Monitoring of Copper in Wilson Disease
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Copper Metabolism in WND–Laboratory Monitoring
3.1.1. Ceruloplasmin
3.1.2. Serum Total Copper
3.1.3. Non-Ceruloplasmin-Bound Copper
- −
- NCC in molar units (μmol/L) = total copper (μmol/L) − [47 * CP (g/L)]
- −
- NCC in mass units (μg/L) = total copper (μg/L) − CP-bound copper (μg/L)
- −
- NCC% (%) = [NCC (μmol/L)/total copper (μmol/L)] * 100
- −
- CCR (μmol/g) = [total copper (μmol/L) * 0.132]/CP (g/L)
3.1.4. Exchangeable Copper (CuEXC)
3.1.5. Albumin Copper (Cu-ALB)
3.1.6. New Alexion Test
3.1.7. Urinary Copper Excretion (UCE)
3.1.8. Test with Radioactive Copper
3.1.9. Mass Spectrometry in Dried Blood Spot (DBS)
3.1.10. Intrahepatic Copper Quantification
3.2. Copper Monitoring in Special Situations in WND
3.2.1. Neonatal Screening
3.2.2. Presymptomatic Diagnostics
3.2.3. Diagnosis in Children
3.2.4. Copper after Liver Transplantation
Method | Measurement | Reference Range | Cut-off Values for Wilson’s Disease | Most Important Limitations |
---|---|---|---|---|
Ceruloplasmin enzyme assay | Concentration of holo-ceruloplasmin in serum based on enzymatic activity colorimetric method | 25–45 mg/dL | <20 mg/dL [32] | False negative results during inflammation, hepatitis, pregnancy, in patients taking oral contraceptives; at low values, it is necessary to differentiate with aceruloplasminemia |
Ceruloplasmin nephelometric assay | Concentration of apo- and holo-ceruloplasmin in serum. Test based on monoclonal antibodies | 25–45 mg/dL | <20 mg/dL [32] | As above; additionally overestimation of the CP due to apoprotein detection |
Serum total copper | Serum copper concentration by atomic absorption spectroscopy | 70–155 μg/dL | <60 µg/mL [14,62] | False negative results in case of severe liver damage |
Non ceruloplasmin bound copper (NCC) | Estimation by subtraction the CP-Cu concentration from the total serum copper concentration (calculated NCC [cNCC]) | ≤15 µg/dL or ≤150 µg/L | >25 µg/dL or 250 µg/L [39] | cNCC results may have aberrant negative value if CP is low |
Exchangeable copper (CuEXC) | Serum copper “exchanged” or mobilized from non-CP proteins and peptides measured by chelating or extraction methods or chromatographs | 4.1–7.1 μg/dL reference intervals are age-specific | >7.1 µg/dL [75] | The blood sample must be within 30 min after collection centrifuged and stored, measurement, must be performed within 7 days |
Albumin-copper | Concentration of serum protein bound copper by chromatography | 122–455 μg/kg body weight | Not established | Under development |
Urinary copper excretion | Copper in a 24-h urine collection | <50 µg/24 h | >100 µg/24 h [86] | False positive results in patients with autoimmune hepatitis, cholestasis syndromes and acute liver failure, false negative results in children and asymptomatic patients, frequent sampling errors |
Test with radioactive copper | Intravenous administration of the copper isotope copper-64, measurement of blood samples radioactivity at 2, 24 and 48 h thereafter. | 24 h/2 h Cu64 ratios:1.04–1.50 48 h/2 h Cu64 ratios:0.85–2.03 | 24 h/2 h Cu64 ratios: 0.14; 48 h/2 h Cu64 ratios: 0.12 [96] | Limited availability, long duration of the test (48 h) |
Copper concentration in the liver | Copper concentration in liver sample | 40–50 µg/g dry weight | >250 µg/g dry weight [100] | Invasive method- liver biopsy necessary, false negative results possible as copper deposits in the liver are distributed unevenly, false positive results in cholestatic liver diseases |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Purchase, R. The link between copper and Wilson’s disease. Sci. Prog. 2013, 96, 213–223. [Google Scholar] [CrossRef] [PubMed]
- Scheinberg, I.H.; Gitlin, D. Deficiency of ceruloplasmin in patients with hepatolenticular degeneration (Wilson’s disease). Science 1952, 116, 484–485. [Google Scholar] [CrossRef] [PubMed]
