CARdioimaging in Lung Cancer PatiEnts Undergoing Radical RadioTherapy: CARE-RT Trial
Abstract
:1. Introduction
Study Rationale
2. Materials and Methods
2.1. Primary Endpoint
- To evaluate early and late myocardial and coronary damage due to radiotherapy.
2.2. Secondary Endpoints
- To evaluate progression-free survival (PFS).
- Local control evaluation.
- Overall survival evaluation.
- Cardiac, pulmonary, and oesophageal evaluation.
2.3. Inclusion Criteria (Table 1)
- The histological diagnosis of non-small-cell lung neoplasm.
- Patients undergoing radiotherapy treatment with radical intent or with adjuvant intent. Intensity-modulated radiation therapy (IMRT) or the volumetric modulated arc therapy (VMAT) technique.
Inclusion Criteria | Exclusion Criteria |
---|---|
• Histological diagnosis of non-small-cell lung cancer | • Metastasis in more than one pulmonary lobe |
• Radiotherapy treatment: IMRT or VMAT | • Previous chest radiotherapy |
• Clinical progrssion during postoperative chemotherapy | |
• Recent heart/lung disease |
2.4. Exclusion Criteria (Table 1)
- Documented metastases in a different lobe.
- Previous chest radiotherapy.
- Clinical progression during postoperative chemotherapy.
- Recent (inferior to 6 months) heart disease or severe lung disease.
2.5. Study Setting
- Data scope;
- Personal data such as gender, age, and date of recruitment;
- Clinical history with special care for comorbidity and smoking habit;
- General status assessment Eastern cooperative oncology group (ECOG) performance status;
- TNM, histology, and molecular diagnostics;
- Radiotherapy treatment, possible concomitant or sequential chemotherapy;
- Response to therapy according to RECIST criteria
- Radiotherapy parameters (technique, total dose, dose per fraction, volumes, start/end date, V5, V30, MeanDose, DMAX Cardiac Dosimetry, MeanDose Pulmonary Dosimetry, V20, V30, MeanDose Esophageal Dosimetry, V50, and V55);
- CT parameters (calcium score, thrombosis, and calcified plaques)
- Cardiac-MRI parameters (tissue evaluation, ventricular functional analysis, valve condition, and atrial dimension);
- Acute and late toxicity according to common terminology criteria for adverse events (CTCAE) 4.0 scales;
- Clinical outcomes overall survival (alive, deceased);
- Progression-free survival (progression yes/no, date of progression);
- Local control;
- Symptom control.
2.6. CT Setting
2.7. MR Setting
3. Discussion
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer Statistics, 2017. CA Cancer J. Clin. 2017, 67, 7–30. [Google Scholar] [CrossRef] [PubMed]
- Casal-Mourino, A.; Ruano-Ravina, A.; Lorenzo-Gonzalez, M.; Rodriguez-Martinez, A.; Giraldo-Osorio, A.; Varela-Lema, L.; Pereiro-Brea, T.; Barros-Dios, J.M.; Valdes-Cuadrado, L.; Perez-Rios, M. Epidemiology of stage III lung cancer: Frequency, diagnostic characteristics, and survival. Transl. Lung Cancer Res. 2021, 10, 506–518. [Google Scholar] [CrossRef] [PubMed]
