: From infection to inflammation and angiotensin II stimulation. Searching for evidence from a new disease. Eur. J. Heart Fail. 2020, 22, 957–966. [Google Scholar] [CrossRef]
- Kim, J.Y.; Han, K.; Suh, Y.J. Prevalence of abnormal cardiovascular magnetic resonance findings in recovered patients from COVID-19: A systematic review and meta-analysis. J. Cardiovasc. Magn. Reason. 2021, 23, 100. [Google Scholar] [CrossRef]
- Ahmad, M.S.; Shaik, R.A.; Ahmad, R.K.; Yusuf, M.; Khan, M.; Almutairi, A.B.; Alghuyaythat, W.K.Z.; Almutairi, S.B. “LONG COVID”: An insight. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 5561–5577. [Google Scholar] [CrossRef]
- Phelan, D.; Kim, J.H.; Elliott, M.D.; Wasfy, M.M.; Cremer, P.; Johri, A.M.; Emery, M.S.; Sengupta, P.P.; Sharma, S.; Martinez, M.W.; et al. Screening of Potential Cardiac Involvement in Competitive Athletes Recovering from COVID-19: An Expert Consensus Statement. JACC Cardiovasc. Imaging 2020, 13, 2635–2652. [Google Scholar] [CrossRef]
- Crook, H.; Raza, S.; Nowell, J.; Young, M.; Edison, P. Long covid—Mechanisms, risk factors, and management. BMJ 2021, 347, n1648. [Google Scholar] [CrossRef]
- Wilson, M.G.; Hull, J.H.; Rogers, J.; Pollock, N.; Dodd, M.; Haines, J.; Harris, S.; Loosemore, M.; Malhotra, A.; Pieles, G.; et al. Cardiorespiratory considerations for return-to-play in elite athletes after COVID-19 infection: A practical guide for sport and exercise medicine physicians. Br. J. Sports Med. 2020, 54, 1157–1161. [Google Scholar] [CrossRef]
- Lv, M.; Luo, X.; Shen, Q.; Lei, R.; Liu, X.; Liu, E.; Li, Q.; Chen, Y. Safety, immunogenicity, and efficacy of COVID-19 vaccines in children and adolescents: A systematic review. Vaccines 2021, 9, 1102. [Google Scholar] [CrossRef]
- Fazlollahi, A.; Zahmatyar, M.; Noori, M.; Nejadghaderi, S.A.; Sullman, M.J.M.; Shekarriz-Foumani, R.; Kolahi, A.A.; Singh, K.; Safiri, S. Cardiac complications following mRNA COVID-19 vaccines: A systematic review of case reports and case series. Rev. Med. Virol. 2021, 32, e2318. [Google Scholar] [CrossRef]
- Al-Ali, D.; Elshafeey, A.; Mushannen, M.; Kawas, H.; Shafiq, A.; Mhaimeed, N.; Mhaimeed, O.; Mhaimeed, N.; Zeghlache, R.; Salameh, M.; et al. Cardiovascular and haematological events post COVID-19 vaccination: A systematic review. J. Cell. Mol. Med. 2022, 26, 636–653. [Google Scholar] [CrossRef]
- Matta, A.; Kunadharaju, R.; Osman, M.; Jesme, C.; McMiller, Z.; Johnson, E.M.; Matta, D.; Kallamadi, R.; Bande, D. Clinical presentation and outcomes of myocarditis post mRNA vaccination: A meta-analysis and systematic review. Cureus 2021, 13, e19240. [Google Scholar] [CrossRef]
- Bozkurt, B.; Kamat, I.; Hotez, P.J. Myocarditis With COVID-19 mRNA Vaccines. Circulation 2021, 144, 471–484. [Google Scholar] [CrossRef]
- Sessa, F.; Salerno, M.; Esposito, M.; Di Nunno, N.; Zamboni, P.; Pomara, C. Autopsy findings and causality relationship between death and COVID-19 vaccination: A systematic review. J. Clin. Med. 2021, 10, 5876. [Google Scholar] [CrossRef]
- Fazelpour, S.; Sadek, M.M.; Nery, P.B.; Beanlands, R.S.; Tzemos, N.; Toma, M.; Birnie, D.H. Corticosteroid and immunosuppressant therapy for cardiac sarcoidosis: A systematic review. J. Am. Heart Assoc. 2021, 10, e021183. [Google Scholar] [CrossRef]