- Petrukhin, K.; Lutsenko, S.; Chernov, I.; Ross, B.M.; Kaplan, J.H.; Gilliam, T.C. Characterization of the Wilson disease gene encoding a P-type copper transporting ATPase: Genomic organization, alternative splicing, and structure/function predictions. Hum. Mol. Genet. 1994, 3, 1647–1656. [Google Scholar] [CrossRef] [PubMed]
- Bull, P.C.; Thomas, G.R.; Rommens, J.M.; Forbes, J.R.; Cox, D.W. The Wilson disease gene is a putative copper transporting P-type ATPase similar to the Menkes gene. Nat. Genet. 1993, 5, 327–337, Erratum in: Nat. Genet. 1994, 6, 214. [Google Scholar] [CrossRef]
- Lucena-Valera, A.; Ruz-Zafra, P.; Ampuero, J. Wilson’s disease: Overview. Enfermedad de Wilson. Med. Clin. 2023, 160, 261–267. [Google Scholar] [CrossRef]
- Lucena-Valera, A.; Perez-Palacios, D.; Muñoz-Hernandez, R.; Romero-Gómez, M.; Ampuero, J. Wilson’s disease: Revisiting an old friend. World J. Hepatol. 2021, 13, 634–649. [Google Scholar] [CrossRef]
- Pierson, H.; Muchenditsi, A.; Kim, B.E.; Ralle, M.; Zachos, N.; Huster, D.; Lutsenko, S. The Function of ATPase Copper Transporter ATP7B in Intestine. Gastroenterology 2018, 154, 168–180.e5. [Google Scholar] [CrossRef]
- Scheiber, I.F.; Brůha, R.; Dušek, P. Pathogenesis of Wilson disease. Handb. Clin. Neurol. 2017, 142, 43–55. [Google Scholar] [CrossRef]
- Vasilyev, V.B. Looking for a partner: Ceruloplasmin in protein-protein interactions. Biometals 2019, 32, 195–210. [Google Scholar] [CrossRef]
- Niu, L.; Zhou, Y.; Lu, L.; Su, A.; Guo, X. Ceruloplasmin Deficiency Impaired Brain Iron Metabolism and Behavior in Mice. Cell Biochem. Biophys. 2022, 80, 385–393. [Google Scholar] [CrossRef]
- Dong, Y.; Wang, R.M.; Yang, G.M.; Yu, H.; Xu, W.Q.; Xie, J.J.; Zhang, Y.; Chen, Y.C.; Ni, W.; Wu, Z.Y. Role for Biochemical Assays and Kayser-Fleischer Rings in Diagnosis of Wilson’s Disease. Clin. Gastroenterol. Hepatol. 2021, 19, 590–596. [Google Scholar] [CrossRef] [PubMed]
- Mohr, I.; Weiss, K.H. Biochemical Markers for the Diagnosis and Monitoring of Wilson Disease. Clin. Biochem. Rev. 2019, 40, 59–77. [Google Scholar] [CrossRef]
- Schilsky, M.L.; Roberts, E.A.; Bronstein, J.M.; Dhawan, A.; Hamilton, J.P.; Rivard, A.M.; Washington, M.K.; Weiss, K.H.; Zimbrean, P.C. A multidisciplinary approach to the diagnosis and management of Wilson disease: Executive summary of the 2022 Practice Guidance on Wilson disease from the American Association for the Study of Liver Diseases. Hepatology 2023, 77, 1428–1455. [Google Scholar] [CrossRef]
- Schroeder, S.M.; Matsukuma, K.E.; Medici, V. Wilson disease and the differential diagnosis of its hepatic manifestations: A narrative review of clinical, laboratory, and liver histological features. Ann. Transl. Med. 2021, 9, 1394. [Google Scholar] [CrossRef] [PubMed]
- Patil, M.; Sheth, K.A.; Krishnamurthy, A.C.; Devarbhavi, H. A review and current perspective on Wilson disease. J. Clin. Exp. Hepatol. 2013, 3, 321–336. [Google Scholar] [CrossRef]
- Sánchez-Monteagudo, A.; Ripollés, E.; Berenguer, M.; Espinós, C. Wilson’s Disease: Facing the Challenge of Diagnosing a Rare Disease. Biomedicines 2021, 9, 1100. [Google Scholar] [CrossRef]
- Roberts, E.A.; Schilsky, M.L. American Association for Study of Liver Diseases (AASLD). Diagnosis and treatment of Wilson disease: An update. Hepatology 2008, 47, 2089–2111. [Google Scholar] [CrossRef]
- Yüce, A.; Koçak, N.; Ozen, H.; Gürakan, F. Wilson’s disease patients with normal ceruloplasmin levels. Turk. J. Pediatr. 1999, 41, 99–102. [Google Scholar] [PubMed]
- Walshe, J.M. Diagnostic significance of reduced serum caeruloplasmin concentration in neurological disease. Mov. Disord. 2005, 20, 1658–1661. [Google Scholar] [CrossRef]
- Menkes, J.H. Menkes disease and Wilson disease: Two sides of the same copper coin. Part II: Wilson disease. Eur. J. Paediatr. Neurol. 1999, 3, 245–253. [Google Scholar] [CrossRef]
