Former SARS-CoV-2 Infection Was Related to Decreased VO2 Peak and Exercise Hypertension in Athletes
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Study Sample and Enrolled Subjects
2.3. Instruments/Procedures
2.4. Ethical Aspects
2.5. Definitions and Assessed Parameters
2.6. Statistics
3. Results
3.1. Comparison of Athletes with and without Former COVID-19 Infection
3.1.1. Patient Characteristics
3.1.2. Echocardiographic and Blood Pressure
3.2. Risk Factors for COVID-19 Infection
3.3. Impact of SARS-CoV-2 Infection on Blood Pressure
3.4. Impact of SARS-CoV-2 Infection on Exercise Parameters
3.5. Impact of SARS-CoV-2 Infection on Echocardiographic Parameters
3.6. Symptoms during the SARS-CoV-2 Infection of Athletes with Former COVID-19 Infection
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guan, W.J.; Ni, Z.Y.; Hu, Y.; Liang, W.H.; Ou, C.Q.; He, J.X.; Liu, L.; Shan, H.; Lei, C.L.; Hui, D.S.; et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708–1720. [Google Scholar] [CrossRef]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [PubMed]
- The, L. The COVID-19 pandemic in 2023: Far from over. Lancet 2023, 401, 79. [Google Scholar]
- Frenk, J.; Godal, T.; Gomez-Dantes, O.; Store, J.G. A reinvigorated multilateralism in health: Lessons and innovations from the COVID-19 pandemic. Lancet 2022, 400, 1565–1568. [Google Scholar] [CrossRef] [PubMed]
- Qian, Z.; Alaa, A.M.; van der Schaar, M.; Ercole, A. Between-centre differences for COVID-19 ICU mortality from early data in England. Intensive Care Med. 2020, 46, 1779–1780. [Google Scholar] [CrossRef]
- Lambert, H.; Gupte, J.; Fletcher, H.; Hammond, L.; Lowe, N.; Pelling, M.; Raina, N.; Shahid, T.; Shanks, K. COVID-19 as a global challenge: Towards an inclusive and sustainable future. Lancet Planet Health 2020, 4, e312–e314. [Google Scholar] [CrossRef] [PubMed]
- Böhmer, M.M.; Buchholz, U.; Corman, V.M.; Hoch, M.; Katz, K.; Marosevic, D.V.; Böhm, S.; Woudenberg, T.; Ackermann, N.; Konrad, R.; et al. Investigation of a COVID-19 outbreak in Germany resulting from a single travel-associated primary case: A case series. Lancet Infect. Dis. 2020, 20, 920–928. [Google Scholar] [CrossRef] [PubMed]
- Hobohm, L.; Sagoschen, I.; Barco, S.; Schmidtmann, I.; Espinola-Klein, C.; Konstantinides, S.; Münzel, T.; Keller, K. Trends and Risk Factors of In-Hospital Mortality of Patients with COVID-19 in Germany: Results of a Large Nationwide Inpatient Sample. Viruses 2022, 14, 275. [Google Scholar] [CrossRef]
- Ullrich, A.; Schranz, M.; Rexroth, U.; Hamouda, O.; Schaade, L.; Diercke, M.; Boender, T.S. Impact of the COVID-19 pandemic and associated non-pharmaceutical interventions on other notifiable infectious diseases in Germany: An analysis of national surveillance data during week 1-2016—Week 32-2020. Lancet Reg. Health Eur. 2021, 6, 100103. [Google Scholar] [CrossRef]
