Comparative Assessment of the Sensitivity of Ten Commercial Rapid Diagnostic Test Kits for the Detection of Plasmodium
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Malaria Diagnostic Techniques
2.3. Statistics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Velut, G.; Dia, A.; Briolant, S.; Javelle, E.; de Santi, V.P.; Berger, F.; Savini, H.; Simon, F.; Michel, R.; Pradines, B. Le paludisme: Toujours d’actualité dans les armées françaises. Méd. Armées 2018, 46, 13–25. [Google Scholar]
- Thellier, M.; Simard, F.; Musset, L.; Cot, M.; Velut, G.; Kendjo, E.; Pradines, B. Changes in malaria epidemiology in France and worldwide, 2000–2015. Med. Mal. Infect. 2020, 50, 99–112. [Google Scholar] [CrossRef]
- de Laval, F.; Simon, F.; Bogreau, H.; Rapp, C.; Wurtz, N.; Oliver, M.; Demaison, X.; Dia, A.; De Pina, J.J.; Merens, A.; et al. Emergence of Plasmodium ovale malaria among the French Armed Forces in the Republic of Ivory Coast: 20 years of clinical and biological experience. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2014, 58, e122–e128. [Google Scholar] [CrossRef]
- Manego, R.Z.; Mombo-Ngoma, G.; Witte, M.; Held, J.; Gmeiner, M.; Gebru, T.; Tazemda, B.; Mischlinger, J.; Groger, M.; Lell, B.; et al. Demography, maternal health and the epidemiology of malaria and other major infectious diseases in the rural department Tsamba-Magotsi, Ngounie Province, in central African Gabon. BMC Public Health 2017, 17, 130. [Google Scholar] [CrossRef]
- Roucher, C.; Rogier, C.; Sokhna, C.; Tall, A.; Trape, J.-F. A 20-year longitudinal study of Plasmodium ovale and Plasmodium malariae prevalence and morbidity in a West African population. PLoS ONE 2014, 9, e87169. [Google Scholar] [CrossRef]
- Ginouves, M.; Veron, V.; Musset, L.; Legrand, E.; Stefani, A.; Prevot, G.; Demar, M.; Djossou, F.; Brousse, P.; Nacher, M.; et al. Frequency and distribution of mixed Plasmodium falciparum-vivax infections in French Guiana between 2000 and 2008. Malar. J. 2015, 14, 446. [Google Scholar] [CrossRef]
- Bartoloni, A.; Zammarchi, L. Clinical aspects of uncomplicated and severe malaria. Mediterr. J. Hematol. Infect. Dis. 2012, 4, e2012026. [Google Scholar] [CrossRef]
- Mousa, A.; Al-Taiar, A.; Anstey, N.M.; Badaut, C.; Barber, B.E.; Bassat, Q.; Challenger, J.D.; Cunnington, A.J.; Datta, D.; Drakeley, C.; et al. The impact of delayed treatment of uncomplicated P. falciparum malaria on progression to severe malaria: A systematic review and a pooled multicentre individual-patient meta-analysis. PLoS Med. 2020, 17, e1003359. [Google Scholar] [CrossRef]
- Kamaliddin, C.; Le Bouar, M.; Berry, A.; Fenneteau, O.; Gillet, P.; Godineau, N.; Candolfi, E.; Houzé, S. Assessment of diagnostic methods for imported malaria in mainland France. Med. Mal. Infect. 2020, 50, 141–160. [Google Scholar] [CrossRef]
- Maltha, J.; Gillet, P.; Jacobs, J. Malaria rapid diagnostic tests in travel medicine. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2013, 19, 408–415. [Google Scholar] [CrossRef]
- World Health Organization. Malaria Rapid Diagnostic Test Performance: Results of WHO Product Testing of Malaira RDTs: Round 7 (2016–2017); World Health Organization: Geneva, Switzerland, 2017; ISBN 978-92-4-151268-8.
- Wurtz, N.; Fall, B.; Bui, K.; Pascual, A.; Fall, M.; Camara, C.; Diatta, B.; Fall, K.B.; Mbaye, P.S.; Diémé, Y.; et al. Pfhrp2 and pfhrp3 polymorphisms in Plasmodium falciparum isolates from Dakar, Senegal: Impact on rapid malaria diagnostic tests. Malar. J. 2013, 12, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Recommended Selection Criteria for Procurement of Malaria Rapid Diagnostic Tests; World Health Organization: Geneva, Switzerland, 2018.
