Automatic Classification of Colour Fundus Images for Prediction Eye Disease Types Based on Hybrid Features
Abstract
:1. Introduction
- Two overlapping filters improve all CFP pictures to enhance images and improve the contrast in the regions of interest.
- Combining the features of MobileNet and DenseNet121 models before and after dimension reduction.
- Extracting texture, colour, and shape features using Gray Level Co-occurrence Matrix (GLCM), Fuzzy Colour Histogram (FCH), Local Binary Pattern (LBP), and Discrete Wavelet Transform (DWT) methods and then combining them into so-called handcrafted features.
- Combining the MobileNet-handcrafted and DenseNet121-handcrafted features.
2. Related Work
3. Methods and Materials
3.1. Description of the Eye Disease Dataset
3.2. Enhancement of the OIH Dataset Images
3.3. Classification of CNN Features Using the ANN
3.4. Classification of CNN-Fused Features Using the ANN
3.5. Classification of the Fusion between CNN and Handcrafted Features Using the ANN
4. Results of System Evaluation
4.1. Splitting of the Eye Disease Dataset
4.2. Performance Evaluation Metrics for the Systems
4.3. Data Augmentation
4.4. Results of CNN Features using ANN
4.5. Results of CNN-Fused Features using the ANN
4.6. Results of the Fusion between CNN and Handcrafted Features Using the ANN
4.6.1. Error Histogram
4.6.2. Cross-Entropy
4.6.3. Gradient and Validation Checks
5. Discuss Performance Strategies
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ayzenberg, V.; Kamps, F.S.; Dilks, D.D.; Lourenco, S.F. Skeletal representations of shape in the human visual cortex. Neuropsychologia 2022, 164, 108092. [Google Scholar] [CrossRef]
- Bourne, R.R.; Stevens, G.A.; White, R.A.; Smith, J.L.; Flaxman, S.R.; Price, H.; Taylor, H.R. Causes of vision loss worldwide, 1990–2010: A systematic analysis. Lancet Glob. Health 2013, 1, e339–e349. [Google Scholar] [CrossRef]
- Congdon, N.; O’Colmain, B.; Klaver, C.C.; Klein, R.; Munoz, B.; Friedman, D.S.; Mitchell, P. Causes and prevalence of visual impairment among adults in the United States. Arch. Ophthalmol. 2004, 122, 477–485. Available online: https://europepmc.org/article/med/15078664/reload=0 (accessed on 27 November 2022). [PubMed]
- Li, T.; Bo, W.; Hu, C.; Kang, H.; Liu, H.; Wang, K.; Fu, H. Applications of deep learning in fundus images: A review. Med. Image Anal. 2021, 69, 101971. [Google Scholar] [CrossRef] [PubMed]
- Li, J.Q.; Welchowski, T.; Schmid, M.; Letow, J.; Wolpers, C.; Pascual-Camps, I.; Finger, R.P. Prevalence, incidence and future projection of diabetic eye disease in Europe: A systematic review and meta-analysis. Eur. J. Epidemiol. 2019, 35, 11–23. [Google Scholar] [CrossRef]
- Orfao, J.; van der Haar, D. A Comparison of Computer Vision Methods for the Combined Detection of Glaucoma, Diabetic Retinopathy and Cataracts. In Lecture Notes in Computer Science (including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Cham, Switzerland, 2021; Volume 12722, pp. 30–42. [Google Scholar]
- Keenan, T.D.; Chen, Q.; Agrón, E.; Tham, Y.C.; Goh, J.H.L.; Lei, X.; Zeleny, A. DeepLensNet: Deep learning automated diagnosis and quantitative classification of cataract type and severity. Ophthalmology 2022, 129, 571–584. [Google Scholar] [CrossRef]