- Colangelo, L.; Volpe, A.; Toso, E.; Magnano, M.; Matta, M.; Vignati, C.; Marchini, A.; Semperboni, L.; Stefanini, L.; Gaita, F. Incidence and Clinical Relevance of COVID-19 in a Population of Young Competitive and Elite Football Players: A Retrospective Observational Study. Sports Med. Open 2022, 8, 54. [Google Scholar] [CrossRef]
- Niess, A.M.; Widmann, M.; Gaidai, R.; Gölz, C.; Schubert, I.; Castillo, K.; Sachs, J.P.; Bizjak, D.; Vollrath, S.; Wimbauer, F.; et al. COVID-19 in German Competitive Sports: Protocol for a Prospective Multicenter Cohort Study (CoSmo-S). Int. J. Public Health 2022, 67, 1604414. [Google Scholar] [CrossRef] [PubMed]
- Writing Committee; Gluckman, T.J.; Bhave, N.M.; Allen, L.A.; Chung, E.H.; Spatz, E.S.; Ammirati, E.; Baggish, A.L.; Bozkurt, B.; Cornwell, W.K., III; et al. 2022 ACC Expert Consensus Decision Pathway on Cardiovascular Sequelae of COVID-19 in Adults: Myocarditis and Other Myocardial Involvement, Post-Acute Sequelae of SARS-CoV-2 Infection, and Return to Play: A Report of the American College of Cardiology Solution Set Oversight Committee. J. Am. Coll. Cardiol. 2022, 79, 1717–1756. [Google Scholar] [PubMed]
- Moulson, N.; Petek, B.J.; Drezner, J.A.; Harmon, K.G.; Kliethermes, S.A.; Patel, M.R.; Baggish, A.L. SARS-CoV-2 Cardiac Involvement in Young Competitive Athletes. Circulation 2021, 144, 256–266. [Google Scholar] [CrossRef] [PubMed]
- Cavigli, L.; Cillis, M.; Mochi, V.; Frascaro, F.; Mochi, N.; Hajdarevic, A.; Roselli, A.; Capitani, M.; Alvino, F.; Giovani, S.; et al. SARS-CoV-2 infection and return to play in junior competitive athletes: Is systematic cardiac screening needed? Br. J. Sports Med. 2022, 56, 264–270. [Google Scholar] [CrossRef]
- Löllgen, H.; Bachl, N.; Papadopoulou, T.; Shafik, A.; Holloway, G.; Vonbank, K.; Jones, N.E.; Bigard, X.; Niederseer, D.; Meyer, J.; et al. Recommendations for return to sport during the SARS-CoV-2 pandemic. BMJ Open Sport Exerc. Med. 2020, 6, e000858. [Google Scholar] [CrossRef]
- Steinacker, J.M.; Schellenberg, J.; Bloch, W.; Deibert, P.; Friedmann-Bette, B.; Grim, C.; Halle, M.; Hirschmüller, A.; Hollander, K.; Kerling, A.; et al. Recommendations for Return-to-Sport after COVID-19: Expert Consensus. Dtsch. Z. Sportmed. 2022, 73, 127–136. [Google Scholar]
- Vonbank, K.; Lehmann, A.; Bernitzky, D.; Gysan, M.R.; Simon, S.; Schrott, A.; Burtscher, M.; Idzko, M.; Gompelmann, D. Predictors of Prolonged Cardiopulmonary Exercise Impairment After COVID-19 Infection: A Prospective Observational Study. Front. Med. 2021, 8, 773788. [Google Scholar] [CrossRef]
- Crameri, G.A.G.; Bielecki, M.; Züst, R.; Buehrer, T.W.; Stanga, Z.; Deuel, J.W. Reduced maximal aerobic capacity after COVID-19 in young adult recruits, Switzerland, May 2020. Eurosurveillance 2020, 25, 2001542. [Google Scholar] [CrossRef]