- World Health Organization. Malaria Rapid Diagnostic Test Performance: Summary Results of WHO Product Testing of Malaria RDTs: Round 1–8 (2008–2018); World Health Organization: Geneva, Switzerland, 2018; ISBN 978-92-4-151495-8.
- Grigg, M.J.; William, T.; Barber, B.E.; Parameswaran, U.; Bird, E.; Piera, K.; Aziz, A.; Dhanaraj, P.; Yeo, T.W.; Anstey, N.M. Combining parasite lactate dehydrogenase-based and histidine-rich protein 2-based rapid tests to improve specificity for diagnosis of malaria Due to Plasmodium knowlesi and other Plasmodium species in Sabah, Malaysia. J. Clin. Microbiol. 2014, 52, 2053–2060. [Google Scholar] [CrossRef] [PubMed]
- Tahar, R.; Sayang, C.; Ngane Foumane, V.; Soula, G.; Moyou-Somo, R.; Delmont, J.; Basco, L.K. Field evaluation of rapid diagnostic tests for malaria in Yaounde, Cameroon. Acta Trop. 2013, 125, 214–219. [Google Scholar] [CrossRef] [PubMed]
- Maltha, J.; Guiraud, I.; Lompo, P.; Kaboré, B.; Gillet, P.; Van Geet, C.; Tinto, H.; Jacobs, J. Accuracy of PfHRP2 versus Pf-pLDH antigen detection by malaria rapid diagnostic tests in hospitalized children in a seasonal hyperendemic malaria transmission area in Burkina Faso. Malar. J. 2014, 13, 20. [Google Scholar] [CrossRef] [PubMed]
- Adu-Gyasi, D.; Asante, K.P.; Amoako, S.; Amoako, N.; Ankrah, L.; Dosoo, D.; Tchum, S.K.; Adjei, G.; Agyei, O.; Amenga-Etego, S.; et al. Assessing the performance of only HRP2 and HRP2 with pLDH based rapid diagnostic tests for the diagnosis of malaria in middle Ghana, Africa. PLoS ONE 2018, 13, e0203524. [Google Scholar] [CrossRef]
- Gendrot, M.; Fawaz, R.; Dormoi, J.; Madamet, M.; Pradines, B. Genetic diversity and deletion of Plasmodium falciparum histidine-rich protein 2 and 3: A threat to diagnosis of Plasmodium falciparum malaria. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2018, 25, 580–585. [Google Scholar] [CrossRef]
- Baldeviano, G.C.; Okoth, S.A.; Arrospide, N.; Gonzalez, R.V.; Sánchez, J.F.; Macedo, S.; Conde, S.; Tapia, L.L.; Salas, C.; Gamboa, D.; et al. Molecular Epidemiology of Plasmodium falciparum Malaria Outbreak, Tumbes, Peru, 2010–2012. Emerg. Infect. Dis. 2015, 21, 797–803. [Google Scholar] [CrossRef]
- Menegon, M.; L’Episcopia, M.; Nurahmed, A.M.; Talha, A.A.; Nour, B.Y.M.; Severini, C. Identification of Plasmodium falciparum isolates lacking histidine-rich protein 2 and 3 in Eritrea. Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis. 2017, 55, 131–134. [Google Scholar] [CrossRef]
- Amoah, L.E.; Abankwa, J.; Oppong, A. Plasmodium falciparum histidine rich protein-2 diversity and the implications for PfHRP 2: Based malaria rapid diagnostic tests in Ghana. Malar. J. 2016, 15, 101. [Google Scholar] [CrossRef]
- Kozycki, C.T.; Umulisa, N.; Rulisa, S.; Mwikarago, E.I.; Musabyimana, J.P.; Habimana, J.P.; Karema, C.; Krogstad, D.J. False-negative malaria rapid diagnostic tests in Rwanda: Impact of Plasmodium falciparum isolates lacking hrp2 and declining malaria transmission. Malar. J. 2017, 16, 123. [Google Scholar] [CrossRef]
- Houzé, S.; Boly, M.D.; Le Bras, J.; Deloron, P.; Faucher, J.-F. PfHRP2 and PfLDH antigen detection for monitoring the efficacy of artemisinin-based combination therapy (ACT) in the treatment of uncomplicated falciparum malaria. Malar. J. 2009, 8, 211. [Google Scholar] [CrossRef] [Green Version]