- Farooq, M.S.; Arooj, A.; Alroobaea, R.; Baqasah, A.M.; Jabarulla, M.Y.; Singh, D.; Sardar, R. Untangling computer-aided diagnostic system for screening diabetic retinopathy based on deep learning techniques. Sensors 2022, 22, 1803. [Google Scholar] [CrossRef] [PubMed]
- Prananda, A.R.; Frannita, E.L.; Hutami, A.H.T.; Maarif, M.R.; Fitriyani, N.L.; Syafrudin, M. Retinal Nerve Fiber Layer Analysis Using Deep Learning to Improve Glaucoma Detection in Eye Disease Assessment. Appl. Sci. 2023, 13, 37. [Google Scholar] [CrossRef]
- He, J.; Li, C.; Ye, J.; Qiao, Y.; Gu, L. Multi-label ocular disease classification with a dense correlation deep neural network. Biomed. Signal Process. Control 2021, 63, 102167. [Google Scholar] [CrossRef]
- Gour, N.; Khanna, P. Multi-class multi-label ophthalmological disease detection using transfer learning based convolutional neural network. Biomed. Signal Process. Control 2021, 66, 102329. [Google Scholar] [CrossRef]
- Luo, X.; Li, J.; Chen, M.; Yang, X.; Li, X. Ophthalmic Disease Detection via Deep Learning with a Novel Mixture Loss Function. IEEE J. Biomed. Health Inform. 2021, 25, 3332–3339. [Google Scholar] [CrossRef]
- Hu, K.; Zhang, Z.; Niu, X.; Zhang, Y.; Cao, C.; Xiao, F.; Gao, X. Retinal vessel segmentation of color fundus images using multiscale convolutional neural network with an improved cross-entropy loss function. Neurocomputing 2018, 309, 179–191. [Google Scholar] [CrossRef]
- Playout, C.; Duval, R.; Cheriet, F. A Novel Weakly Supervised Multitask Architecture for Retinal Lesions Segmentation on Fundus Images. IEEE Trans. Med. Imaging 2019, 38, 2434–2444. [Google Scholar] [CrossRef] [PubMed]
- Pahuja, R.; Sisodia, U.; Tiwari, A.; Sharma, S.; Nagrath, P. A Dynamic Approach of Eye Disease Classification Using Deep Learning and Machine Learning Model. Lect. Notes Data Eng. Commun. Technol. 2022, 90, 719–736. [Google Scholar]
- Junayed, M.S.; Islam, M.B.; Sadeghzadeh, A.; Rahman, S. CataractNet: An automated cataract detection system using deep learning for fundus images. IEEE 2021, 9, 128799–128808. [Google Scholar] [CrossRef]
- Tham, Y.C.; Goh, J.H.L.; Anees, A.; Lei, X.; Rim, T.H.; Chee, M.L.; Cheng, C.Y. Detecting visually significant cataract using retinal photograph-based deep learning. Nat. Aging 2022, 2, 264–271. [Google Scholar] [CrossRef]
- Jiang, J.; Lei, S.; Zhu, M.; Li, R.; Yue, J.; Chen, J.; Lin, H. Improving the generalizability of infantile cataracts detection via deep learning-based lens partition strategy and multicenter datasets. Front. Med. 2021, 8, 470. [Google Scholar] [CrossRef]
- Elloumi, Y. Mobile Aided System of Deep-Learning Based Cataract Grading from Fundus Images. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Cham, Switzerland, 2021; Volume 12721, pp. 355–360. [Google Scholar]
- Ryu, G.; Lee, K.; Park, D.; Park, S.H.; Sagong, M. A deep learning model for identifying diabetic retinopathy using optical coherence tomography angiography. Sci. Rep. 2021, 11, 23024. [Google Scholar] [CrossRef]
- Renukadevi, N.T.; Saraswathi, K.; Karunakaran, S.; Mushtaq, G.; Siddiqui, F. Detection of diabetic retinopathy using deep learning methodology. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1070, 012049. [Google Scholar] [CrossRef]