- Birnie, D.H.; Nery, P.B.; Ha, A.C.; Beanlands, R.S.B. Cardiac Sarcoidosis. J. Am. Coll. Cardiol. 2016, 68, 411–421. [Google Scholar] [CrossRef]
- Patel, A.R.; Kramer, C.M. Role of Cardiac Magnetic Resonance in the Diagnosis and Prognosis of Nonischemic Cardiomyopathy. JACC Cardiovasc. Imaging 2017, 10, 1180–1193. [Google Scholar] [CrossRef]
- Saric, P.; Young, K.A.; Rodriguez-Porcel, M.; Chareonthaitawee, P. PET imaging in cardiac sarcoidosis: A narrative review with focus on novel PET tracers. Pharmaceuticals 2021, 14, 1286. [Google Scholar] [CrossRef]
- Rammos, A.; Meladinis, V.; Vovas, G.; Patsouras, D. Restrictive cardiomyopathies: The importance of noninvasive cardiac imaging modalities in diagnosis and treatment—A systematic review. Radiol. Res. Pract. 2017, 2017, 2874902. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; Pak, K.; Kim, K. Diagnostic performance of F-18 FDG PET for detection of cardiac sarcoidosis; A systematic review and meta-analysis. J. Nucl. Cardiol. 2020, 27, 2103–2115. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.A.; Salerno, M. Clinical utility and future applications of PET/CT and PET/CMR in cardiology. Diagnostics 2016, 6, 32. [Google Scholar] [CrossRef] [PubMed]
- Mavrogeni, S.I.; Kitas, G.D.; Dimitroulas, T.; Sfikakis, P.P.; Seo, P.; Gabriel, S.; Patel, A.R.; Gargani, L.; Bombardieri, S.; Matucci-Cerini, M.; et al. Cardiovascular magnetic resonance in rheumatology: Current status and recommendations for use. Int. J. Cardiol. 2016, 217, 135–148. [Google Scholar] [CrossRef]
- Fairley, J.L.; Wicks, I.; Peters, S.; Day, J. Defining cardiac involvement in idiopathic inflammatory myopathies: A systematic review. Rheumatology 2021, 61, 103–120. [Google Scholar] [CrossRef]
- Schwartz, T.; Diederichsen, L.P.; Lundberg, I.E.; Sjaastad, I.; Sanner, H. Cardiac involvement in adult and juvenile idiopathic inflammatory myopathies. RMD Open 2016, 2, e000291. [Google Scholar] [CrossRef]
- Cheng, W.; Sun, T.; Liu, C.; Zhou, Z.; Duan, J.; Zhao, Y.; Yang, M.; Chen, P. A systematic review of myasthenia gravis complicated with myocarditis. Brain Behav. 2021, 11, e2242. [Google Scholar] [CrossRef]
- Pathak, R.; Katel, A.; Massarelli, E.; Villaflor, V.M.; Sun, V.; Salgia, R. Immune checkpoint inhibitor-induced myocarditis with myositis/ myasthenia gravis overlap syndrome: A systematic review of cases. Oncologist 2021, 26, 1052–1061. [Google Scholar] [CrossRef]
- Choi, J.; Lee, S.Y. Clinical Characteristics and Treatment of Immune-Related Adverse Events of Immune Checkpoint Inhibitors. Immune Netw. 2020, 20, e9. [Google Scholar] [CrossRef]
- Kennedy, L.B.; Salama, A.K.S. A Review of Cancer Immunotherapy Toxicity. CA Cancer J. Clin. 2020, 70, 86–104. [Google Scholar] [CrossRef]
- Furuta, S.; Iwamoto, T.; Nakajima, H. Update on eosinophilic granulomatosis with polyangiitis. Allergol. Int. 2019, 68, 430–436. [Google Scholar] [CrossRef] [PubMed]
- Soni, P.R.; Noval Rivas, M.; Arditi, M. A comprehensive update on Kawasaki disease vasculitis and myocarditis. Curr. Rheumatol. Rep. 2020, 22, 6. [Google Scholar] [CrossRef] [PubMed]
- Dolladille, C.; Akroun, J.; Morice, P.M.; Dompmartin, A.; Ezine, E.; Sassier, M.; Da-Silva, A.; Plane, A.F.; Legallois, D.; L’Orphelin, J.M.; et al. Cardiovascular immunotoxicities associated with immune checkpoint inhibitors: A safety meta-analysis. Eur. Heart J. 2021, 42, 4964–4977. [Google Scholar] [CrossRef]
