Parkinson’s Disease-Related Brain Metabolic Pattern Is Expressed in Schizophrenia Patients during Neuroleptic Drug-Induced Parkinsonism
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.1.1. Schizophrenia Patients with and without DIP
2.1.2. Patients with Parkinson’s Disease
2.2. Healthy Subjects
2.3. FDG-PET Scanning
2.4. Image Data Preprocessing
2.5. PDRP Derivation and Validation
2.6. PDRP Evaluation in Schizophrenia
2.7. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
No | Typical | Atypical | Corr | Other | CPZ 1 eq | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CPZ | CPX | HAL | ZUC | AMI | ARI | CLO | OLA | PAL | QUE | RIS | ZIP | ||||
DIP | |||||||||||||||
1 | +++ | ++ | + | Duloxetine | 1958 | ||||||||||
2 | ++ | Phenazepam | 333 | ||||||||||||
3 | ++ | 500 | |||||||||||||
4 | + | +++ | + | 1925 | |||||||||||
5 | ++ | ++ | + | 661 | |||||||||||
6 | ++ | 500 | |||||||||||||
7 | +++ | + | Valproate | 1250 | |||||||||||
8 | + | ++ | + | 1313 | |||||||||||
9 | +++ | + | 750 | ||||||||||||
10 | ++ | +++ | + | Sertraline | 825 | ||||||||||
11 | ++ | 375 | |||||||||||||
12 | ++ | + | Sertraline | 250 | |||||||||||
13 | ++ | ++ | + | Zopiclone | 323 | ||||||||||
14 | +++ | + | Lithium carbonate | 720 | |||||||||||
Non-DIP | |||||||||||||||
15 | ++ | ++ | Lithium carbonate | 568 | |||||||||||
16 | ++ | 250 | |||||||||||||
17 | + | 125 | |||||||||||||
18 | ++ | 125 | |||||||||||||
19 | ++ | Valproate | 333 | ||||||||||||
20 | + | 125 | |||||||||||||
21 | ++ | Phenazepam | 625 | ||||||||||||
22 | + | +++ | Metoprolol | 775 | |||||||||||
23 | + | ++ | 393 | ||||||||||||
24 | ++ | ++ | Carbamazepine | 623 | |||||||||||
25 | ++ | Carbamazepine, lithium carbonate | 500 | ||||||||||||
26 | ++ | Sertraline | 480 | ||||||||||||
27 | +++ | ++ | 845 | ||||||||||||
28 | + | +++ | Lithium carbonate, venlafaxine | 1021 |
Characteristics | PD Derivation (N = 19) | PD Validation (N = 15) | C (N = 19) | AIMN HC (N = 18) |
---|---|---|---|---|
Sex, M/F | 1/18 | 12/3 | 9/10 | 13/5 |
Age, median (IQR 1) | 67 (64–70) | 61 (56–73) | 53 (41–61) | 67.5 (63–70) |
H&Y 2 stage | 1–3 | 2–3 | - | - |
Motor subtype | ||||
Akinetic-rigid | 9 | 13 | - | - |
Tremor-dominant | 8 | 2 | - | - |
Mixed | 2 | 0 | - | - |
References
- Wenning, G.K.; Litvan, I.; Tolosa, E. Milestones in atypical and secondary Parkinsonisms. Mov. Disord. 2011, 26, 1083–1095. [Google Scholar] [CrossRef]
- Barbosa, M.T.; Caramelli, P.; Maia, D.P.; Cunningham, M.C.Q.; Guerra, H.L.; Lima-Costa, M.F.; Cardoso, F. Parkinsonism and Parkinson’s disease in the elderly: A community-based survey in Brazil (the Bambuí study). Mov. Disord. 2006, 21, 800–808. [Google Scholar] [CrossRef]
- Shin, H.W.; Chung, S.J. Drug-induced parkinsonism. J. Clin. Neurol. 2012, 8, 15–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janno, S.; Holi, M.; Tuisku, K.; Wahlbeck, K. Prevalence of Neuroleptic-Induced Movement Disorders in Chronic Schizophrenia Inpatients. Am. J. Psychiatry 2004, 161, 160–163. [Google Scholar] [CrossRef]
- Tarsy, D.; Baldessarini, R.J.; Tarazi, F.I. Effects of Newer Antipsychotics on Extrapyramidal Function. CNS Drugs 2002, 16, 23–45. [Google Scholar] [CrossRef]
- Brandt, L.; Montag, C.; Bermpohl, F.; Finck, A.; Wieacker, E.; Heinz, A.; Gutwinski, S. The effect of second-generation antipsychotic withdrawal on the occurrence of vacuous chewing movements in animal models: A review. Behav. Brain Res. 2021, 418, 113637. [Google Scholar] [CrossRef] [PubMed]
- Barteček, R.; Kašpárek, T.; Češková, E. Withdrawal related adverse effects of antipsychotic medication in a patient with first-episode schizophrenia. Open Med. 2011, 6, 662–664. [Google Scholar] [CrossRef]