- Fuhrman, M.P.; Herrmann, V.; Masidonski, P.; Eby, C. Pancytopenia after removal of copper from total parenteral nutrition. JPEN J. Parenter. Enteral Nutr. 2000, 24, 361–366. [Google Scholar] [CrossRef] [PubMed]
- Salsone, M.; Arabia, G.; Annesi, G.; Gagliardi, M.; Nistico, R.; Novellino, F.; Ferini-Strambi, L.; Quattrone, A.; Quattrone, A. Aceruloplasminemia: A multimodal imaging study in an Italian family with a novel mutation. Neurol. Sci. 2022, 43, 1791–1797. [Google Scholar] [CrossRef]
- Lobbes, H.; Reynaud, Q.; Mainbourg, S.; Lega, J.C.; Durieu, I.; Durupt, S. L’acéruléoplasminémie héréditaire, une pathologie à ne pas méconnaître [Aceruloplasminemia, a rare condition not to be overlooked]. Rev. Med. Int. 2020, 41, 769–775. [Google Scholar] [CrossRef] [PubMed]
- Müller, T.; Koppikar, S.; Taylor, R.M.; Carragher, F.; Schlenck, B.; Heinz-Erian, P.; Kronenberg, F.; Ferenci, P.; Tanner, S.; Siebert, U.; et al. Re-evaluation of the penicillamine challenge test in the diagnosis of Wilson’s disease in children. J. Hepatol. 2007, 47, 270–276. [Google Scholar] [CrossRef]
- Sánchez-Albisua, I.; Garde, T.; Hierro, L.; Camarena, C.; Frauca, E.; de la Vega, A.; Díaz, M.C.; Larrauri, J.; Jara, P. A high index of suspicion: The key to an early diagnosis of Wilson’s disease in childhood. J. Pediatr. Gastroenterol. Nutr. 1999, 28, 186–190. [Google Scholar] [CrossRef]
- Lu, X.; Li, S.; Zhang, W.; Lin, Y.; Lu, Z.; Cai, Y.; Su, X.; Shao, Y.; Liu, Z.; Sheng, H.; et al. Assessment of the diagnostic value of serum ceruloplasmin for Wilson’s disease in children. BMC Gastroenterol. 2022, 22, 124. [Google Scholar] [CrossRef] [PubMed]
- Pfeiffer, R.F. Wilson’s disease. Handb. Clin. Neurol. 2021, 100, 681–709. [Google Scholar] [CrossRef]
- García-Villarreal, L.; Hernández-Ortega, A.; Sánchez-Monteagudo, A.; Peña-Quintana, L.; Ramírez-Lorenzo, T.; Riaño, M.; Moreno-Pérez, R.; Monescillo, A.; González-Santana, D.; Quiñones, I.; et al. Wilson disease: Revision of diagnostic criteria in a clinical series with great genetic homogeneity. J. Gastroenterol. 2021, 56, 78–89. [Google Scholar] [CrossRef]
- Nicastro, E.; Ranucci, G.; Vajro, P.; Vegnente, A.; Iorio, R. Re-evaluation of the diagnostic criteria for Wilson disease in children with mild liver disease. Hepatology 2010, 52, 1948–1956. [Google Scholar] [CrossRef]
- Kim, J.A.; Kim, H.J.; Cho, J.M.; Oh, S.H.; Lee, B.H.; Kim, G.H.; Choi, J.H.; Kim, K.M.; Yoo, H.W. Diagnostic Value of Ceruloplasmin in the Diagnosis of Pediatric Wilson’s Disease. Pediatr. Gastroenterol. Hepatol. Nutr. 2015, 18, 187–192. [Google Scholar] [CrossRef]
- Xu, R.; Jiang, Y.F.; Zhang, Y.H.; Yang, X. The optimal threshold of serum ceruloplasmin in the diagnosis of Wilson’s disease: A large hospital-based study. PLoS ONE 2018, 13, e0190887. [Google Scholar] [CrossRef] [PubMed]
- Salman, H.M.; Amin, M.; Syed, J.; Sarfraz, Z.; Sarfraz, A.; Sarfraz, M.; Farfán Bajaña, M.J.; Felix, M.; Cherrez-Ojeda, I. Biochemical testing for the diagnosis of Wilson’s disease: A systematic review. J. Clin. Lab. Anal. 2022, 36, e24191. [Google Scholar] [CrossRef]
- Dowling, D. Screening for Wilson’s disease in acute liver failure: A comparison of currently available diagnostic tests. Hepatology 2009, 50, 329. [Google Scholar] [CrossRef]
- Korman, J.D.; Volenberg, I.; Balko, J.; Webster, J.; Schiodt, F.V.; Squires, R.H., Jr.; Fontana, R.J.; Lee, W.M.; Schilsky, M.L.; Pediatric and Adult Acute Liver Failure Study Groups. Screening for Wilson disease in acute liver failure: A comparison of currently available diagnostic tests. Hepatology 2008, 48, 1167–1174. [Google Scholar] [CrossRef] [PubMed]
- Zulkufli, N.S.; Sthaneshwar, P.; Chan, W.K. Calculated parameters for the diagnosis of Wilson disease. Singapore Med. J. 2023, 64, 188–195. [Google Scholar] [CrossRef] [PubMed]
- Mak, C.M.; Lam, C.W.; Tam, S. Diagnostic accuracy of serum ceruloplasmin in Wilson disease: Determination of sensitivity and specificity by ROC curve analysis among ATP7B-genotyped subjects. Clin. Chem. 2008, 54, 1356–1362. [Google Scholar] [CrossRef]