- Charpentier, E.; Benichou, E.; Pagès, A.; Chauvin, P.; Fillaux, J.; Valentin, A.; Guegan, H.; Guemas, E.; Salabert, A.-S.; Armengol, C.; et al. Performance evaluation of different strategies based on microscopy techniques, rapid diagnostic test and molecular loop-mediated isothermal amplification assay for the diagnosis of imported malaria. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2020, 26, 115–121. [Google Scholar] [CrossRef]
- Tang, J.; Tang, F.; Zhu, H.; Lu, F.; Xu, S.; Cao, Y.; Gu, Y.; He, X.; Zhou, H.; Zhu, G.; et al. Assessment of false negative rates of lactate dehydrogenase-based malaria rapid diagnostic tests for Plasmodium ovale detection. PLoS Negl. Trop. Dis. 2019, 13, e0007254. [Google Scholar] [CrossRef] [PubMed]
- Pommier de Santi, V.; Girod, R.; Mura, M.; Dia, A.; Briolant, S.; Djossou, F.; Dusfour, I.; Mendibil, A.; Simon, F.; Deparis, X.; et al. Epidemiological and entomological studies of a malaria outbreak among French armed forces deployed at illegal gold mining sites reveal new aspects of the disease’s transmission in French Guiana. Malar. J. 2016, 15, 35. [Google Scholar] [CrossRef] [PubMed]
- Khaireh, B.A.; Briolant, S.; Pascual, A.; Mokrane, M.; Machault, V.; Travaillé, C.; Khaireh, M.A.; Farah, I.H.; Ali, H.M.; Abdi, A.-I.A.; et al. Plasmodium vivax and Plasmodium falciparum infections in the Republic of Djibouti: Evaluation of their prevalence and potential determinants. Malar. J. 2012, 11, 395. [Google Scholar] [CrossRef] [PubMed]
- Epelboin, L.; Rapp, C.; Faucher, J.F.; Méchaï, F.; Bottieau, E.; Matheron, S.; Malvy, D.; Caumes, E. Management and treatment of uncomplicated imported malaria in adults. Update of the French malaria clinical guidelines. Med. Mal. Infect. 2020, 50, 194–212. [Google Scholar] [CrossRef]
Identification | Company | Antigens (Specificity) | Batch Number (Lapsing) |
---|---|---|---|
SD Malaria Ag Pf/Pan (05FK63) | SD BiolineAlere Abbott | HRP2 (Pf) pLDH (Pf + Pv + Po + Pm) | 05EDD002A (10 January 2020) |
Malaria Pf/PAN Antigen Test (AMAL-7025) | Humasis, Launch Diagnostics | HRP2 (Pf) pLDH (Pf + Pv + Po + Pm) | MAL7040 (11 December 2019) |
Malaria Pf/Pv Antigen Test (AMFV-7025) | Humasis, Launch Diagnostics | HRP2 (Pf) LDH (Pv) | MFV8003 (15 May 2020) |
OnesiteMalaria Pf/Pan Ag Rapid Test (R0113C) | CTK Biotech, Eurobio | HRP2 (Pf) pLDH (Pf + Pv + Po + Pm) | F1114N3I03 (14 November 2019) |
Palutop4+ Optima | Biosynex | HRP2 (Pf) LDH (Pv) pLDH (Pf + Pv + Po + Pm) | [91226] (December 2019) |
CareStart Malaria pLDH Pf/Pan (Med G0121) | Medequip | pLDH (Pf) pLDH (Pf + Pv + Po + Pm) | ML 18H61 (July 2020) |
CareStart Malaria HRP2/pLDH Pf/Pan Combo (Med G0131) | Medequip | HRP2 (Pf) pLDH (Pf + Pv + Po + Pm) | MF 18F63 (November 2020) |
CareStart Malaria HRP2/pLDH Pf/VOM Combo (Med G0171) | Medequip | HRP2 (Pf) LDH (Pv + Po + Pm) | MW 18G61 (June 2020) |
CareStart Malaria Screen (Med G0231) | Medequip | HRP2/LDH (Pf) pLDH (Pf + Pv + Po + Pm) | MA 18G61 (June 2020) |
CareStart Malaria HRP2/pLDH Pf/Pv Combo (Med G0161) | Medequip | HRP2 (Pf) LDH (Pv) | MV 18G62 (June 2020) |
RDT Brand | Antigen Detection | Sensitivity P. falciparum | Sensitivity P. vivax | Sensitivity P. ovale | Sensitivity P. malariae | Sensitivity to All Plasmodium Species |