- Rodriguez-Rojas, R.; Pineda-Pardo, J.A.; Martinez-Fernandez, R.; Kogan, R.V.; Sanchez-Catasus, C.A.; del Alamo, M.; Hernández, F.; García-Cañamaque, L.; Leenders, K.L.; Obeso, J.A. Functional impact of subthalamotomy by magnetic resonance–guided focused ultrasound in Parkinson’s disease: A hybrid PET/MR study of resting-state brain metabolism. Eur. J. Pediatr. 2019, 47, 425–436. [Google Scholar] [CrossRef]
- Liu, F.T.; Ge, J.J.; Wu, J.J.; Wu, P.; Ma, Y.; Zuo, C.T.; Wang, J. Clinical, Dopaminergic, and Metabolic Correlations in Parkinson Disease: A Dual-Tracer PET Study. Clin. Nucl. Med. 2018, 43, 562–571. [Google Scholar] [CrossRef]
- Matthews, D.C.; Lerman, H.; Lukic, A.; Andrews, R.D.; Mirelman, A.; Wernick, M.N.; Giladi, N.; Strother, S.; Evans, K.C.; Cedarbaum, J.M.; et al. FDG PET Parkinson’s disease-related pattern as a biomarker for clinical trials in early stage disease. NeuroImage Clin. 2018, 20, 572–579. [Google Scholar] [CrossRef]
- Tomše, P.; Jensterle, L.; Grmek, M.; Zaletel, K.; Pirtošek, Z.; Dhawan, V.; Peng, S.; Eidelberg, D.; Ma, Y.; Trošt, M. Abnormal metabolic brain network associated with Parkinson’s disease: Replication on a new European sample. Neuroradiology 2017, 59, 507–515. [Google Scholar] [CrossRef] [PubMed]
- Meles, S.K.; Renken, R.J.; Pagani, M.; Teune, L.K.; Arnaldi, D.; Morbelli, S.; Nobili, F.; van Laar, T.; Obeso, J.A.; Rodríguez-Oroz, M.C.; et al. Abnormal pattern of brain glucose metabolism in Parkinson’s disease: Replication in three European cohorts. Eur. J. Pediatr. 2019, 47, 437–450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schindlbeck, K.A.; Eidelberg, D. Network imaging biomarkers: Insights and clinical applications in Parkinson’s disease. Lancet Neurol. 2018, 17, 629–640. [Google Scholar] [CrossRef] [PubMed]
- Leucht, S.; Samara, M.; Heres, S.; Patel, M.X.; Woods, S.W.; Davis, J.M. Dose Equivalents for Second-Generation Antipsychotics: The Minimum Effective Dose Method. Schizophr. Bull. 2014, 40, 314–326. [Google Scholar] [CrossRef] [Green Version]
- Gardner, D.M.; Murphy, A.L.; O’Donnell, H.; Centorrino, F.; Baldessarini, R.J. International consensus study of antipsychotic dosing. Am. J. Psychiatry 2010, 167, 686–693. [Google Scholar] [CrossRef] [Green Version]
- Caminiti, S.P.; Sala, A.; Presotto, L.; Chincarini, A.; Sestini, S.; Perani, D.; Schillaci, O.; The Alzheimer’s Disease Neuroimaging Initiative (ADNI); The Associazione Italiana Medicina Nucleare (AIMN) Datasets; The AIMN Neurology Study-Group Collaborators; et al. Validation of FDG-PET datasets of normal controls for the extraction of SPM-based brain metabolism maps. Eur. J. Nucl. Med. 2021, 48, 2486–2499. [Google Scholar] [CrossRef]
- Fedorova, S.; Kuznetsova, O.F.; Demjanov, A.S.; Obolentsev, V.Y.; Gomzina, N.A.; Orlovskaja, V.V.; Krasikova, R.N. The automation concept for nucleophilic fluorination processes exampled by the synthesis of 2-[18F]-2-deoxy-D-glucose, radiopharmaceutical for positron emission tomography (PET). Med. Fizika 2010, 2, 61–67. [Google Scholar]
- Rorden, C.; Karnath, H.-O.; Bonilha, L. Improving Lesion-Symptom Mapping. J. Cogn. Neurosci. 2007, 19, 1081–1088. [Google Scholar] [CrossRef]
- Penny, W.D.; Friston, K.J.; Ashburner, J.T.; Kiebel, S.J.; Nichols, T.E. (Eds.) Statistical Parametric Mapping: The Analysis of Functional Brain Images; Academic Press: Cambridge, MA, USA, 2006. [Google Scholar]
- Della Rosa, P.A.; Cerami, C.; Gallivanone, F.; Prestia, A.; Caroli, A.; Castiglioni, I.; Gilardi, M.C.; Frisoni, G.; Friston, K.; Ashburner, J.; et al. A standardized [18F]-FDG-PET template for spatial normalization in statistical parametric mapping of dementia. Neuroinformatics 2014, 12, 575–593. [Google Scholar] [CrossRef]
- Spetsieris, P.; Ma, Y.; Peng, S.; Ko, J.H.; Dhawan, V.; Tang, C.C.; Eidelberg, D. Identification of Disease-related Spatial Covariance Patterns using Neuroimaging Data. J. Vis. Exp. 2013, e50319. [Google Scholar] [CrossRef] [Green Version]