- Keller, K.; Hartung, K.; del Castillo Carillo, L.; Treiber, J.; Stock, F.; Schröder, C.; Hugenschmidt, F.; Friedmann-Bette, B. Exercise Hypertension in Athletes. J. Clin. Med. 2022, 11, 4870. [Google Scholar] [CrossRef]
- Fletcher, G.F.; Ades, P.A.; Kligfield, P.; Arena, R.; Balady, G.J.; Bittner, V.A.; Coke, L.A.; Fleg, J.L.; Forman, D.E.; Gerber, T.C.; et al. Exercise standards for testing and training: A scientific statement from the American Heart Association. Circulation 2013, 128, 873–934. [Google Scholar] [CrossRef]
- Pelliccia, A.; Sharma, S.; Gati, S.; Bäck, M.; Börjesson, M.; Caselli, S.; Collet, J.P.; Corrado, D.; Drezner, J.A.; Halle, M.; et al. 2020 ESC Guidelines on sports cardiology and exercise in patients with cardio-vascular disease. Eur. Heart J. 2021, 42, 17–96. [Google Scholar] [CrossRef] [PubMed]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2015, 16, 233–271. [Google Scholar] [CrossRef] [PubMed]
- Galderisi, M.; Cardim, N.; d’Andrea, A.; Bruder, O.; Cosyns, B.; Davin, L.; Donal, E.; Edvardsen, T.; Freitas, A.; Habib, G.; et al. The multi-modality cardiac imaging approach to the Athlete’s heart: An expert consensus of the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2015, 16, 353. [Google Scholar] [CrossRef]
- Bauer, P.; Kraushaar, L.; Hoelscher, S.; Weber, R.; Akdogan, E.; Keranov, S.; Dörr, O.; Nef, H.; Hamm, C.W.; Most, A. Blood Pressure Response and Vascular Function of Professional Athletes and Controls. Sports Med. Int. Open 2021, 5, E45–E52. [Google Scholar] [CrossRef] [PubMed]
- Bauer, P.; Kraushaar, L.; Dorr, O.; Nef, H.; Hamm, C.W.; Most, A. Workload-indexed blood pressure response to a maximum exercise test among professional indoor athletes. Eur. J. Prev. Cardiol. 2020, 28, 1487–1494. [Google Scholar] [CrossRef]
- Hedman, K.; Cauwenberghs, N.; Christle, J.W.; Kuznetsova, T.; Haddad, F.; Myers, J. Workload-indexed blood pressure response is superior to peak systolic blood pressure in predicting all-cause mortality. Eur. J. Prev. Cardiol. 2020, 27, 978–987. [Google Scholar] [CrossRef]
- Hedman, K.; Lindow, T.; Elmberg, V.; Brudin, L.; Ekstrom, M. Age- and gender-specific upper limits and reference equations for workload-indexed systolic blood pressure response during bicycle ergometry. Eur. J. Prev. Cardiol. 2021, 28, 1360–1369. [Google Scholar] [CrossRef] [PubMed]
- American College of Sports Medicine. ACSM’s Guidelines for Exercise Testing; American College of Sports Medicine: Indianapolis, IN, USA, 2010. [Google Scholar]
- Keller, K.; Sagoschen, I.; Schmitt, V.H.; Sivanathan, V.; Espinola-Klein, C.; Lavie, C.J.; Münzel, T.; Hobohm, L. Obesity and Its Impact on Adverse In-Hospital Outcomes in Hospitalized Patients With COVID-19. Front. Endocrinol. 2022, 13, 876028. [Google Scholar] [CrossRef]