- Hamada, N.; Maeda, A.; Takase-Minegishi, K.; Kirino, Y.; Sugiyama, Y.; Namkoong, H.; Horita, N.; Yoshimi, R.; Nakajima, H.; YCU irAE Working Group. Incidence and distinct features of immune checkpoint inhibitor-related myositis from idiopathic inflammatory myositis: A single-center experience with systematic literature review and meta-analysis. Front. Immunol. 2021, 12, 803410. [Google Scholar] [CrossRef] [PubMed]
- Nso, N.; Antwi-Amoabeng, D.; Beutler, B.D.; Ulanja, M.B.; Ghuman, J.; Hanfy, A.; Nimo-Boampong, J.; Atanga, S.; Doshi, R.; Enoru, S.; et al. Cardiac adverse events of immune checkpoint inhibitors in oncology patients: A systematic review and meta-analysis. World J. Cardiol. 2020, 12, 584–598. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.Y.; Salem, J.E.; Cohen, J.V.; Chandra, S.; Menzer, C.; Ye, F.; Zhao, S.; Das, S.; Beckermann, K.E.; Ha, L.; et al. Fatal toxic effects associated with immune checkpoint inhibitors. JAMA Oncol. 2018, 4, 1721–1728. [Google Scholar] [CrossRef]
- Agostinetto, E.; Eiger, D.; Lambertini, M.; Ceppi, M.; Bruzzone, M.; Pondé, N.; Plummer, C.; Awada, A.H.; Santoro, A.; Piccart-Gebhart, M.; et al. Cardiotoxicity of immune checkpoint inhibitors: A systematic review and meta-analysis of randomised clinical trials. Eur. J. Cancer 2021, 148, 76–91. [Google Scholar] [CrossRef]
- Varricchi, G.; Galdiero, M.R.; Tocchetti, C.G. Cardiac Toxicity of Immune Checkpoint Inhibitors: Cardio-Oncology Meets Immunology. Circulation 2017, 136, 1989–1992. [Google Scholar] [CrossRef]
- Mir, H.; Alhussein, M.; Alrashidi, S.; Alzayer, H.; Alshatti, A.; Valettas, N.; Mukherjee, S.D.; Nair, V.; Leong, D.P. Cardiac complications associated with checkpoint inhibition: A Systematic Review of the Literature in an Important Emerging Area. Can. J. Cardiol. 2018, 34, 1059–1068. [Google Scholar] [CrossRef]
- Shalata, W.; Abu-Salman, A.; Steckbeck, R.; Mathew Jacob, B.; Massalha, I.; Yakobson, A. Cardiac toxicity associated with immune checkpoint inhibitors: A systematic review. Cancers 2021, 13, 5218. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, N.; Chan, K.K.; Jivanelli, B.; Bass, A.R. Autoantibodies in patients with immune-related adverse events from checkpoint inhibitors: A systematic literature review. J. Clin. Rheumatol. 2022, 28, e498–e505. [Google Scholar] [CrossRef] [PubMed]
- Marin-Acevedo, J.A.; Chirila, R.M.; Dronca, R.S. Immune Checkpoint Inhibitor Toxicities. Mayo Clin. Proc. 2019, 94, 1321–1329. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.R.; Florido, R.; Lipson, E.J.; Naidoo, J.; Ardehali, R.; Tocchetti, C.G.; Lyon, A.R.; Padera, R.F.; Johnson, D.B.; Moslehi, J. Cardiovascular toxicities associated with immune checkpoint inhibitors. Cardiovasc. Res. 2019, 115, 854–868. [Google Scholar] [CrossRef]
- Pradhan, R.; Nautiyal, A.; Singh, S. Diagnosis of immune checkpoint inhibitor-associated myocarditis: A systematic review. Int. J. Cardiol. 2019, 296, 113–121. [Google Scholar] [CrossRef]
- Lyon, A.R.; Yousaf, N.; Battisti, N.M.L.; Moslehi, J.; Larkin, J. Immune checkpoint inhibitors and cardiovascular toxicity. Lancet Oncol. 2018, 19, e447–e458. [Google Scholar] [CrossRef]