- Granata, V.; Faggioni, L.; Grassi, R.; Fusco, R.; Reginelli, A.; Rega, D.; Maggialetti, N.; Buccicardi, D.; Frittoli, B.; Rengo, M.; et al. Structured reporting of computed tomography in the staging of colon cancer: A Delphi consensus proposal. Radiol. Med. 2022, 127, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Chiappetta, M.; Tabacco, D.; Iaffaldano, A.G.; Evangelista, J.; Congedo, M.T.; Sassorossi, C.; Meacci, E.; D’Argento, E.; Bria, E.; Vita, E.; et al. Clinical Stage III NSCLC Patients Treated with Neoadjuvant Therapy and Surgery: The Prognostic Role of Nodal Characteristics. Life 2022, 12, 1753. [Google Scholar] [CrossRef] [PubMed]
- Nardone, V.; Giannicola, R.; Giannarelli, D.; Saladino, R.E.; Azzarello, D.; Romeo, C.; Bianco, G.; Rizzo, M.R.; Di Meo, I.; Nesci, A.; et al. Distinctive Role of the Systemic Inflammatory Profile in Non-Small-Cell Lung Cancer Younger and Elderly Patients Treated with a PD-1 Immune Checkpoint Blockade: A Real-World Retrospective Multi-Institutional Analysis. Life 2021, 11, 1235. [Google Scholar] [CrossRef]
- Nardone, V.; Reginelli, A.; De Marco, G.; Di Pietro, T.; Grassi, R.; Corte, C.M.D.; Fasano, M.; Ciammella, P.; Vicidomini, G.; Morgillo, F.; et al. The role of coronary artery calcification score in lung cancer patients. Eur. J. Radiol. 2022, 147, 110140. [Google Scholar] [CrossRef]
- Nardone, V.; Tini, P.; Pastina, P.; Botta, C.; Reginelli, A.; Carbone, S.F.; Giannicola, R.; Calabrese, G.; Tebala, C.; Guida, C.; et al. Radiomics predicts survival of patients with advanced non-small cell lung cancer undergoing PD-1 blockade using Nivolumab. Oncol. Lett. 2020, 19, 1559–1566. [Google Scholar] [CrossRef]
- Martin, M.L.; Correll, J.; Walding, A.; Ryden, A. How patients being treated for non-small cell lung cancer value treatment benefit despite side effects. Qual. Life Res. 2022, 31, 135–146. [Google Scholar] [CrossRef]
- Pastina, P.; Nardone, V.; Botta, C.; Croci, S.; Tini, P.; Battaglia, G.; Ricci, V.; Cusi, M.G.; Gandolfo, C.; Misso, G.; et al. Radiotherapy prolongs the survival of advanced non-smallcell lung cancer patients undergone to an immune-modulating treatment with dose-fractioned cisplatin and metronomic etoposide and bevacizumab (mPEBev). Oncotarget 2017, 8, 75904–75913. [Google Scholar] [CrossRef]
- Reginelli, A.; Belfiore, M.P.; Monti, R.; Cozzolino, I.; Costa, M.; Vicidomini, G.; Grassi, R.; Morgillo, F.; Urraro, F.; Nardone, V.; et al. The texture analysis as a predictive method in the assessment of the cytological specimen of CT-guided FNAC of the lung cancer. Med. Oncol. 2020, 37, 54. [Google Scholar] [CrossRef]
- Tini, P.; Nardone, V.; Pastina, P.; Pirtoli, L.; Correale, P.; Giordano, A. The effects of radiotherapy on the survival of patients with unresectable non-small cell lung cancer. Expert Rev. Anticancer Ther. 2018, 18, 593–602. [Google Scholar] [CrossRef]
- Niska, J.R.; Hu, J.; Li, J.; Herman, M.G.; Thorpe, C.S.; Schild, S.E.; Fatyga, M. Using Novel Statistical Techniques to Accurately Determine the Predictive Dose Range in a Study of Overall Survival after Definitive Radiotherapy for Stage III Non-Small Cell Lung Cancer in Association with Heart Dose. J. Cancer Ther. 2021, 12, 505–529. [Google Scholar] [CrossRef]
- Nardone, V.; Romeo, C.; D’Ippolito, E.; Pastina, P.; D’Apolito, M.; Pirtoli, L.; Caraglia, M.; Mutti, L.; Bianco, G.; Falzea, A.C.; et al. The role of brain radiotherapy for EGFR- and ALK-positive non-small-cell lung cancer with brain metastases: A review. Radiol. Med. 2023, 128, 316–329. [Google Scholar] [CrossRef]