- Pires, S.M.; Wyper, G.; Wengler, A.; Peñalvo, J.L.; Haneef, R.; Moran, D.; Cuschieri, S.; Redondo, H.G.; De Pauw, R.; McDonald, S.A.; et al. Burden of Disease of COVID-19: Strengthening the Collaboration for National Studies. Front. Public Health 2022, 10, 907012. [Google Scholar] [CrossRef]
- Goergen, J.; Bavishi, A.; Eimer, M.; Zielinski, A.R. COVID-19: The Risk to Athletes. Curr. Treat. Options Cardiovasc. Med. 2021, 23, 68. [Google Scholar] [CrossRef]
- You, M.; Liu, H.; Wu, Z. The spread of COVID-19 in athletes. Sci. Sport. 2022, 37, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Kharroubi, S.A.; Diab-El-Harake, M. Sex-differences in COVID-19 diagnosis, risk factors and disease comorbidities: A large US-based cohort study. Front. Public Health 2022, 10, 1029190. [Google Scholar] [CrossRef] [PubMed]
- Sagoschen, I.; Keller, K.; Wild, J.; Munzel, T.; Hobohm, L. Case Fatality of Hospitalized Patients with COVID-19 Infection Suffering from Acute Respiratory Distress Syndrome in Germany. Viruses 2022, 14, 2515. [Google Scholar] [CrossRef] [PubMed]
- Peckham, H.; de Gruijter, N.M.; Raine, C.; Radziszewska, A.; Ciurtin, C.; Wedderburn, L.R.; Rosser, E.C.; Webb, K.; Deakin, C.T. Male sex identified by global COVID-19 meta-analysis as a risk factor for death and ITU admission. Nat. Commun. 2020, 11, 6317. [Google Scholar] [CrossRef]
- Keller, K.; Farmakis, I.T.; Valerio, L.; Koelmel, S.; Wild, J.; Barco, S.; Schmidt, F.P.; Espinola-Klein, C.; Konstantinides, S.; Münzel, T.; et al. Predisposing factors for admission to intensive care units of patients with COVID-19 infection—Results of the German nationwide inpatient sample. Front. Public Health 2023, 11, 1113793. [Google Scholar] [CrossRef]
- Sattar, N.; McInnes, I.B.; McMurray, J.J.V. Obesity Is a Risk Factor for Severe COVID-19 Infection: Multiple Potential Mechanisms. Circulation 2020, 142, 4–6. [Google Scholar] [CrossRef]
- Gao, M.; Piernas, C.; Astbury, N.M.; Hippisley-Cox, J.; O’Rahilly, S.; Aveyard, P.; Jebb, S.A. Associations between body-mass index and COVID-19 severity in 6.9 million people in England: A prospective, community-based, cohort study. Lancet Diabetes Endocrinol. 2021, 9, 350–359. [Google Scholar] [CrossRef]
- Xie, J.; Zhong, R.; Wang, W.; Chen, O.; Zou, Y. COVID-19 and Smoking: What Evidence Needs Our Attention? Front. Physiol. 2021, 12, 603850. [Google Scholar] [CrossRef]
- Hippisley-Cox, J.; Tan, P.S.; Coupland, C. Risk of severe COVID-19 disease with ACE inhibitors and angiotensin receptor blockers: Cohort study including 8.3 million people. Heart 2020, 106, 1503–1511. [Google Scholar] [CrossRef]
- Laffin, L.J.; Kaufman, H.W.; Chen, Z.; Niles, J.K.; Arellano, A.R.; Bare, L.A.; Hazen, S.L. Rise in Blood Pressure Observed Among US Adults During the COVID-19 Pandemic. Circulation 2022, 145, 235–237. [Google Scholar] [CrossRef]