- Aktypis, C.; Spei, M.E.; Yavropoulou, M.; Wallin, G.; Koumarianou, A.; Kaltsas, G.; Kassi, E.; Daskalakis, K. Cardiovascular toxicities secondary to biotherapy and molecular targeted therapies in neuroendocrine neoplasms: A systematic review and meta-analysis of randomized placebo-controlled trials. Cancers 2021, 13, 2159. [Google Scholar] [CrossRef]
- Siskind, D.; Sidhu, A.; Cross, J.; Chua, Y.T.; Myles, N.; Cohen, D.; Kisely, S. Systematic review and meta-analysis of rates of clozapine-associated myocarditis and cardiomyopathy. Aust. N. Z. J. Psychiatry 2020, 54, 467–481. [Google Scholar] [CrossRef]
- Bellissima, B.L.; Tingle, M.D.; Cicović, A.; Alawami, M.; Kenedi, C. A systematic review of clozapine-induced myocarditis. Int. J. Cardiol. 2018, 259, 122–129. [Google Scholar] [CrossRef]
- Yuen, J.W.Y.; Kim, D.D.; Procyshyn, R.M.; White, R.F.; Honer, W.G.; Barr, A.M. Clozapine-induced cardiovascular side effects and autonomic dysfunction: A systematic review. Front. Neurosci. 2018, 12, 203. [Google Scholar] [CrossRef] [Green Version]
- Knoph, K.N.; Morgan, R.J., 3rd; Palmer, B.A.; Schak, K.M.; Owen, A.C.; Leloux, M.R.; Patel, M.; Leung, J.G. Clozapine-induced cardiomyopathy and myocarditis monitoring: A systematic review. Schizophr. Res. 2018, 199, 17–30. [Google Scholar] [CrossRef] [PubMed]
- Stroup, T.S.; Gray, N. Management of common adverse effects of antipsychotic medications. World Psychiatry 2018, 17, 341–356. [Google Scholar] [CrossRef] [PubMed]
- Georgieva, E.; Karamalakova, Y.; Miteva, R.; Abrashev, H.; Nikolova, G. Oxidative stress and cocaine intoxication as start points in the pathology of cocaine-induced cardiotoxicity. Toxics 2021, 9, 317. [Google Scholar] [CrossRef]
- Talarico, G.P.; Crosta, M.L.; Giannico, M.B.; Summaria, F.; Calò, L.; Patrizi, R. Cocaine and coronary artery diseases: A systematic review of the literature. J. Cardiovasc. Med. 2017, 18, 291–294. [Google Scholar] [CrossRef] [PubMed]
- Havakuk, O.; Rezkalla, S.H.; Kloner, R.A. The Cardiovascular Effects of Cocaine. J. Am. Coll. Cardiol. 2017, 70, 101–113. [Google Scholar] [CrossRef]
- Liblik, K.; Byun, J.; Saldarriaga, C.; Perez, G.E.; Lopez-Santi, R.; Wyss, F.Q.; Liprandi, A.S.; Martinez-Sellés, M.; Farina, J.M.; Mendoza, I.; et al. Snakebite envenomation and heart: Systematic review. Curr. Probl. Cardiol. 2021, 47, 100861. [Google Scholar] [CrossRef] [PubMed]
- Diny, N.L.; Rose, N.R.; Cihakova, D. Eosinophils in Autoimune Diseases. Front. Immunol. 2017, 8, 484. [Google Scholar] [CrossRef] [PubMed]
- Bertrand, V.; Boccara, O.; Filhon, B.; Manca, F.; Lefèvre, G.; Groh, M.; Kahn, J.E. Episodic angioedema with eosinophilia (Gleich syndrome) in children: A clinical review. Pediatr. Allergy Immunol. 2020, 31, 297–302. [Google Scholar] [CrossRef]
- Farreira, V.M.; Shulz-Menger, J.; Holmvang, G.; Kramer, C.M.; Carbone, I.; Sechtem, U.; Kindermann, I.; Gutberlet, M.; Cooper, L.T.; Liu, P.; et al. Cardiovascular Magnetic Resonance in Nonischemic Myocardial Inflammation: Expert Recommendations. J. Am. Coll. Cardiol. 2018, 72, 3158–3175. [Google Scholar] [CrossRef]
- Radovanovic, M.; Jevtic, D.; Calvin, A.D.; Petrovic, M.; Paulson, M.; Rueda Prada, L.; Sprecher, L.; Savic, I.; Dumic, I. “Heart in DRESS”: Cardiac manifestations, treatment and outcome of patients with drug reaction with eosinophilia and systemic symptoms syndrome: A systematic review. J. Clin. Med. 2022, 11, 704. [Google Scholar] [CrossRef]