- Yang, Y.; Hao, W.; Wei, T.; Tang, L.; Qian, N.; Yang, Y.; Xi, H.; Zhang, S.; Yang, W. Role of serum ceruloplasmin in the diagnosis of Wilson’s disease: A large Chinese study. Front. Neurol. 2022, 13, 1058642. [Google Scholar] [CrossRef]
- Linder, M.C. Apoceruloplasmin: Abundance, Detection, Formation, and Metabolism. Biomedicines 2021, 9, 233. [Google Scholar] [CrossRef]
- Walshe, J.M.; Clinical Investigations Standing Committee of the Association of Clinical Biochemists. Wilson’s disease: The importance of measuring serum caeruloplasmin non-immunologically. Ann. Clin. Biochem. 2003, 40, 115–121. [Google Scholar] [CrossRef]
- Merle, U.; Eisenbach, C.; Weiss, K.H.; Tuma, S.; Stremmel, W. Serum ceruloplasmin oxidase activity is a sensitive and highly specific diagnostic marker for Wilson’s disease. J. Hepatol. 2009, 51, 925–930. [Google Scholar] [CrossRef]
- González-Jiménez, E.; Schmidt-Riovalle, J.; Sinausía, L.; Carmen Valenza, M.; Perona, J.S. Predictive value of ceruloplasmin for metabolic syndrome in adolescents. Biofactors 2016, 42, 163–170. [Google Scholar] [PubMed]
- Louro, M.O.; Tutor, J.C.; Paz, J.M. Serum and plasma ceruloplasmin in humans. J. Clin. Chem. Clin. Biochem. 1989, 27, 511–513. [Google Scholar] [PubMed]
- Stepien, K.M.; Guy, M. Caeruloplasmin oxidase activity: Measurement in serum by use of o-dianisidine dihydrochloride on a microplate reader. Ann. Clin. Biochem. 2018, 55, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Thapa, B.; Kaur, G.; Prasad, R. Analysis of most common mutations R778G, R778L, R778W, I1102T and H1069Q in Indian Wilson disease patients: Correlation between genotype/phenotype/copper ATPase activity. Mol. Cell. Biochem. 2007, 294, 1–10. [Google Scholar] [CrossRef]
- Gromadzka, G.; Schmidt, H.H.; Genschel, J.; Bochow, B.; Rodo, M.; Tarnacka, B.; Litwin, T.; Chabik, G.; Członkowska, A. Frameshift and nonsense mutations in the gene for ATPase7B are associated with severe impairment of copper metabolism and with an early clinical manifestation of Wilson’s disease. Clin. Genet. 2005, 68, 524–532. [Google Scholar] [CrossRef] [PubMed]
- Gromadzka, G.; Chabik, G.; Mendel, T.; Wierzchowska, A.; Rudnicka, M.; Czlonkowska, A. Middle-aged heterozygous carriers of Wilson’s disease do not present with significant phenotypic deviations related to copper metabolism. J. Genet. 2010, 89, 463–467. [Google Scholar] [CrossRef]
- Buckley, W.T.; Vanderpool, R.A. Analytical variables affecting exchangeable copper determination in blood plasma. Biometals. 2008, 21, 601–612. [Google Scholar] [CrossRef]
- Lopez-Avila, V.; Sharpe, O.; Robinson, W.H. Determination of ceruloplasmin in human serum by SEC-ICPMS. Anal. Bioanal. Chem. 2006, 386, 180–187. [Google Scholar] [CrossRef]
- Lothian, A.; Roberts, B.R. Standards for Quantitative Metalloproteomic Analysis Using Size Exclusion ICP-MS. J. Vis. Exp. 2016, 110, 53737. [Google Scholar] [CrossRef]
- El Balkhi, S.; Poupon, J.; Trocello, J.M.; Massicot, F.; Woimant, F.; Laprévote, O. Human plasma copper proteins speciation by size exclusion chromatography coupled to inductively coupled plasma mass spectrometry. Solutions for columns calibration by sulfur detection. Anal. Chem. 2010, 82, 6904–6910. [Google Scholar] [CrossRef]
- Solovyev, N.; Ala, A.; Schilsky, M.; Mills, C.; Willis, K.; Harrington, C.F. Biomedical copper speciation in relation to Wilson’s disease using strong anion exchange chromatography coupled to triple quadrupole inductively coupled plasma mass spectrometry. Anal. Chim. Acta 2020, 1098, 27–36. [Google Scholar] [CrossRef]
- Clough, R.; Harrington, C.F.; Hill, S.J.; Madrid, Y.; Tyson, J.F. Atomic Spectrometry Update: Review of advances in elemental speciation. J. Anal. At. Spectrom. 2022, 37, 1387–1430. [Google Scholar] [CrossRef]