- Shah, N.P.; Clare, R.M.; Chiswell, K.; Navar, A.M.; Shah, B.R.; Peterson, E.D. Trends of blood pressure control in the U.S. during the COVID-19 pandemic. Am. Heart J. 2022, 247, 15–23. [Google Scholar] [CrossRef]
- Kennedy, F.M.; Sharma, S. COVID-19, the heart and returning to physical exercise. Occup. Med. 2020, 70, 467–469. [Google Scholar] [CrossRef] [PubMed]
- 44. Singh, I.; Joseph, P.; Heerdt, P.M.; Cullinan, M.; Lutchmansingh, D.D.; Gulati, M.; Possick, J.D.; Systrom, D.M.; Waxman, A.B. Persistent Exertional Intolerance After COVID-19: Insights From Invasive Cardiopulmonary Exercise Testing. Chest 2022, 161, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Frésard, I.; Genecand, L.; Altarelli, M.; Gex, G.; Vremaroiu, P.; Vremaroiu-Coman, A.; Lawi, D.; Bridevaux, P.O. Dysfunctional breathing diagnosed by cardiopulmonary exercise testing in ‘long COVID’ patients with persistent dyspnoea. BMJ Open Respir. Res. 2022, 9, e001126. [Google Scholar] [CrossRef] [PubMed]
- Vollrath, S.; Bizjak, D.A.; Zorn, J.; Matits, L.; Jerg, A.; Munk, M.; Schulz, S.V.; Kirsten, J.; Schellenberg, J.; Steinacker, J.M. Recovery of performance and persistent symptoms in athletes after COVID-19. PLoS ONE 2022, 17, e0277984. [Google Scholar] [CrossRef]
- Dweck, M.R.; Bularga, A.; Hahn, R.T.; Bing, R.; Lee, K.K.; Chapman, A.R.; White, A.; Salvo, G.D.; Sade, L.E.; Pearce, K.; et al. Global evaluation of echocardiography in patients with COVID-19. Eur. Heart J. Cardiovasc. Imaging 2020, 21, 949–958. [Google Scholar] [CrossRef]
- Lemes, I.R.; Smaira, F.I.; Ribeiro, W.J.; Favero, N.K.; Matos, L.D.; de Sá Pinto, A.L.; Dolan, E.; Gualano, B. Acute and post-acute COVID-19 presentations in athletes: A systematic review and meta-analysis. Br. J. Sport. Med. 2022, 56, 941–947. [Google Scholar] [CrossRef]
- Krzywański, J.; Mikulski, T.; Krysztofiak, H.; Pokrywka, A.; Młyńczak, M.; Małek, Ł.A.; Kwiatkowska, D.; Kuchar, E. Elite athletes with COVID-19—Predictors of the course of disease. J. Sci. Med. Sport 2022, 25, 9–14. [Google Scholar] [CrossRef]
Parameters | Athletes without SARS-CoV-2 Infection (n = 1043; 86.9%) | Athletes with SARS-CoV-2 Infection (n = 157; 13.1%) | p-Value |
---|---|---|---|
Age (in years) | 21.7 ± 12.1 | 23.4 ± 7.1 | <0.001 |
Female sex | 376 (36.0%) | 35 (22.3%) | <0.001 |
Body height (cm) | 175.0 (167.0/181.0) | 181.0 (172.8/187.0) | <0.001 |
Body weight (kg) | 68.7 (59.0/78.5) | 79.0 (67.6/87.1) | <0.001 |
Body mass index (kg/m2) | 22.3 (20.4/24.3) | 23.5 (21.9/25.6) | <0.001 |
Body fat (%) | 11.8 (8.7/16.8) | 10.5 (8.5/15.1) | 0.021 |
Leading athletes at a regional and national level | 766 (73.4%) | 113 (72.0%) | 0.669 |
Cardiovascular risk factors | |||
Nicotine abuse | 34 (3.3%) | 7 (4.5%) | 0.441 |
Obesity | 16 (1.5%) | 6 (3.8%) | 0.057 |
Blood pressure values | |||