- Nardone, V.; Reginelli, A.; De Marco, G.; Natale, G.; Patanè, V.; De Chiara, M.; Buono, M.; Russo, G.M.; Monti, R.; Balestrucci, G.; et al. Role of Cardiac Biomarkers in Non-Small Cell Lung Cancer Patients. Diagnostics 2023, 13, 400. [Google Scholar] [CrossRef]
- Rinaldi, L.; Milione, S.; Fascione, M.C.; Pafundi, P.C.; Altruda, C.; Di Caterino, M.; Monaco, L.; Reginelli, A.; Perrotta, F.; Porta, G.; et al. Relevance of lung ultrasound in the diagnostic algorithm of respiratory diseases in a real-life setting: A multicentre prospective study. Respirology 2020, 25, 535–542. [Google Scholar] [CrossRef]
- Belfiore, M.P.; Berritto, D.; Iacobellis, F.; Rossi, C.; Nigro, G.; Rotundo, I.L.; Cozzolino, S.; Cappabianca, S.; Rotondo, A.; Grassi, R. A longitudinal study on BIO14.6 hamsters with dilated cardiomyopathy: Micro-echocardiographic evaluation. Cardiovasc. Ultrasound 2011, 9, 39. [Google Scholar] [CrossRef]
- Podlesnikar, T.; Delgado, V.; Bax, J.J. Cardiovascular magnetic resonance imaging to assess myocardial fibrosis in valvular heart disease. Int. J. Cardiovasc. Imaging 2018, 34, 97–112. [Google Scholar] [CrossRef]
- Huttin, O.; Petit, M.A.; Bozec, E.; Eschalier, R.; Juilliere, Y.; Moulin, F.; Lemoine, S.; Selton-Suty, C.; Sadoul, N.; Mandry, D.; et al. Assessment of Left Ventricular Ejection Fraction Calculation on Long-axis Views from Cardiac Magnetic Resonance Imaging in Patients with Acute Myocardial Infarction. Medicine 2015, 94, e1856. [Google Scholar] [CrossRef]
- Reginelli, A.; Nardone, V.; Giacobbe, G.; Belfiore, M.P.; Grassi, R.; Schettino, F.; Del Canto, M.; Grassi, R.; Cappabianca, S. Radiomics as a New Frontier of Imaging for Cancer Prognosis: A Narrative Review. Diagnostics 2021, 11, 1796. [Google Scholar] [CrossRef]
- Brunese, L.; Mercaldo, F.; Reginelli, A.; Santone, A. Explainable Deep Learning for Pulmonary Disease and Coronavirus COVID-19 Detection from X-rays. Comput. Method. Programs Biomed. 2020, 196, 105608. [Google Scholar] [CrossRef]
- Reginelli, A.; Capasso, R.; Petrillo, M.; Rossi, C.; Faella, P.; Grassi, R.; Belfiore, M.P.; Rossi, G.; Muto, M.; Muto, P.; et al. Looking for Lepidic Component inside Invasive Adenocarcinomas Appearing as CT Solid Solitary Pulmonary Nodules (SPNs): CT Morpho-Densitometric Features and 18-FDG PET Findings. Biomed. Res. Int. 2019, 2019, 7683648. [Google Scholar] [CrossRef] [PubMed]
- Schiattarella, G.G.; Cerulo, G.; De Pasquale, V.; Cocchiaro, P.; Paciello, O.; Avallone, L.; Belfiore, M.P.; Iacobellis, F.; Di Napoli, D.; Magliulo, F.; et al. The Murine Model of Mucopolysaccharidosis IIIB Develops Cardiopathies over Time Leading to Heart Failure. PLoS ONE 2015, 10, e0131662. [Google Scholar] [CrossRef] [PubMed]
- Borghetti, P.; Toraci, C.; Imbrescia, J.; Volpi, G.; Lucchini, S.; Guerini, A.E.; Magli, A.; Spiazzi, L.; Reginelli, A.; Cappabianca, S.; et al. The potential role of SPECT/CT in the clinical management of COVID-19 lung cancer patients undergoing radiotherapy. Ann. Nucl. Med. 2021, 35, 1174–1176. [Google Scholar] [CrossRef] [PubMed]