- Michalke, B.; Willkommen, D.; Drobyshev, E.; Solovyev, N. The importance of speciation analysis in neurodegeneration research. TrAC Trends Anal. Chem. 2018, 104, 160–170. [Google Scholar] [CrossRef]
- Solovyev, N.; Vinceti, M.; Grill, P.; Mandrioli, J.; Michalke, B. Redox speciation of iron, manganese, and copper in cerebrospinal fluid by strong cation exchange chromatography—Sector field inductively coupled plasma mass spectrometry. Anal. Chim. Acta 2017, 973, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Balcaen, L.; Bolea-Fernandez, E.; Resano, M.; Vanhaecke, F. Inductively coupled plasma—Tandem mass spectrometry (ICP-MS/MS): A powerful and universal tool for the interference-free determination of (ultra)trace elements—A tutorial review. Anal. Chim. Acta 2015, 894, 7–19. [Google Scholar] [CrossRef]
- Kerkar, N.; Roberts, E.A. Clinical and Translational Perspectives on Wilson Disease; Academic Press: Cambridge, MA, USA, 2018; p. 502. [Google Scholar]
- Ala, A.; Walker, A.P.; Ashkan, K.; Dooley, J.S.; Schilsky, M.L. Wilson’s disease. Lancet 2007, 369, 397–408. [Google Scholar] [CrossRef]
- Coverdale, J.P.C.; Harrington, C.F.; Solovyev, N. Review: Advances in the Accuracy and Traceability of Metalloprotein Measurements Using Isotope Dilution Inductively Coupled Plasma Mass Spectrometry. Crit. Rev. Anal. Chem. 2023, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Bagherian, G.; Arab Chamjangali, M.; Shariati Evari, H.; Ashraf, M. Determination of copper(II) by flame atomic absorption spectrometry after its perconcentration by a highly selective and environmentally friendly dispersive liquid–liquid microextraction technique. J. Anal. Sci. Technol. 2019, 10, 3. [Google Scholar] [CrossRef]
- Martínez-Morillo, E.; Bauça, J. Biochemical diagnosis of Wilson’s disease: An update. Adv. Lab. Med. Av. Med. Lab. 2022, 3, 103–113. [Google Scholar] [CrossRef]
- Twomey, P.J.; Viljoen, A.; House, I.M.; Reynolds, T.M.; Wierzbicki, A.S. Relationship between serum copper, ceruloplasmin, and non-ceruloplasmin-bound copper in routine clinical practice. Clin. Chem. 2005, 51, 1558–1559. [Google Scholar] [CrossRef]
- Kumar, N.; Butz, J.A.; Burritt, M.F. Clinical significance of the laboratory determination of low serum copper in adults. Clin. Chem. Lab. Med. 2007, 45, 1402–1410. [Google Scholar] [CrossRef] [PubMed]
- Kroll, C.A.; Ferber, M.J.; Dawson, B.D.; Jacobson, R.M.; Mensink, K.A.; Lorey, F.; Sherwin, J.; Cunningham, G.; Rinaldo, P.; Matern, D.; et al. Retrospective determination of ceruloplasmin in newborn screening blood spots of patients with Wilson disease. Mol. Genet. Metab. 2006, 89, 134–138. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.F.; Wu, W.; Yu, Y.L.; Shen, J.; Mao, S.S.; Gao, F.; Xia, Z.Z. Novel mutations of the ATP7B gene in Han Chinese families with pre-symptomatic Wilson’s disease. World J. Pediatr. 2015, 11, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Twomey, P.J.; Viljoen, A.; Reynolds, T.M.; Wierzbicki, A.S. Non-ceruloplasmin-bound copper in routine clinical practice in different laboratories. J. Trace Elem. Med. Biol. 2008, 22, 50–53. [Google Scholar] [CrossRef]
- Poujois, A.; Woimant, F. Wilson’s disease: A 2017 update. Clin. Res. Hepatol. Gastroenterol. 2018, 42, 512–520. [Google Scholar] [CrossRef]
- Kasztelan-Szczerbinska, B.; Cichoz-Lach, H. Wilson’s Disease: An Update on the Diagnostic Workup and Management. J. Clin. Med. 2021, 10, 5097. [Google Scholar] [CrossRef] [PubMed]
- European Association for Study of Liver. EASL Clinical Practice Guidelines: Wilson’s disease. J. Hepatol. 2012, 56, 671–685. [Google Scholar] [CrossRef]
- Camarata, M.; Ala, A. The Diagnostic Approach to Wilson Disease. In Wilson Disease; Academic Press: Cambridge, MA, USA, 2019; pp. 97–104. [Google Scholar] [CrossRef]
- Duncan, A.; Yacoubian, C.; Beetham, R.; Catchpole, A.; Bullock, D. The role of calculated non-caeruloplasmin-bound copper in Wilson’s disease. Ann. Clin. Biochem. 2017, 54, 649–654. [Google Scholar] [CrossRef] [PubMed]