- Mahmoud, M.H.; Alamery, S.; Fouad, H.; Altinawi, A.; Youssef, A.E. An automatic detection system of diabetic retinopathy using a hybrid inductive machine learning algorithm. Pers. Ubiquitous Comput. 2021, 1–15. [Google Scholar] [CrossRef]
- Veena, H.N.; Muruganandham, A.; Senthil Kumaran, T. A novel optic disc and optic cup segmentation technique to diagnose glaucoma using deep learning convolutional neural network over retinal fundus images. J. King Saud Univ.-Comput. Inf. Sci. 2022, 34, 6187–6198. [Google Scholar] [CrossRef]
- Abdel-Hamid, L. TWEEC: Computer-aided glaucoma diagnosis from retinal images using deep learning techniques. Int. J. Imaging Syst. Technol. 2022, 32, 387–401. [Google Scholar] [CrossRef]
- Chang, J.; Lee, J.; Ha, A.; Han, Y.S.; Bak, E.; Choi, S.; Park, S.M. Explaining the rationale of deep learning glaucoma decisions with adversarial examples. Ophthalmology 2021, 128, 78–88. [Google Scholar] [CrossRef] [PubMed]
- Nawaz, M.; Nazir, T.; Javed, A.; Tariq, U.; Yong, H.S.; Khan, M.A.; Cha, J. An efficient deep learning approach to automatic glaucoma detection using optic disc and optic cup localization. Sensors 2022, 22, 434. [Google Scholar] [CrossRef] [PubMed]
- Thanki, R. A deep neural network and machine learning approach for retinal fundus image classification. Healthc. Anal. 2023, 3, 100140. [Google Scholar] [CrossRef]
- Kumar, K.S.; Singh, N.P. Retinal disease prediction through blood vessel segmentation and classification using ensemble-based deep learning approaches. Neural Comput. Appl. 2023, 1–17. [Google Scholar] [CrossRef]
- Thanki, R. Deep Learning Based Model for Fundus Retinal Image Classification. In Soft Computing and Its Engineering Applications, Proceedings of the 4th International Conference, icSoftComp 2022, Changa, Anand, India, 9–10 December 2022; Springer Nature: Cham, Switzerland, 2023; pp. 238–249. [Google Scholar]
- Eye_Diseases_Classification|Kaggle. Available online: https://www.kaggle.com/datasets/gunavenkatdoddi/eye-diseases-classification (accessed on 23 December 2022).
- Ahmed, I.A.; Senan, E.M.; Rassem, T.H.; Ali, M.A.; Shatnawi, H.S.A.; Alwazer, S.M.; Alshahrani, M. Eye Tracking-Based Diagnosis and Early Detection of Autism Spectrum Disorder Using Machine Learning and Deep Learning Techniques. Electronics 2022, 11, 530. [Google Scholar] [CrossRef]
- Butt, M.M.; Iskandar, D.N.F.A.; Abdelhamid, S.E.; Latif, G.; Alghazo, R. Diabetic Retinopathy Detection from Fundus Images of the Eye Using Hybrid Deep Learning Features. Diagnostics 2022, 12, 1607. [Google Scholar] [CrossRef]
- Atteia, G.; Abdel Samee, N.; El-Kenawy, E.-S.M.; Ibrahim, A. CNN-Hyperparameter Optimization for Diabetic Maculopathy Diagnosis in Optical Coherence Tomography and Fundus Retinography. Mathematics 2022, 10, 3274. [Google Scholar] [CrossRef]
- Al-Tam, R.M.; Al-Hejri, A.M.; Narangale, S.M.; Samee, N.A.; Mahmoud, N.F.; Al-masni, M.A.; Al-antari, M.A. A Hybrid Workflow of Residual Convolutional Transformer Encoder for Breast Cancer Classification Using Digital X-ray Mammograms. Biomedicines 2022, 10, 2971. [Google Scholar] [CrossRef]