- Berritto, D.; Somma, F.; Landi, N.; Cavaliere, C.; Corona, M.; Russo, S.; Fulciniti, F.; Cappabianca, S.; Rotondo, A.; Grassi, R. Seven-Tesla micro-MRI in early detection of acute arterial ischaemia: Evolution of findings in an in vivo rat model. Radiol. Med. 2011, 116, 829–841. [Google Scholar] [CrossRef]
- Amano, Y.; Tachi, M.; Tani, H.; Mizuno, K.; Kobayashi, Y.; Kumita, S. T2-weighted cardiac magnetic resonance imaging of edema in myocardial diseases. Sci. World J. 2012, 2012, 194069. [Google Scholar] [CrossRef]
- Clemente, A.; Seitun, S.; Mantini, C.; Gentile, G.; Federici, D.; Barison, A.; Rossi, A.; Cuman, M.; Pizzuto, A.; Ait-Ali, L.; et al. Cardiac CT angiography: Normal and pathological anatomical features—A narrative review. Cardiovasc. Diagn. Ther. 2020, 10, 1918–1945. [Google Scholar] [CrossRef]
- Sandfort, V.; Bluemke, D.A. CT calcium scoring. History, current status and outlook. Diagn. Interv. Imaging 2017, 98, 3–10. [Google Scholar] [CrossRef]
- Nardone, V.; Boldrini, L.; Grassi, R.; Franceschini, D.; Morelli, I.; Becherini, C.; Loi, M.; Greto, D.; Desideri, I. Radiomics in the Setting of Neoadjuvant Radiotherapy: A New Approach for Tailored Treatment. Cancers 2021, 13, 3590. [Google Scholar] [CrossRef]
- Nardone, V.; Giannicola, R.; Bianco, G.; Giannarelli, D.; Tini, P.; Pastina, P.; Falzea, A.C.; Macheda, S.; Caraglia, M.; Luce, A.; et al. Inflammatory Markers and Procalcitonin Predict the Outcome of Metastatic Non-Small-Cell-Lung-Cancer Patients Receiving PD-1/PD-L1 Immune-Checkpoint Blockade. Front. Oncol. 2021, 11, 684110. [Google Scholar] [CrossRef]
- Correale, P.; Saladino, R.E.; Giannarelli, D.; Giannicola, R.; Agostino, R.; Staropoli, N.; Strangio, A.; Del Giudice, T.; Nardone, V.; Altomonte, M.; et al. Distinctive germline expression of class I human leukocyte antigen (HLA) alleles and DRB1 heterozygosis predict the outcome of patients with non-small cell lung cancer receiving PD-1/PD-L1 immune checkpoint block-ade. J. ImmunoTher. Cancer 2020, 8, e000733. [Google Scholar] [CrossRef]
- Montella, M.; Ciani, G.; Granata, V.; Fusco, R.; Grassi, F.; Ronchi, A.; Cozzolino, I.; Franco, R.; Zito Marino, F.; Urraro, F.; et al. Preliminary Experience of Liquid Biopsy in Lung Cancer Compared to Conventional Assessment: Light and Shadows. J. Pers. Med. 2022, 12, 1896. [Google Scholar] [CrossRef]
- Rigato, M.; Avogaro, A.; Fadini, G.P. Levels of Circulating Progenitor Cells, Cardiovascular Outcomes and Death: A Meta-Analysis of Prospective Observational Studies. Circ. Res. 2016, 118, 1930–1939. [Google Scholar] [CrossRef]
- Wang, J.; Li, W.; Sun, J.; Liu, H.; Kang, Y.; Yang, D.; Yu, L.; Greiser, A.; Zhou, X.; Han, Y.; et al. Improved segmental myocardial strain reproducibility using deformable registration algorithms compared with feature tracking cardiac MRI and speckle tracking echocardiography. J. Magn. Reson. Imaging 2018, 48, 404–414. [Google Scholar] [CrossRef]
- Layoun, M.E.; Yang, E.H.; Herrmann, J.; Iliescu, C.A.; Lopez-Mattei, J.C.; Marmagkiolis, K.; Budoff, M.J.; Ferencik, M. Applications of Cardiac Computed Tomography in the Cardio-Oncology Population. Curr. Treat. Options Oncol. 2019, 20, 47. [Google Scholar] [CrossRef]