Systolic blood pressure at rest (mmHg) | 115.0 (110.0/120.0) | 120.0 (110.0/125.0) | 0.640 |
Diastolic blood pressure at rest (mmHg) | 70.0 (60.0/75.0) | 70.0 (65.0/75.0) | 0.360 |
Maximum systolic blood pressure during exercise (mmHg) | 180.0 (160.0/205.0) | 190.0 (170.0/210.0) | 0.007 |
Maximum diastolic blood pressure during exercise (mmHg) | 75.0 (70.0/80.0) | 75.0 (70.0/80.0) | 0.012 |
Exercise hypertension (defined by systolic blood pressure (BP)/MET slope method with cut-off value >6.2 mmHg/MET) | 199 (37.8%) | 77 (54.2%) | <0.001 |
Exercise parameters | |||
VO2 peak (mL/min/kg) | 45.3 (39.1/50.6) | 43.4 (38.3/48.0) | 0.010 |
Maximal respiratory exchange ratio (RER) | 1.15 (1.11/1.20) | 1.15 (1.10/1.21) | 0.807 |
Maximum lactate value | 9.42 (7.81/11.17) | 9.52 (7.54/11.29) | 0.826 |
Echocardiographic parameters | |||
Left ventricular hypertrophy | 212 (20.3%) | 47 (29.9%) | 0.006 |
Left ventricular mass (g) | 164.5 (132.8/200.8) | 194.4 (157.9/226.4) | <0.001 |
Aortic valve regurgitation | 79 (7.6%) | 7 (4.5%) | 0.158 |
Mitral valve regurgitation | 565 (54.2%) | 102 (65.0%) | 0.011 |
Tricuspid valve regurgitation | 153 (14.7%) | 16 (10.2%) | 0.310 |
Pulmonary valve regurgitation | 109 (10.5%) | 6 (3.8%) | 0.006 |
Heart volume in total (mL) | 772.3 (642.0/912.2) | 934.4 (769.5/1034.0) | <0.001 |
Heart volume related to body weight (mL/kg) | 11.4 (10.2/12.5) | 11.7 (10.9/12.4) | 0.015 |
Left ventricular ejection fraction measured by Simpson method (%) | 65.0 (62.0/69.0) | 65.0 (63.0/68.0) | 0.778 |
Left ventricular end-diastolic diameter (cm) | 49.0 (46.0/53.0) | 52.0 (49.0/55.0) | <0.001 |
Left atrial area (cm2) | 13.7 (11.4/15.7) | 15.1 (13.3/17.5) | <0.001 |
Right atrial area (cm2) | 13.5 (11.2/15.8) | 15.1 (12.7/17.0) | <0.001 |
Tricuspid annular plane systolic excursion (TAPSE, cm) | 2.50 (2.20/2.80) | 2.60 (2.22/2.90) | 0.003 |
Systolic pulmonary artery pulmonary pressure (mmHg) | 20.0 (17.0/23.4) | 20.2 (17.0/22.0) | 0.651 |
E/A quotient | 2.6 (1.9/3.6) | 2.5 (1.8/3.6) | 0.497 |
E/E’ quotient | 4.8 (4.1/5.7) | 4.5 (3.7/5.5) | 0.007 |
SARS-CoV-2 Infection | ||||
---|---|---|---|---|
Univariate Regression Model | Multivariate Regression Model (Adjusted for Age, Sex, and BMI) | |||
OR (95% CI) | p-Value | OR (95% CI) | p-Value | |
Age (in years) | 1.01 (1.00–1.03) | 0.100 | 1.00 (0.98–1.01) | 0.749 |
Male sex | 1.97 (1.32–2.92) | <0.001 | 1.60 (1.06–2.40) | 0.026 |
Body mass index (kg/m2) | 1.14 (1.09–1.20) | <0.001 | 1.13 (1.07–1.19) | <0.001 |
Body fat (%) | 0.95 (0.91–0.99) | 0.007 | 0.90 (0.84–0.97) | 0.003 |
Cardiovascular risk factors | ||||
Nicotine abuse | 1.39 (0.60–3.18) | 0.443 | 1.09 (0.45–2.65) | 0.844 |
Obesity | 2.55 (0.98–6.62) | 0.054 | 1.97 (0.74–5.21) | 0.173 |
Blood pressure values | ||||
Systolic blood pressure at rest (mmHg) | 1.00 (0.97–1.01) | 0.979 | 0.98 (0.96–1.00) | 0.009 |