- Medici, V.; Heffern, M.C. Monitoring and treatment of Wilson disease: Progress and challenges. Lancet Gastroenterol. Hepatol. 2022, 7, 1063–1065. [Google Scholar] [CrossRef]
- Poujois, A.; Trocello, J.M.; Djebrani-Oussedik, N.; Poupon, J.; Collet, C.; Girardot-Tinant, N.; Sobesky, R.; Habès, D.; Debray, D.; Vanlemmens, C.; et al. Exchangeable copper: A reflection of the neurological severity in Wilson’s disease. Eur. J. Neurol. 2017, 24, 154–160. [Google Scholar] [CrossRef]
- Ryan, A.; Nevitt, S.J.; Tuohy, O.; Cook, P. Biomarkers for diagnosis of Wilson’s disease. Cochrane Database Syst. Rev. 2019, 2019, CD012267. [Google Scholar] [CrossRef] [PubMed]
- Poujois, A.; Poupon, J.; Woimant, F. Direct determination of non-ceruloplasmin-bound copper in plasma. In Clinical and Translational Perspectives on Wilson Disease; Kerkar, N., Roberts, E.A., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 249–255. [Google Scholar]
- El Balkhi, S.; Poupon, J.; Trocello, J.M.; Leyendecker, A.; Massicot, F.; Galliot-Guilley, M.; Woimant, F. Determination of ultrafiltrable and exchangeable copper in plasma: Stability and reference values in healthy subjects. Anal. Bioanal. Chem. 2009, 394, 1477–1484. [Google Scholar] [CrossRef] [PubMed]
- Guillaud, O.; Brunet, A.S.; Mallet, I.; Dumortier, J.; Pelosse, M.; Heissat, S.; Rivet, C.; Lachaux, A.; Bost, M. Relative exchangeable copper: A valuable tool for the diagnosis of Wilson disease. Liver Int. 2018, 38, 350–357. [Google Scholar] [CrossRef] [PubMed]
- El Balkhi, S.; Trocello, J.M.; Poupon, J.; Chappuis, P.; Massicot, F.; Girardot-Tinant, N.; Woimant, F. Relative exchangeable copper: A new highly sensitive and highly specific biomarker for Wilson’s disease diagnosis. Clin. Chim. Acta 2011, 412, 2254–2260. [Google Scholar] [CrossRef]
- Woimant, F.; Djebrani-Oussedik, N.; Poujois, A. New tools for Wilson’s disease diagnosis: Exchangeable copper fraction. Ann. Transl. Med. 2019, 7, S70. [Google Scholar] [CrossRef]
- Schmitt, F.; Podevin, G.; Poupon, J.; Roux, J.; Legras, P.; Trocello, J.M.; Woimant, F.; Laprévote, O.; Nguyen, T.H.; El Balkhi, S. Evolution of exchangeable copper and relative exchangeable copper through the course of Wilson’s disease in the Long Evans Cinnamon rat. PLoS ONE 2013, 8, e82323. [Google Scholar] [CrossRef] [PubMed]
- Del Castillo Busto, M.E.; Cuello-Nunez, S.; Ward-Deitrich, C.; Morley, T.; Goenaga-Infante, H. A fit-for-purpose copper speciation method for the determination of exchangeable copper relevant to Wilson’s disease. Anal. Bioanal. Chem. 2022, 414, 561–573. [Google Scholar] [CrossRef]
- Quarles, C.D., Jr.; Macke, M.; Michalke, B.; Zischka, H.; Karst, U.; Sullivan, P.; Field, M.P. LC-ICP-MS method for the determination of “extractable copper” in serum. Metallomics 2020, 12, 1348–1355. [Google Scholar] [CrossRef]
- Heumann, K.G. Isotope-dilution ICP–MS for trace element determination and speciation: From a reference method to a routine method? Anal. Bioanal. Chem. 2004, 378, 318–329. [Google Scholar] [CrossRef]
- Mayya, V.; KHan, D. Proteomic applications of protein quantification by isotope-dilution mass spectrometry. Expert Rev Proteomics. 2006, 6, 597–610. [Google Scholar] [CrossRef] [PubMed]
- Liang, T.; Zhang, H.; Zhang, L.; Moseley, S.; Guo, P.; Chen, M.; Hall, T.; Li, M.; Swenson, E.; Pan, W.-J.; et al. Development and Validation of a Novel ICP-MS Method to Quantify Different Copper Species in Human Plasma from Patients with Wilson Disease. Available online: https://www.postersessiononline.eu/173580348_eu/congresos/ILC2022/aula/-FRI_268_ILC2022.pdf (accessed on 6 April 2023).
- US Food and Drug Administration. Bioanalytical Method Validation Guidance for Industry. 2018. Available online: https://www.fda.gov/downloads/drugs/guidances/ucm070107.pdf (accessed on 12 May 2022).