- Milgrom, S.A.; Varghese, B.; Gladish, G.W.; Choi, A.D.; Dong, W.; Patel, Z.S.; Chung, C.C.; Rao, A.; Pinnix, C.C.; Gunther, J.R.; et al. Coronary Artery Dose-Volume Parameters Predict Risk of Calcification after Radiation Therapy. J. Cardiovasc. Imaging 2019, 27, 268–279. [Google Scholar] [CrossRef]
- Yakupovich, A.; Davison, M.A.; Kharouta, M.Z.; Turian, J.; Seder, C.W.; Batus, M.; Fogg, L.F.; Kalra, D.; Kosinski, M.; Taskesen, T.; et al. Heart dose and coronary artery calcification in patients receiving thoracic irradiation for lung cancer. J. Thorac. Dis. 2020, 12, 223–231. [Google Scholar] [CrossRef]
- Cuddy, S.; Payne, D.L.; Murphy, D.J.; Dunne, R.M.; Bueno, R.; Blankstein, R.; Di Carli, M.; Mehra, M.R.; Nohria, A.; Groarke, J.D. Incidental Coronary Artery Calcification in Cancer Imaging. JACC CardioOncol. 2019, 1, 135–137. [Google Scholar] [CrossRef]
- Phillips, W.J.; Johnson, C.; Law, A.; Turek, M.; Small, A.R.; Inacio, J.R.; Dent, S.; Ruddy, T.; Beanlands, R.S.; Chow, B.J.W.; et al. Reporting of coronary artery calcification on chest CT studies in breast cancer patients at high risk of cancer therapy related cardiac events. Int. J. Cardiol. Heart Vasc. 2018, 18, 12–16. [Google Scholar] [CrossRef]
- van der Ree, M.H.; Blanck, O.; Limpens, J.; Lee, C.H.; Balgobind, B.V.; Dieleman, E.M.T.; Wilde, A.A.M.; Zei, P.C.; de Groot, J.R.; Slotman, B.J.; et al. Cardiac radioablation—A systematic review. Heart Rhythm 2020, 17, 1381–1392. [Google Scholar] [CrossRef]
- Harries, I.; Liang, K.; Williams, M.; Berlot, B.; Biglino, G.; Lancellotti, P.; Plana, J.C.; Bucciarelli-Ducci, C. Magnetic Resonance Imaging to Detect Cardiovascular Effects of Cancer Therapy: JACC CardioOncology State-of-the-Art Review. JACC CardioOncol. 2020, 2, 270–292. [Google Scholar] [CrossRef]
- Celutkiene, J.; Pudil, R.; Lopez-Fernandez, T.; Grapsa, J.; Nihoyannopoulos, P.; Bergler-Klein, J.; Cohen-Solal, A.; Farmakis, D.; Tocchetti, C.G.; von Haehling, S.; et al. Role of cardiovascular imaging in cancer patients receiving cardiotoxic therapies: A position statement on behalf of the Heart Failure Association (HFA), the European Association of Cardiovascular Imaging (EACVI) and the Cardio-Oncology Council of the European Society of Cardiology (ESC). Eur. J. Heart Fail. 2020, 22, 1504–1524. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, S.S.; Fradley, M.G.; Cohen, J.V.; Nohria, A.; Reynolds, K.L.; Heinzerling, L.M.; Sullivan, R.J.; Damrongwatanasuk, R.; Chen, C.L.; Gupta, D.; et al. Myocarditis in Patients Treated with Immune Checkpoint Inhibitors. J. Am. Coll. Cardiol. 2018, 71, 1755–1764. [Google Scholar] [CrossRef] [PubMed]
- Thavendiranathan, P.; Zhang, L.; Zafar, A.; Drobni, Z.D.; Mahmood, S.S.; Cabral, M.; Awadalla, M.; Nohria, A.; Zlotoff, D.A.; Thuny, F.; et al. Myocardial T1 and T2 Mapping by Magnetic Resonance in Patients with Immune Checkpoint Inhibitor-Associated Myocarditis. J. Am. Coll. Cardiol. 2021, 77, 1503–1516. [Google Scholar] [CrossRef] [PubMed]