- Ouda, O.; AbdelMaksoud, E.; Abd El-Aziz, A.A.; Elmogy, M. Multiple Ocular Disease Diagnosis Using Fundus Images Based on Multi-Label Deep Learning Classification. Electronics 2022, 11, 1966. [Google Scholar] [CrossRef]
- Fati, S.M.; Senan, E.M.; Azar, A.T. Hybrid and Deep Learning Approach for Early Diagnosis of Lower Gastrointestinal Diseases. Sensors 2022, 22, 4079. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Liang, J.; Cheng, T.; Lin, X.; Zhang, Y.; Dong, J. MTPA_Unet: Multi-Scale Transformer-Position Attention Retinal Vessel Segmentation Network Joint Transformer and CNN. Sensors 2022, 22, 4592. [Google Scholar] [CrossRef] [PubMed]
- Marouf, A.A.; Mottalib, M.M.; Alhajj, R.; Rokne, J.; Jafarullah, O. An Efficient Approach to Predict Eye Diseases from Symptoms Using Machine Learning and Ranker-Based Feature Selection Methods. Bioengineering 2023, 10, 25. [Google Scholar] [CrossRef]
- Senan, E.M.; Jadhav, M.E. Diagnosis of dermoscopy images for the detection of skin lesions using SVM and KNN. In Proceedings of the Third International Conference on Sustainable Computing, Jaipur, India, 19–20 March 2021; Springer: Singapore, 2022; pp. 125–134. [Google Scholar] [CrossRef]
- Al-Naami, B.; Badr, B.E.A.; Rawash, Y.Z.; Owida, H.A.; De Fazio, R.; Visconti, P. Social Media Devices’ Influence on User Neck Pain during the COVID-19 Pandemic: Collaborating Vertebral-GLCM Extracted Features with a Decision Tree. J. Imaging 2023, 9, 14. [Google Scholar] [CrossRef]
- Senan, E.M.; Jadhav, M.E. Techniques for the Detection of Skin Lesions in PH 2 Dermoscopy Images Using Local Binary Pattern (LBP). In Proceedings of the International Conference on Recent Trends in Image Processing and Pattern Recognition, Aurangabad, India, 3–4 January 2020; Springer: Singapore, 2020; pp. 14–25. [Google Scholar] [CrossRef]
- Papadomanolakis, T.N.; Sergaki, E.S.; Polydorou, A.A.; Krasoudakis, A.G.; Makris-Tsalikis, G.N.; Polydorou, A.A.; Afentakis, N.M.; Athanasiou, S.A.; Vardiambasis, I.O.; Zervakis, M.E. Tumor Diagnosis against Other Brain Diseases Using T2 MRI Brain Images and CNN Binary Classifier and DWT. Brain Sci. 2023, 13, 348. [Google Scholar] [CrossRef] [PubMed]
- Al-Hejri, A.M.; Al-Tam, R.M.; Fazea, M.; Sable, A.H.; Lee, S.; Al-antari, M.A. ETECADx: Ensemble Self-Attention Transformer Encoder for Breast Cancer Diagnosis Using Full-Field Digital X-ray Breast Images. Diagnostics 2023, 13, 89. [Google Scholar] [CrossRef] [PubMed]
- Senan, E.M.; Jadhav, M.E.; Rassem, T.H.; Aljaloud, A.S.; Mohammed, B.A.; Al-Mekhlafi, Z.G. Early Diagnosis of Brain Tumour MRI Images Using Hybrid Techniques between Deep and Machine Learning. Comput. Math. Methods Med. 2022, 2022, 8330833. [Google Scholar] [CrossRef]
- Ahmed, I.A.; Senan, E.M.; Shatnawi, H.S.A.; Alkhraisha, Z.M.; Al-Azzam, M.M.A. Multi-Techniques for Analyzing X-ray Images for Early Detection and Differentiation of Pneumonia and Tuberculosis Based on Hybrid Features. Diagnostics 2023, 13, 814. [Google Scholar] [CrossRef]
- Mohammed, B.A.; Senan, E.M.; Al-Mekhlafi, Z.G.; Alazmi, M.; Alayba, A.M.; Alanazi, A.A.; Alreshidi, A.; Alshahrani, M. Hybrid Techniques for Diagnosis with WSIs for Early Detection of Cervical Cancer Based on Fusion Features. Appl. Sci. 2022, 12, 8836. [Google Scholar] [CrossRef]