- Merle, U.; Schaefer, M.; Ferenci, P.; Stremmel, W. Clinical presentation, diagnosis and long-term outcome of Wilson’s disease: A cohort study. Gut 2007, 56, 115–120. [Google Scholar] [CrossRef] [PubMed]
- Steindl, P.; Ferenci, P.; Dienes, H.P.; Grimm, G.; Pabinger, I.; Madl, C.; Maier-Dobersberger, T.; Herneth, A.; Dragosics, B.; Meryn, S.; et al. Wilson’s disease in patients presenting with liver disease: A diagnostic challenge. Gastroenterology 1997, 113, 212–218. [Google Scholar] [CrossRef] [PubMed]
- Giacchino, R.; Marazzi, M.G.; Barabino, A.; Fasce, L.; Ciravegna, B.; Famularo, L.; Boni, L.; Callea, F. Syndromic variability of Wilson’s disease in children. Clinical study of 44 cases. Ital. J. Gastroenterol. Hepatol. 1997, 29, 155–161. [Google Scholar] [PubMed]
- Frommer, D.J. Urinary copper excretion and hepatic copper concentrations in liver disease. Digestion 1981, 21, 169–178. [Google Scholar] [CrossRef] [PubMed]
- Tu, J.B.; Blackwell, R.Q. Studies on levels of penicillamine-induced cupriuresis in heterozygotes of Wilson’s disease. Metabolism 1967, 16, 507–513. [Google Scholar] [CrossRef]
- Perman, J.A.; Werlin, S.L.; Grand, R.J.; Watkins, J.B. Laboratory measures of copper metabolism in the differentiation of chronic active hepatitis and Wilson disease in children. J. Pediatr. 1979, 94, 564–568. [Google Scholar] [CrossRef]
- Dhawan, A.; Taylor, R.M.; Cheeseman, P.; De Silva, P.; Katsiyiannakis, L.; Mieli-Vergani, G. Wilson’s disease in children: 37-year experience and revised King’s score for liver transplantation. Liver Transpl. 2005, 11, 441–448. [Google Scholar] [CrossRef]
- Roberts, E.A.; Jiménez, C.; Connor, C.M.; Cox, D.W. P0183 Diagnosis and outcome of Wilson disease in a paediatric cohort. J. Pediatr. Gastroenterol. Nutr. 2004, 39, A128. [Google Scholar] [CrossRef]
- Cohen, Y.; Besnard, M. Radionuclides. Pharmacokinetics. In Nuklearmedizin/Nuclear Medicine. Handbuch der medizinischen Radiologie/Encyclopedia of Medical Radiology; Hundeshagen, H., Ed.; Springer: Berlin/Heidelberg, Germany, 1980; Volume 15, p. 1. [Google Scholar] [CrossRef]
- Lyon, T.D.; Fell, G.S.; Gaffney, D.; McGaw, B.A.; Russell, R.I.; Park, R.H.; Beattie, A.D.; Curry, G.; Crofton, R.J.; Gunn, I. Use of a stable copper isotope (65Cu) in the differential diagnosis of Wilson’s disease. Clin. Sci. 1995, 88, 727–732. [Google Scholar] [CrossRef]
- Członkowska, A.; Rodo, M.; Wierzchowska-Ciok, A.; Smolinski, L.; Litwin, T. Accuracy of the radioactive copper incorporation test in the diagnosis of Wilson disease. Liver Int. 2018, 38, 1860–1866. [Google Scholar] [CrossRef]
- Collins, C.J.; Yi, F.; Dayuha, R.; Duong, P.; Horslen, S.; Camarata, M.; Coskun, A.K.; Houwen, R.H.J.; Pop, T.L.; Zoller, H.; et al. Direct Measurement of ATP7B Peptides Is Highly Effective in the Diagnosis of Wilson Disease. Gastroenterology 2021, 160, 2367–2382.e1. [Google Scholar] [CrossRef] [PubMed]
- Sonia, Z.F.; Rukunuzzaman, M.; Karim, M.B.; Yasmin, A.; Alam, R. Efficacy of Different Diagnostic Test for Identifying Wilson’s Disease. Mymensingh Med. J. 2022, 31, 117–123. [Google Scholar] [PubMed]
- Martins da Costa, C.; Baldwin, D.; Portmann, B.; Lolin, Y.; Mowat, A.P.; Mieli-Vergani, G. Value of urinary copper excretion after penicillamine challenge in the diagnosis of Wilson’s disease. Hepatology 1992, 15, 609–615. [Google Scholar] [CrossRef] [PubMed]
- Ferenci, P.; Steindl-Munda, P.; Vogel, W.; Jessner, W.; Gschwantler, M.; Stauber, R.; Datz, C.; Hackl, F.; Wrba, F.; Bauer, P.; et al. Diagnostic value of quantitative hepatic copper determination in patients with Wilson’s Disease. Clin. Gastroenterol. Hepatol. 2005, 3, 811–818. [Google Scholar] [CrossRef]
- McDonald, J.A.; Snitch, P.; Painter, D.; Hensley, W.; Gallagher, N.D.; McCaughan, G.W. Striking variability of hepatic copper levels in fulminant hepatic failure. J. Gastroenterol. Hepatol. 1992, 7, 396–398. [Google Scholar] [CrossRef]
- Nooijen, J.L.; van den Hamer, C.J.; Houtman, J.P.; Schalm, S.W. Possible errors in sampling percutaneous liver biopsies for determination of trace element status: Application to patients with primary biliary cirrhosis. Clin. Chim. Acta 1981, 113, 335–338. [Google Scholar] [CrossRef]