- Scatularo, C.E.; Posada Martínez, E.L.; Saldarriaga, C.; Ballesteros, O.A.; Baranchuk, A.; Sosa Liprandi, A.; Wyss, F.; Sosa Liprandi, M.I. Endomyocardiofibrosis: A systematic review. Curr. Probl. Cardiol. 2021, 46, 100784. [Google Scholar] [CrossRef] [PubMed]
- Kojom Foko, L.P.; Arya, A.; Sharma, A.; Singh, V. Epidemiology and clinical outcomes of severe Plasmodium vivax malaria in India. J. Infect. 2021, 82, 231–246. [Google Scholar] [CrossRef] [PubMed]
- Holm, A.E.; Gomes, L.C.; Marinho, C.R.F.; Silvestre, O.M.; Vestergaard, L.S.; Biering-Sørensen, T.; Brainin, P. Prevalence of cardiovascular complications in malaria: A systematic review and meta-analysis. Am. J. Trop. Med. Hyg. 2021, 104, 1643–1650. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Gazendam, N.; Farina, J.M.; Saldarriaga, C.; Mendoza, I.; López-Santi, R.; Pérez, G.E.; Martínez-Sellés, M.; Baranchuk, A. Malaria and the heart: JACC state-of-the-art review. J. Am. Coll. Cardiol. 2021, 77, 1110–1121. [Google Scholar] [CrossRef]
- Cooper, L.T. Treatment and Prognosis of Myocarditis in Adults; UpToDate Post TW, Ed.; UpToDate: Waltham, MA, USA; Available online: https://www.uptodate.com/contents/treatment-and-prognosis-of-myocarditis-in-adults (accessed on 1 December 2021).
- Montero, S.; Aissaoui, N.; Tadié, J.M.; Bizouarn, P.; Scherrer, V.; Persichini, R.; Delmas, C.; Rolle, F.; Besnier, E.; Le Guyader, A.; et al. Fulminant giant-cell myocarditis on mechanical circulatory support: Management and outcomes of a French multicentre cohort. Int. J. Cardiol. 2018, 253, 105–112. [Google Scholar] [CrossRef]
- Patel, P.M.; Saxena, A.; Wood, C.T.; O’Malley, T.J.; Maynes, E.J.; Entwistle, J.W.C.; Massey, H.T.; Pirlamarla, P.R.; Alvarez, R.J.; Cooper, L.T.; et al. Outcomes of mechanical circulatory cupport for giant cell myocarditis: A systematic review. J. Clin. Med. 2020, 9, 3905. [Google Scholar] [CrossRef]
- Bobbio, E.; Björkenstam, M.; Nwaru, B.I.; Giallauria, F.; Hessman, E.; Bergh, N.; Polte, C.L.; Lehtonen, J.; Karason, K.; Bollano, E. Short- and long-term outcomes after heart transplantation in cardiac sarcoidosis and giant-cell myocarditis: A systematic review and meta-analysis. Clin. Res. Cardiol. 2022, 111, 125–140. [Google Scholar] [CrossRef]
- Sinagra, G.; Anzini, M.; Pereira, N.L.; Bussani, R.; Finocchiaro, G.; Bartunek, J.; Merlo, M. Myocarditis in Clinical Practice. Mayo Clin. Proc. 2016, 91, 1256–1266. [Google Scholar] [CrossRef]
- López-López, J.P.; Posada-Martínez, E.L.; Saldarriaga, C.; Wyss, F.; Ponte-Negretti, C.I.; Alexander, B.; Miranda-Arboleda, A.F.; Martínez-Sellés, M.; Baranchuk, A.; Neglected Tropical Diseases, Other Infectious Diseases Affecting the Heart (the NET-Heart Project). Tuberculosis and the heart. J. Am. Heart Assoc. 2021, 10, e019435. [Google Scholar] [CrossRef]
- Besant, G.; Wan, D.; Yeung, C.; Blakely, C.; Branscombe, P.; Suarez-Fuster, L.; Redfearn, D.; Simpson, C.; Abdollah, H.; Glover, B.; et al. Suspicious index in Lyme carditis: Systematic review and proposed new risk score. Clin. Cardiol. 2018, 41, 1611–1616. [Google Scholar] [CrossRef] [Green Version]
- Yeung, C.; Baranchuk, A. Diagnosis and Treatment of Lyme Carditis. J. Am. Coll. Cardiol. 2019, 73, 717–726. [Google Scholar] [CrossRef] [PubMed]
- Timmermans, P.; Barradas-Pires, A.; Ali, O.; Henkens, M.; Heymans, S.; Negishi, K. Prednisone and azathioprine in patients with inflammatory cardiomyopathy: Systematic review and meta-analysis. ESC Heart Fail. 2020, 7, 2278–2296. [Google Scholar] [CrossRef] [PubMed]