- Liu, S.; Graham, S.L.; Schulz, A.; Kalloniatis, M.; Zangerl, B.; Cai, W.; You, Y. A deep learning-based algorithm identifies glaucomatous discs using monoscopic fundus photographs. Ophthalmol. Glaucoma 2018, 1, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Sundaram, R.; KS, R.; Jayaraman, P.; Venkatraman, B. Extraction of Blood Vessels in Fundus Images of Retina through Hybrid Segmentation Approach. Mathematics 2019, 7, 169. [Google Scholar] [CrossRef]
- Khomri, B.; Christodoulidis, A.; Djerou, L.; Babahenini, M.C.; Cheriet, F. Particle swarm optimization method for small retinal vessels detection on multiresolution fundus images. J. Biomed. Opt. 2018, 23, 056004. [Google Scholar] [CrossRef] [PubMed]
- Gayathri, S.; Gopi, V.P.; Palanisamy, P. A lightweight CNN for Diabetic Retinopathy classification from fundus images. Biomed. Signal Process. Control. 2020, 62, 102115. [Google Scholar] [CrossRef]
- Olayah, F.; Senan, E.M.; Ahmed, I.A.; Awaji, B. AI Techniques of Dermoscopy Image Analysis for the Early Detection of Skin Lesions Based on Combined CNN Features. Diagnostics 2023, 13, 1314. [Google Scholar] [CrossRef]
- Saranya, P.; Pranati, R.; Patro, S.S. Detection and classification of red lesions from retinal images for diabetic retinopathy detection using deep learning models. Multimed. Tools Appl. 2023, 1–21. [Google Scholar] [CrossRef]
- Bhardwaj, C.; Jain, S.; Sood, M. Hierarchical severity grade classification of non-proliferative diabetic retinopathy. J. Ambient. Intell. Humaniz. Comput. 2021, 12, 2649–2670. [Google Scholar] [CrossRef]
Phase | 80:20% | 20% for Testing | |
---|---|---|---|
Classes | 80% for Training | 20% for Validation | |
Cataract | 664 | 166 | 208 |
Diabetic_retinopathy | 702 | 176 | 220 |
Glaucoma | 645 | 161 | 201 |
Normal | 687 | 172 | 215 |
Phase | Training Phase | |||
---|---|---|---|---|
Classes | Cataract | Diabetic_Retinopathy | Glaucoma | Normal |
Before_aug | 664 | 702 | 645 | 687 |
After_aug | 5976 | 6318 | 5805 | 6183 |
Methods | Classes of AD | AUC% | Accuracy% | Precision% | Specificity% | Sensitivity% |
---|---|---|---|---|---|---|
ANN based on MobileNet features | Cataract | 96.3 | 90.9 | 90.9 | 97.2 | 91.4 |
Diabetic_retinopathy | 95.4 | 94.1 | 91.2 | 96.8 | 94.2 | |
Glaucoma | 93.5 | 93.5 | 94.5 | 98.3 | 93.9 | |
Normal | 95.7 | 94.9 | 97.1 | 99.1 | 94.7 | |
average ratio | 95.23 | 93.4 | 93.43 | 97.85 | 93.55 | |
ANN based on DenseNet-121 features | Cataract | 93.2 | 90.9 | 90.4 | 96.8 | 90.8 |
Diabetic_retinopathy | 95.6 | 94.5 | 93.7 | 98.2 | 95.2 | |
Glaucoma | 94.9 | 93.5 | 92.6 | 97.9 | 94.3 | |
Normal | 96.8 | 97.2 | 99.5 | 99.7 | 97.4 | |
average ratio | 95.13 | 94.1 | 94.05 | 98.15 | 94.43 |
Methods | Classes of AD | AUC% | Accuracy% | Precision% | Specificity% | Sensitivity% |
---|---|---|---|---|---|---|
ANN based on the fused features MobileNet and DenseNet-121 before PCA | Cataract | 96.1 | 94.7 | 95.6 | 98.7 | 94.5 |
Diabetic_retinopathy | 94.5 | 96.4 | 98.6 | 99.6 | 96.2 | |
Glaucoma | 97.9 | 98 | 95.6 | 99.1 | 97.8 | |
Normal | 98.2 | 99.5 | 98.6 | 99.5 | 99.8 | |
average ratio | 96.68 | 97.2 | 97.10 | 99.23 | 97.08 | |