---|---|---|---|---|---|---|
SD Malaria Ag Pf/Pan (25FK63) | HRP2 (Pf) | 96.2% (76/79) | 69.8% (111/159) | |||
pLDH (Pf + Pv + Po + Pm) | 64.6% (51/79) | 81.1% (30/37) | 4.5% (1/22) | 19.0% (4/21) | ||
Malaria Pf/Pan Antigen Test (AMAL-7025) | HRP2 (Pf) | 96.2% (76/79) | 69.8% (111/159) | |||
pLDH (Pf + Pv + Po + Pm) | 77.2% (61/79) | 83.8% (31/37) | 4.5% (1/22) | 14.3% (3/21) | ||
Onesite Malaria Pf/Pan Ag Rapid Test (R0113C) | HRP2 (Pf) | 97.5% (77/79) | 71.1% (113/159) | |||
pLDH (Pf + Pv + Po + Pm) | 72.2% (57/79) | 83.8% (31/37) | 9.1% (2/22) | 14.3% (3/21) | ||
Carestart Malaria Screen (Med G0231) | HRP2/LDH (Pf) | 98.7% (78/79) | 91.8% (146/159) | |||
pLDH (Pf + Pv + Po + Pm) | 88.6% (70/79) | 86.5% (32/37) | 77.3% (17/22) | 90.5% (19/21) | ||
Carestart Malaria Pf/Pan (pLDH) Ag (Med G0121) | LDH (Pf) | 98.7% (78/79) | 95.0% (151/159) | |||
pLDH (Pf + Pv + Po + Pm) | 89.9% (71/79) | 94.6% (35/37) | 81.8% (18/22) | 95.2% (20/21) | ||
Carestart Malaria Pf/Pan (HRP2 /pLDH) Ag Combo (Med G0131) | HRP2 (Pf) | 98.7% (78/79) | 92.5% (147/159) | |||
pLDH (Pf + Pv + Po + Pm) | 84.8% (67/79) | 89.2% (33/37) | 77.3% (17/22) | 90.5% (19/21) | ||
Carestart Malaria Pf/VOM (HRP2 /pLDH) Combo (Med G0171) | HRP2 (Pf) | 98.7% (78/79) | 86.8% (138/159) | |||
LDH (Pv + Po + Pm) | 86.5% (32/37) | 59.1% (13/22) | 71.4% (15/21) | |||
Carestart Malaria Pf/Pv (HRP2 /pLDH) Ag Combo (Med G0161) | HRP2 (Pf) | 98.7% (78/79) | ||||
LDH (Pv) | 86.5% (32/37) | |||||
Malaria Pf/Pv Antigen Test (AMFV-7025) | HRP2 (Pf) | 96.2% (76/79) | ||||
LDH (Pv) | 83.8% (31/37) | |||||
Palutop 4+ Optima | HRP2 (Pf) | 98.7% (78/79) | 75.5% (120/159) | |||
LDH (Pv) | 91.9% (34/37) | |||||
pLDH (Pf + Pv + Po + Pm) | 84.8% (67/79) | 89.2% (33/37) | 4.5% (1/22) | 33.3% (7/21) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gendrot, M.; Madamet, M.; Fonta, I.; Benoit, N.; Amalvict, R.; Mosnier, J.; French National Reference Centre for Imported Malaria Study Group; Pradines, B. Comparative Assessment of the Sensitivity of Ten Commercial Rapid Diagnostic Test Kits for the Detection of Plasmodium. Diagnostics 2022, 12, 2240. https://doi.org/10.3390/diagnostics12092240
Gendrot M, Madamet M, Fonta I, Benoit N, Amalvict R, Mosnier J, French National Reference Centre for Imported Malaria Study Group, Pradines B. Comparative Assessment of the Sensitivity of Ten Commercial Rapid Diagnostic Test Kits for the Detection of Plasmodium. Diagnostics. 2022; 12(9):2240. https://doi.org/10.3390/diagnostics12092240
Chicago/Turabian StyleGendrot, Mathieu, Marylin Madamet, Isabelle Fonta, Nicolas Benoit, Rémy Amalvict, Joel Mosnier, French National Reference Centre for Imported Malaria Study Group, and Bruno Pradines. 2022. "Comparative Assessment of the Sensitivity of Ten Commercial Rapid Diagnostic Test Kits for the Detection of Plasmodium" Diagnostics 12, no. 9: 2240. https://doi.org/10.3390/diagnostics12092240
APA StyleGendrot, M., Madamet, M., Fonta, I., Benoit, N., Amalvict, R., Mosnier, J., French National Reference Centre for Imported Malaria Study Group, & Pradines, B. (2022). Comparative Assessment of the Sensitivity of Ten Commercial Rapid Diagnostic Test Kits for the Detection of Plasmodium. Diagnostics, 12(9), 2240. https://doi.org/10.3390/diagnostics12092240