- Gil, K.E.; Pawlak, A.; Gil, R.J.; Frontczak-Baniewicz, M.; Bil, J. The role of invasive diagnostics and its impact on the treatment of dilated cardiomyopathy: A systematic review. Adv. Med. Sci. 2016, 61, 331–343. [Google Scholar] [CrossRef] [PubMed]
- Khatami, A.; Razizadeh, M.H.; Ghadirali, M.; Yazdani, S.; Bahadory, S.; Soleimani, A. Association of parvovirus B19 and myocarditis/dilated cardiomyopathy: A systematic review and meta-analysis. Microb. Pathog. 2022, 162, 105207. [Google Scholar] [CrossRef]
- Zhang, Y.; Bauersachs, J.; Langer, H.F. Immune mechanisms in heart failure. Eur. J. Heart Fail. 2017, 19, 1379–1389. [Google Scholar] [CrossRef]
- Merlo, M.; Cannata, A.; Gobbo, M.; Stolfo, D.; Elliott, P.M.; Sinagra, G. Evolving concepts in dilated cardiomyopathy. Eur. J. Heart Fail. 2018, 20, 228–229. [Google Scholar] [CrossRef]
- Braunwald, E. Cardiomyopathies: An Overview. Circ. Res. 2017, 121, 711–721. [Google Scholar] [CrossRef]
- Bozkurt, B.; Colvin, M.; Cook, J.; Cooper, L.T.; Deswal, A.; Fonarow, G.C.; Francis, G.S.; Lenihan, D.; Lewis, E.F.; McNamara, D.M.; et al. Current Diagnostic and Treatment Strategies for Specific Dilated Cardiomyopathies: A Scientific Statement from the American Heart Association. Circulation 2016, 134, e652. [Google Scholar] [CrossRef]
- Anzai, T. Inflammatory Mechanisms of Cardiovascular Remodeling. Circ. J. 2018, 82, 629–635. [Google Scholar] [CrossRef]
- Radenkovic, D.; Weingartner, S.; Ricketts, L.; Moon, J.C.; Captur, G. T1 mapping in cardiac MRI. Heart Fail. Rev. 2017, 22, 415–430. [Google Scholar] [CrossRef] [Green Version]
- Femia, G.; Sy, R.W.; Puranik, R. Systematic review: Impact of the new task force criteria in the diagnosis of arrhythmogenic right ventricular cardiomyopathy. Int. J. Cardiol. 2017, 15, 311–317. [Google Scholar] [CrossRef]
- Corrado, D.; Basso, C.; Judge, D.P. Arrhythmogenic Cardiomyopathy. Circ. Res. 2017, 15, 784–802. [Google Scholar] [CrossRef]
- Towbin, J.A.; McKenna, W.J.; Abrams, D.J.; Ackerman, M.J.; Calkins, H.; Darrieux, F.C.C.; Daubert, J.P.; Chillou, C.; DePasquale, E.C.; Desai, M.Y.; et al. 2019 HRS expert consensus statement on evaluation, risk stratification, and management of arrhythmogenic cardiomyopathy. Heart Rhythm 2019, 16, e301–e372. [Google Scholar] [CrossRef] [PubMed]
- Manole, S.; Pintican, R.; Popa, G.; Rancea, R.; Dadarlat-Pop, A.; Vulturar, R.; Palade, E. Diagnostic Challenges in Rare Causes of Arrhythmogenic Cardiomyopathy—The Role of Cardiac MRI. J. Pers. Med. 2022, 12, 187. [Google Scholar] [CrossRef] [PubMed]
- Bocchi, E.A.; Bestetti, R.B.; Sanavacca, M.I.; Neto, E.C.; Issa, V.S. Chronic Chagas Heart Disease Management: From Etiology to Cardiomyopathy Treatment. J. Am. Coll. Cardiol. 2017, 70, 1510–1524. [Google Scholar] [CrossRef] [PubMed]
- Pilichou, K.; Thiene, G.; Bauce, B.; Rigato, I.; Lazzarini, E.; Migliore, F.; Marra, M.P.; Rizzo, S.; Zorzi, A.; Daliento, L.; et al. Arrhythmogenic cardiomyopathy. Orphanet J. Rare Dis. 2016, 11, 33. [Google Scholar] [CrossRef] [PubMed]
- Cappelletti, S.; Piacentino, D.; Ciallella, C. A systematic review of radiological and histological findings of septic myocardial calcifications. J. Forensic Leg. Med. 2020, 74, 102026. [Google Scholar] [CrossRef]