- Messroghli, D.R.; Moon, J.C.; Ferreira, V.M.; Grosse-Wortmann, L.; He, T.; Kellman, P.; Mascherbauer, J.; Nezafat, R.; Salerno, M.; Schelbert, E.B.; et al. Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2* and extracellular volume: A consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imaging (EACVI). J. Cardiovasc. Magn. Reson. 2017, 19, 75. [Google Scholar] [CrossRef]
- Craddock, M.; Nestle, U.; Koenig, J.; Schimek-Jasch, T.; Kremp, S.; Lenz, S.; Banfill, K.; Davey, A.; Price, G.; Salem, A.; et al. Cardiac Function Modifies the Impact of Heart Base Dose on Survival: A Voxel-Wise Analysis of Patients with Lung Cancer from the PET-Plan Trial. J. Thorac. Oncol. 2023, 18, 57–66. [Google Scholar] [CrossRef]
- Brink, C.; Bernchou, U.; Bertelsen, A.; Hansen, O.; Schytte, T.; Hjelmborg, J.V.B.; Holloway, L.; van Herk, M.; Johnson-Hart, C.; Price, G.J.; et al. Causal relation between heart irradiation and survival of lung cancer patients after radiotherapy. Radiother. Oncol. 2022, 172, 126–133. [Google Scholar] [CrossRef]
- Kearney, M.; Keys, M.; Faivre-Finn, C.; Wang, Z.; Aznar, M.C.; Duane, F. Exposure of the heart in lung cancer radiation therapy: A systematic review of heart doses published during 2013 to 2020. Radiother. Oncol. 2022, 172, 118–125. [Google Scholar] [CrossRef]
- Bucknell, N.W.; Belderbos, J.; Palma, D.A.; Iyengar, P.; Samson, P.; Chua, K.; Gomez, D.; McDonald, F.; Louie, A.V.; Faivre-Finn, C.; et al. Avoiding Toxicity With Lung Radiation Therapy: An IASLC Perspective. J. Thorac. Oncol. 2022, 17, 961–973. [Google Scholar] [CrossRef]
- Abravan, A.; Price, G.; Banfill, K.; Marchant, T.; Craddock, M.; Wood, J.; Aznar, M.C.; McWilliam, A.; van Herk, M.; Faivre-Finn, C. Role of Real-World Data in Assessing Cardiac Toxicity after Lung Cancer Radiotherapy. Front. Oncol. 2022, 12, 934369. [Google Scholar] [CrossRef]
- Banfill, K.; Abravan, A.; van Herk, M.; Sun, F.; Franks, K.; McWilliam, A.; Faivre-Finn, C. Heart dose and cardiac comorbidities influence death with a cardiac cause following hypofractionated radiotherapy for lung cancer. Front. Oncol. 2022, 12, 1007577. [Google Scholar] [CrossRef]
- Blum, T.G.; Morgan, R.L.; Durieux, V.; Chorostowska-Wynimko, J.; Baldwin, D.R.; Boyd, J.; Faivre-Finn, C.; Galateau-Salle, F.; Gamarra, F.; Grigoriu, B.; et al. European Respiratory Society Guideline on various aspects of quality in lung cancer care. Eur. Respir. J. 2023, 61, 2103201. [Google Scholar] [CrossRef]
- Taylor, S.; Yorke, J.; Tsim, S.; Navani, N.; Baldwin, D.; Woolhouse, I.; Edwards, J.; Grundy, S.; Robson, J.; Rhodes, S.; et al. Impact on quality of life from multimodality treatment for lung cancer: A randomised controlled feasibility trial of surgery versus no surgery as part of multimodality treatment in potentially resectable stage III-N2 NSCLC (the PIONEER trial). BMJ Open Respir. Res. 2021, 8, e000846. [Google Scholar] [CrossRef]
- Reginelli, A.; Grassi, R.; Feragalli, B.; Belfiore, M.P.; Montanelli, A.; Patelli, G.; La Porta, M.; Urraro, F.; Fusco, R.; Granata, V.; et al. Coronavirus Disease 2019 (COVID-19) in Italy: Double Reading of Chest CT Examination. Biology 2021, 10, 89. [Google Scholar] [CrossRef]