ANN based on the fused features MobileNet and DenseNet-121 after PCA | Cataract | 94.3 | 94.7 | 92.9 | 97.7 | 95.4 |
Diabetic_retinopathy | 95.6 | 96.8 | 95.9 | 99.2 | 96.8 | |
Glaucoma | 95.7 | 94 | 95 | 98.4 | 93.9 | |
Normal | 96.9 | 97.7 | 99.5 | 99.5 | 98.3 | |
average ratio | 95.63 | 95.9 | 95.83 | 98.70 | 96.10 |
Methods | Classes of AD | AUC% | Accuracy% | Precision% | Specificity% | Sensitivity% |
---|---|---|---|---|---|---|
ANN based on the fused features handcrafted and MobileNet | Cataract | 98.9 | 97.6 | 98.5 | 99.5 | 98.2 |
Diabetic_retinopathy | 99.1 | 98.6 | 97.7 | 98.8 | 98.9 | |
Glaucoma | 99.5 | 99 | 99 | 99.7 | 99.4 | |
Normal | 99.4 | 98.6 | 98.6 | 99.6 | 98.5 | |
average ratio | 99.23 | 98.5 | 98.45 | 99.40 | 98.75 | |
ANN based on the fused features handcrafted and DenseNet-121 | Cataract | 97.6 | 97.6 | 98.5 | 99.5 | 98.1 |
Diabetic_retinopathy | 99.5 | 99.1 | 98.2 | 99.2 | 98.9 | |
Glaucoma | 99.2 | 96.5 | 98.5 | 99.8 | 97.4 | |
Normal | 98.9 | 99.5 | 97.7 | 98.7 | 99.6 | |
average ratio | 98.80 | 98.2 | 98.23 | 99.30 | 98.50 |
Techniques | Features | Cataract | Diabetic_Retinopathy | Glaucoma | Normal | Accuracy% | |
---|---|---|---|---|---|---|---|
ANN | MobileNet | 90.9 | 94.1 | 93.5 | 94.9 | 93.4 | |
DenseNet-121 | 90.9 | 94.5 | 93.5 | 97.2 | 94.1 | ||
ANN | Fused before PCA | MobileNet with DenseNet-121 | 94.7 | 96.4 | 98 | 99.5 | 97.2 |
Fused after PCA | MobileNet with DenseNet-121 | 94.7 | 96.8 | 94 | 97.7 | 95.9 | |
Fused features | MobileNet and handcrafted | 97.6 | 98.6 | 99 | 98.6 | 98.5 | |
DenseNet-121 and handcrafted | 97.6 | 99.1 | 96.5 | 99.5 | 98.2 |
Previous Studies | Accuracy% | AUC% | Sensitivity% | Precision% | Specificity% |
---|---|---|---|---|---|
Liu et al. [47] | 86.70 | - | 75.60 | - | 77.80 |
Sundaram et al. [48] | 95.28 | - | 94.1 | - | 95.34 |
Bilalet al. [49] | 94.54 | - | 87.09 | - | 95.4 |
Junayed et al. [16] | 95.02 | - | 95.68 | 94.86 | 94.79 |
Gayathriet al. [50] | - | - | 97.8 | 92.9 | 96.4 |
Zhan et al. [51] | 56.19 | - | 64.21 | - | 87.39 |
Saranyaet al [52] | 95.65 | - | 89 | - | 99 |
Bhardwaj et al. [53] | 92.39 | - | 84.21 | - | 93.48 |
Proposed model | 98.5 | 99.23 | 98.75 | 98.45 | 99.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shamsan, A.; Senan, E.M.; Shatnawi, H.S.A. Automatic Classification of Colour Fundus Images for Prediction Eye Disease Types Based on Hybrid Features. Diagnostics 2023, 13, 1706. https://doi.org/10.3390/diagnostics13101706
Shamsan A, Senan EM, Shatnawi HSA. Automatic Classification of Colour Fundus Images for Prediction Eye Disease Types Based on Hybrid Features. Diagnostics. 2023; 13(10):1706. https://doi.org/10.3390/diagnostics13101706
Chicago/Turabian StyleShamsan, Ahlam, Ebrahim Mohammed Senan, and Hamzeh Salameh Ahmad Shatnawi. 2023. "Automatic Classification of Colour Fundus Images for Prediction Eye Disease Types Based on Hybrid Features" Diagnostics 13, no. 10: 1706. https://doi.org/10.3390/diagnostics13101706
APA StyleShamsan, A., Senan, E. M., & Shatnawi, H. S. A. (2023). Automatic Classification of Colour Fundus Images for Prediction Eye Disease Types Based on Hybrid Features. Diagnostics, 13(10), 1706. https://doi.org/10.3390/diagnostics13101706