- Spetsieris, P.G.; Eidelberg, D. Scaled subprofile modeling of resting state imaging data in Parkinson’s disease: Methodological issues. Neuroimage 2011, 54, 2899–2914. [Google Scholar] [CrossRef] [PubMed]
- Masharipov, R.; Knyazeva, I.; Nikolaev, Y.; Korotkov, A.; Didur, M.; Cherednichenko, D.; Kireev, M. Providing Evidence for the Null Hypothesis in Functional Magnetic Resonance Imaging Using Group-Level Bayesian Inference. Front. Neuroinformatics 2021, 15, 738342. [Google Scholar] [CrossRef] [PubMed]
- Eidelberg, D.; Moeller, J.R.; Dhawan, V.; Spetsieris, P.; Takikawa, S.; Ishikawa, T.; Chaly, T.; Robeson, W.; Margouleff, D.; Przedborski, S.; et al. The metabolic topography of parkinsonism. J. Cereb. Blood Flow Metab. 1994, 14, 783–801. [Google Scholar] [CrossRef]
- Jeong, S.; Cho, H.; Kim, Y.J.; Ma, H.-I.; Jang, S. Drug-induced Parkinsonism: A strong predictor of idiopathic Parkinson’s disease. PLoS ONE 2021, 16, e0247354. [Google Scholar] [CrossRef] [PubMed]
- Shuaib, U.A.; Rajput, A.H.; Robinson, C.A.; Rajput, A. Neuroleptic-induced Parkinsonism: Clinicopathological study. Mov. Disord. 2016, 31, 360–365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajput, A.H.; Rozdilsky, B.; Hornykiewicz, O.; Shannak, K.; Lee, T.; Seeman, P. Reversible drug-induced parkinsonism. Clinicopathologic study of two cases. Arch Neurol. 1982, 39, 644–646. [Google Scholar] [CrossRef] [PubMed]
- Hirjak, D.; Rashidi, M.; Fritze, S.; Bertolino, A.L.; Geiger, L.S.; Zang, Z.; Kubera, K.M.; Schmitgen, M.M.; Sambataro, F.; Calhoun, V.D.; et al. Patterns of co-altered brain structure and function underlying neurological soft signs in schizophrenia spectrum disorders. Hum. Brain Mapp. 2019, 40, 5029–5041. [Google Scholar] [CrossRef] [Green Version]
- Oh, S.W.; Shin, N.Y.; Yoon, U.; Sin, I.; Lee, S.K. Shared functional neural substrates in Parkinson’s disease and drug-induced parkinsonism: Association with dopaminergic depletion. Sci. Rep. 2020, 10, 11617. [Google Scholar] [CrossRef]
Characteristics | DIP Group (N = 14) | Non-DIP Group (N = 14) | Mann– Whitney U |
---|---|---|---|
Sex, M/F | 8/6 | 8/6 | - |
Age, median (IQR 1) | 28 (23–33) | 27 (24–39) | p > 0.05 |
PANSS 2 total, median (IQR) | 88.5 (82–98) | 91 (79–104) | p > 0.05 |
PANSS positive, median (IQR) | 23 (19–27) | 21 (18–23) | p > 0.05 |
PANSS negative, median (IQR) | 23 (20–28) | 23 (20–29) | p > 0.05 |
PANSS general, median (IQR) | 44 (42–50) | 47 (40–52) | p > 0.05 |
Chlorpromazine equivalent, median (IQR) | 744 (375–1250) | 517 (250–676) | p > 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kotomin, I.; Korotkov, A.; Solnyshkina, I.; Didur, M.; Cherednichenko, D.; Kireev, M. Parkinson’s Disease-Related Brain Metabolic Pattern Is Expressed in Schizophrenia Patients during Neuroleptic Drug-Induced Parkinsonism. Diagnostics 2023, 13, 74. https://doi.org/10.3390/diagnostics13010074
Kotomin I, Korotkov A, Solnyshkina I, Didur M, Cherednichenko D, Kireev M. Parkinson’s Disease-Related Brain Metabolic Pattern Is Expressed in Schizophrenia Patients during Neuroleptic Drug-Induced Parkinsonism. Diagnostics. 2023; 13(1):74. https://doi.org/10.3390/diagnostics13010074
Chicago/Turabian StyleKotomin, Ivan, Alexander Korotkov, Irina Solnyshkina, Mikhail Didur, Denis Cherednichenko, and Maxim Kireev. 2023. "Parkinson’s Disease-Related Brain Metabolic Pattern Is Expressed in Schizophrenia Patients during Neuroleptic Drug-Induced Parkinsonism" Diagnostics 13, no. 1: 74. https://doi.org/10.3390/diagnostics13010074
APA StyleKotomin, I., Korotkov, A., Solnyshkina, I., Didur, M., Cherednichenko, D., & Kireev, M. (2023). Parkinson’s Disease-Related Brain Metabolic Pattern Is Expressed in Schizophrenia Patients during Neuroleptic Drug-Induced Parkinsonism. Diagnostics, 13(1), 74. https://doi.org/10.3390/diagnostics13010074