- Al-Ward, S.M.; Kim, A.; McCann, C.; Ruschin, M.; Cheung, P.; Sahgal, A.; Keller, B.M. The development of a 4D treatment planning methodology to simulate the tracking of central lung tumors in an MRI-linac. J. Appl. Clin. Med. Phys. 2018, 19, 145–155. [Google Scholar] [CrossRef]
- Liang, Z.; He, Y.; Hu, X. Cardio-Oncology: Mechanisms, Drug Combinations, and Reverse Cardio-Oncology. Int. J. Mol. Sci. 2022, 23, 10617. [Google Scholar] [CrossRef]
- Bergom, C.; Bradley, J.A.; Ng, A.K.; Samson, P.; Robinson, C.; Lopez-Mattei, J.; Mitchell, J.D. Past, Present, and Future of Radiation-Induced Cardiotoxicity: Refinements in Targeting, Surveillance, and Risk Stratification. JACC CardioOncol. 2021, 3, 343–359. [Google Scholar] [CrossRef]
- Cuccia, F.; Alongi, F.; Belka, C.; Boldrini, L.; Hörner-Rieber, J.; McNair, H.; Rigo, M.; Schoenmakers, M.; Niyazi, M.; Slagter, J.; et al. Patient positioning and immobilization procedures for hybrid MR-Linac systems. Radiat. Oncol. 2021, 16, 183. [Google Scholar] [CrossRef]
- Cusumano, D.; Boldrini, L.; Dhont, J.; Fiorino, C.; Green, O.; Güngör, G.; Jornet, N.; Klüter, S.; Landry, G.; Mattiucci, G.C.; et al. Artificial Intelligence in magnetic Resonance guided Radiotherapy: Medical and physical considerations on state of art and future perspectives. Phys. Med. 2021, 85, 175–191. [Google Scholar] [CrossRef]
CT Settings | MR Settings |
---|---|
• Collimation 64 × 0.6 mm | • 1.5 Tesla Magnet |
• Pitch 0.2 to 0.5 | • Slice thickness 8 mm |
• Gantry rotation time 3.30 s | • Slice spacing 2 mm |
• Pipe current 330 mA | • T1 FS sequences 10 min after the contrast agent injection |
• Pipe power 120 kV (patient > 85 kg) or 100 kV (patient < 85 Kg) | • Prospective cardiac synchronization |
• ROI threshold 100 HU | |
• Slice thickness 1.0 mm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nardone, V.; Belfiore, M.P.; De Chiara, M.; De Marco, G.; Patanè, V.; Balestrucci, G.; Buono, M.; Salvarezza, M.; Di Guida, G.; D’Angiolella, D.; et al. CARdioimaging in Lung Cancer PatiEnts Undergoing Radical RadioTherapy: CARE-RT Trial. Diagnostics 2023, 13, 1717. https://doi.org/10.3390/diagnostics13101717
Nardone V, Belfiore MP, De Chiara M, De Marco G, Patanè V, Balestrucci G, Buono M, Salvarezza M, Di Guida G, D’Angiolella D, et al. CARdioimaging in Lung Cancer PatiEnts Undergoing Radical RadioTherapy: CARE-RT Trial. Diagnostics. 2023; 13(10):1717. https://doi.org/10.3390/diagnostics13101717
Chicago/Turabian StyleNardone, Valerio, Maria Paola Belfiore, Marco De Chiara, Giuseppina De Marco, Vittorio Patanè, Giovanni Balestrucci, Mauro Buono, Maria Salvarezza, Gaetano Di Guida, Domenico D’Angiolella, and et al. 2023. "CARdioimaging in Lung Cancer PatiEnts Undergoing Radical RadioTherapy: CARE-RT Trial" Diagnostics 13, no. 10: 1717. https://doi.org/10.3390/diagnostics13101717
APA StyleNardone, V., Belfiore, M. P., De Chiara, M., De Marco, G., Patanè, V., Balestrucci, G., Buono, M., Salvarezza, M., Di Guida, G., D’Angiolella, D., Grassi, R., D’Onofrio, I., Cimmino, G., Della Corte, C. M., Gambardella, A., Morgillo, F., Ciardiello, F., Reginelli, A., & Cappabianca, S. (2023). CARdioimaging in Lung Cancer PatiEnts Undergoing Radical RadioTherapy: CARE-RT Trial. Diagnostics, 13(10), 1717. https://doi.org/10.3390/diagnostics13101717