- Song, Y.M.; Chen, M.D. A single determination of liver copper concentration may misdiagnose Wilson’s disease. Clin. Biochem. 2000, 33, 589–590. [Google Scholar] [CrossRef]
- Jung, S.; Whiteaker, J.R.; Zhao, L.; Yoo, H.W.; Paulovich, A.G.; Hahn, S.H. Quantification of ATP7B Protein in Dried Blood Spots by Peptide Immuno-SRM as a Potential Screen for Wilson’s Disease. J. Proteome Res. 2017, 16, 862–871. [Google Scholar] [CrossRef]
- Hahn, S.H. Population screening for Wilson’s disease. Ann. N. Y. Acad. Sci. 2014, 1315, 64–69. [Google Scholar] [CrossRef]
- Li, X.; Feng, Z.; Tang, W.; Yu, X.; Qian, Y.; Liu, B.; Li, X.; Yang, R.; Yu, Y. Sex Differences in Clinical Characteristics and Brain MRI Change in Patients With Wilson’s Disease in a Chinese Population. Front. Physiol. 2018, 9, 1429. [Google Scholar] [CrossRef]
- Clifford, S.M.; Bunker, A.M.; Jacobsen, J.R.; Roberts, W.L. Age and gender specific pediatric reference intervals for aldolase, amylase, ceruloplasmin, creatine kinase, pancreatic amylase, prealbumin, and uric acid. Clin. Chim. Acta 2011, 412, 788–790. [Google Scholar] [CrossRef] [PubMed]
- Schonfeld, E.A.; Brown, R.S., Jr. Genetic Testing in Liver Disease: What to Order, in Whom, and When. Clin. Liver Dis. 2017, 21, 673–686. [Google Scholar] [CrossRef] [PubMed]
- Seo, J.K. Diagnosis of Wilson disease in young children: Molecular genetic testing and a paradigm shift from the laboratory diagnosis. Pediatr. Gastroenterol. Hepatol. Nutr. 2012, 15, 197–209. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.H.; Cheng, F.; Zhang, F.; Li, X.C.; Qian, J.M.; Kong, L.B.; Zhang, H.; Li, G.Q. Copper metabolism after living related liver transplantation for Wilson’s disease. World J. Gastroenterol. 2003, 9, 2836–2838. [Google Scholar] [CrossRef]
- Wang, X.H.; Zhang, F.; Li, X.C.; Cheng, F.; Li, J.; Li, G.Q.; Huang, J. Eighteen living related liver transplants for Wilson’s disease: A single-center. Transplant. Proc. 2004, 36, 2243–2245. [Google Scholar] [CrossRef]
- Emre, S.; Atillasoy, E.O.; Ozdemir, S.; Schilsky, M.; Rathna Varma, C.V.; Thung, S.N.; Sternlieb, I.; Guy, S.R.; Sheiner, P.A.; Schwartz, M.E.; et al. Orthotopic liver transplantation for Wilson’s disease: A single-center experience. Transplantation 2001, 72, 1232–1236. [Google Scholar] [CrossRef]
- Catana, A.M.; Medici, V. Liver transplantation for Wilson disease. World J. Hepatol. 2012, 4, 5–10. [Google Scholar] [CrossRef]
- Komatsu, H.; Fujisawa, T.; Inui, A.; Sogo, T.; Sekine, I.; Kodama, H.; Uemoto, S.; Tanaka, K. Hepatic copper concentration in children undergoing living related liver transplantation due to Wilsonian fulminant hepatic failure. Clin. Transpl. 2002, 16, 227–232. [Google Scholar] [CrossRef]
- Cheng, F.; Li, G.Q.; Zhang, F.; Li, X.C.; Sun, B.C.; Kong, L.B.; Pu, L.Y.; Wang, K.; Qian, X.F.; You, W.; et al. Outcomes of living-related liver transplantation for Wilson’s disease: A single-center experience in China. Transplantation 2009, 87, 751–757. [Google Scholar] [CrossRef]
- Asonuma, K.; Inomata, Y.; Kasahara, M.; Uemoto, S.; Egawa, H.; Fujita, S.; Kiuchi, T.; Hayashi, M.; Tanaka, K. Living related liver transplantation from heterozygote genetic carriers to children with Wilson’s disease. Pediatr. Transpl. 1999, 3, 201–205. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gromadzka, G.; Grycan, M.; Przybyłkowski, A.M. Monitoring of Copper in Wilson Disease. Diagnostics 2023, 13, 1830. https://doi.org/10.3390/diagnostics13111830
Gromadzka G, Grycan M, Przybyłkowski AM. Monitoring of Copper in Wilson Disease. Diagnostics. 2023; 13(11):1830. https://doi.org/10.3390/diagnostics13111830
Chicago/Turabian StyleGromadzka, Grażyna, Marta Grycan, and Adam M. Przybyłkowski. 2023. "Monitoring of Copper in Wilson Disease" Diagnostics 13, no. 11: 1830. https://doi.org/10.3390/diagnostics13111830
APA StyleGromadzka, G., Grycan, M., & Przybyłkowski, A. M. (2023). Monitoring of Copper in Wilson Disease. Diagnostics, 13(11), 1830. https://doi.org/10.3390/diagnostics13111830