Diastolic blood pressure at rest (mmHg) | 1.01 (0.99–1.03) | 0.568 | 0.99 (0.97–1.01) | 0.260 |
Maximum systolic blood pressure during exercise (mmHg) | 1.007 (1.001–1.014) | 0.017 | 0.998 (0.991–1.006) | 0.685 |
Maximum diastolic blood pressure during exercise (mmHg) | 1.024 (1.006–1.043) | 0.010 | 1.013 (0.992–1.033) | 0.220 |
Exercise hypertension (defined by systolic blood pressure (BP)/MET slope method with cut-off value >6.2 mmHg/MET) | 1.96 (1.34–2.84) | <0.001 | 2.13 (1.39–3.28) | <0.001 |
Exercise parameters | ||||
VO2 peak | 0.974 (0.952–0.997) | 0.029 | 0.943 (0.913–0.973) | <0.001 |
Maximal respiratory exchange ratio (RER) | 0.80 (0.06–10.04) | 0.864 | 0.72 (0.05–9.60) | 0.801 |
Maximum lactate value | 1.02 (0.91–1.15) | 0.710 | 1.00 (0.89–1.13) | 0.948 |
Echocardiographic parameters | ||||
Left ventricular hypertrophy | 1.68 (1.15–2.43) | 0.007 | 1.28 (0.85–1.94) | 0.236 |
Left ventricular mass | 1.010 (1.006–1.013) | <0.001 | 1.005 (1.000–1.010) | 0.054 |
Left ventricular ejection fraction measured by Simpson method (%) | 1.00 (0.97–1.04) | 0.817 | 1.02 (0.98–1.06) | 0.431 |
Left ventricular end-diastolic diameter (cm) | 1.12 (1.08–1.17) | <0.001 | 1.09 (1.04–1.14) | <0.001 |
Left atrial area (cm2) | 1.18 (1.11–1.24) | <0.001 | 1.14 (1.08–1.21) | <0.001 |
Right atrial area (cm2) | 1.12 (1.06–1.17) | <0.001 | 1.08 (1.02–1.14) | 0.010 |
Tricuspid annular plane systolic excursion (TAPSE, cm) | 1.98 (1.33–2.96) | <0.001 | 1.44 (0.94–2.21) | 0.097 |
Systolic pulmonary artery pulmonary pressure (mmHg) | 0.99 (0.94–1.04) | 0.649 | 0.98 (0.93–1.03) | 0.430 |
E/A quotient | 0.94 (0.81–1.08) | 0.358 | 0.98 (0.85–1.13) | 0.781 |
E/E’ quotient | 0.82 (0.72–0.94) | 0.004 | 0.83 (0.73–0.95) | 0.008 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keller, K.; Friedrich, O.; Treiber, J.; Quermann, A.; Friedmann-Bette, B. Former SARS-CoV-2 Infection Was Related to Decreased VO2 Peak and Exercise Hypertension in Athletes. Diagnostics 2023, 13, 1792. https://doi.org/10.3390/diagnostics13101792
Keller K, Friedrich O, Treiber J, Quermann A, Friedmann-Bette B. Former SARS-CoV-2 Infection Was Related to Decreased VO2 Peak and Exercise Hypertension in Athletes. Diagnostics. 2023; 13(10):1792. https://doi.org/10.3390/diagnostics13101792
Chicago/Turabian StyleKeller, Karsten, Oliver Friedrich, Julia Treiber, Anne Quermann, and Birgit Friedmann-Bette. 2023. "Former SARS-CoV-2 Infection Was Related to Decreased VO2 Peak and Exercise Hypertension in Athletes" Diagnostics 13, no. 10: 1792. https://doi.org/10.3390/diagnostics13101792
APA StyleKeller, K., Friedrich, O., Treiber, J., Quermann, A., & Friedmann-Bette, B. (2023). Former SARS-CoV-2 Infection Was Related to Decreased VO2 Peak and Exercise Hypertension in Athletes. Diagnostics, 13(10), 1792. https://doi.org/10.3390/diagnostics13101792