Original Lake Louise Criteria 1 |
Hyperemia shown by early gadolinium enhancement/T1-weighted images |
Myocardial edema shown by increased relaxation time/intense T2-weighted images |
Non-ischemic necrosis/fibrosis shown by late gadolinium enhancement (LGE) |
Updated Lake Louise Criteria 2 |
T1-based imaging: increased native T1 or extracellular volume, non-ischemic LGE T2-based imaging: increased native T2, high signal intensity ratio |
Supportive Criteria |
Regional or global left ventricular hypokinesia Pericardial effusion |
Main Indications in Patients with Clinical Suspicion of Myocarditis 1 |
New-onset (2 weeks–3 months) heart failure with hemodynamic compromise, life-threatening ventricular arrhythmias or high-degree atrioventricular block Lack of short term (<2 weeks) response to standard medical treatment |
Additional Considerations in Patients with Clinical Suspicion of Myocarditis 1 |
Patients receiving cardiotoxic medications Patients with known autoimmune disorders |
Histological Criteria of Active Myocarditis |
Myocardial infiltration with mainly mononuclear cells, signs of non-ischemic myocyte necrosis, with or without fibrosis, at routine light microscopy |
Immunohistochemical Criteria |
Infiltrate containing ≥14 leukocytes/mm2, including up to 4 monocytes/mm2 and CD3+ T-lymphocytes ≥ 7 cells/mm2 |
Factor | Points 1 |
---|---|
Erythema migrans | 4 |
History of tick bite | 3 |
Constitutional symptoms of the infection 2 | 2 |
Endemic area inhabitant status | 1 |
Male gender | 1 |
Age under 50 years | 1 |
Viral Myocarditis | ||
Unspecified etiology | [1,15,21,25,26,40,41,42,43] | EMB should be acquired in patients with a severe clinical course for treatment correction purposes. EMB with an adjunct PCR is optional to distinguishing between virus-mediated and virus-triggered myocarditis and for ambiguous cases. |
COVID-19 associated | [56,57,58,59,60,76,77,78,79,80,81,82] | A rise in cardiac troponin levels in absence of other parameters, suggesting a severe course of the infection can be used as a criterion for patient selection for CMR and EMB. EMB and autopsy sample analysis is highly desirable when facing novel pathogens. Follow-up studies with CMR and EMB are desired to determine the specific features and possible consequences of persistent myocardial inflammation after COVID-19 infection. |
Systemic Immune-Mediated Disease Associated Myocarditis | ||
Sarcoidosis | [20,30,78,89,91] | Use CMR for screening in patients with extra cardiac sarcoidosis, FDG PET/CT for EMB site precision if isolated cardiac sarcoidosis is suspected. |
Systemic lupus erythematosus | [20,30,96] | Use SLEDAI for risk assessment in patients with known disease, CMR or FDG PET/CT for screening, EMB to differentiate if infectious etiology is suspected in immunosupressed patients. |
Systemic sclerosis | [20] | Use CMR for screening in patients with internal organ fibrosis or diffuse scleroderma, differentiate from Raynauds phenomenon, EMB is optional. |
Inflammatory myopathies | [20,97,98] | Use cardiac troponin I and EchoCG for screening, especially in patients with high disease activity, CMR for confirmation, EMB is optional. |
Kawasaki disease | [104] | Use of EchoCG monitoring is mandatory, EMB for confirmation is considered unnecessary. |
Others (myasthenia gravis, inflammatory bowel disease, antiphospholipid antibody syndrome, eosinophilic granulomatosis with polyangiitis, Takayasu arteritis) | [1,20,99,102] | EMB with a subsequent skeletal muscle biopsy should be performed in patients with suspicion of myasthenia gravis. Other disorders have a rare occurance with a severe presentation, approach is limited by patients’ general condition and can be based upon medical history or confirmation of the primary disease by clinical findings and serology if hemodinamic stability for EMB cannot be achieved. |
Cardiotoxic Substance-Associated Myocarditis | ||
Immune checkpoint inhibitors, clozapine, biotherapy and molecular targeted therapy, illegal substances, snake venom. | [116,117,118,119,120,121,122,123,124] | Monitor biomarkers, ECG and EchoCG starting treatment with cardiotoxic drugs, confirm reactions with CMR or EMB. EMB can be used to differentiate use of illegal substances from other entities. |
Specific Histopathological Subtypes | ||
Eosinophilic Myocarditis | [1,17,93,129] | Use CMR to detect intracardiac thrombosis and subendocardial fibrosis with LGE, both typical for eosinophilic myocarditis. Myocardial mapping can be used for further differentiation, EMB is optional. |
Giant Cell Myocarditis | [1,20,139,140] | EMB is mandatory for correct treatment choice, characteristically severe presentation may be used as an indication. |
Myocardial Tuberculosis | [141] | Use ECG, chest X-ray, EchoCG and CMR in cases of systolic, diastolic or contractility dysfunction. Pericardiocentesis can be used for confirmation. |
Lyme Carditis | [142,143] | Suspicion index for risk stratification is sufficient to start empirical treatment. |
Chronic Inflammatory Cardiomyopathy | [1,23,144,145,146,147,148,149,150,151,152] | Length of symptoms > 1 month, biomarkers, EchoCG findings, unresponsiveness to standard heart failure treatment, CMR findings and history of slowly progressing infections or autoimmune disorders can be used for patient selection to perform an EMB. |
Arrhythmogenic Cardiomyopathy | [30,149,153,154,155,156,157,158] | Use a scoring system of familial, genetic, ECG, EchoCG and CMR results to suspect inherited disorders. EMB is reserved for exclusion of sarcoidosis, dilated cardiomyopathy or myocarditis. CMR analysis and electroanatomic voltage mapping is advised for sampling site precision. |
Myocardial Calcification | [159] | Use chest X-rays and/or EchoCG for screening, confirm with chest CT, CMR if CT is contraindicated. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vidusa, L.; Kalejs, O.; Maca-Kaleja, A.; Strumfa, I. Role of Endomyocardial Biopsy in Diagnostics of Myocarditis. Diagnostics 2022, 12, 2104. https://doi.org/10.3390/diagnostics12092104
Vidusa L, Kalejs O, Maca-Kaleja A, Strumfa I. Role of Endomyocardial Biopsy in Diagnostics of Myocarditis. Diagnostics. 2022; 12(9):2104. https://doi.org/10.3390/diagnostics12092104
Chicago/Turabian StyleVidusa, Liga, Oskars Kalejs, Aija Maca-Kaleja, and Ilze Strumfa. 2022. "Role of Endomyocardial Biopsy in Diagnostics of Myocarditis" Diagnostics 12, no. 9: 2104. https://doi.org/10.3390/diagnostics12092104
APA StyleVidusa, L., Kalejs, O., Maca-Kaleja, A., & Strumfa, I. (2022). Role of Endomyocardial Biopsy in Diagnostics of Myocarditis. Diagnostics, 12(9), 2104. https://doi.org/10.3390/diagnostics12092104