Urinary Tract Infection and Microbiome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Urinary Microbiome
2.1.1. EQUC and NGS Technology
2.1.2. Uncovering the Urinary Tract Microbiome
2.2. Implications of Urinary Tract Microbiome in UTIs
2.2.1. Urinary Microbiome and UTIs
2.2.2. Recurrent Urinary Tract Infections and the Effects of Antibiotics on the Microbiome
2.3. Microbiome and Emerging Treatments for Recurrent UTIs
3. Strengths, Limitations, and Future Perspectives
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ozturk, R.; Murt, A. Epidemiology of urological infections: A global burden. World J. Urol. 2020, 38, 2669–2679. [Google Scholar] [CrossRef]
- Yang, X.; Chen, H.; Zheng, Y.; Qu, S.; Wang, H.; Yi, F. Disease burden and long-term trends of urinary tract infections: A worldwide report. Front. Public Health 2022, 10, 888205. [Google Scholar] [CrossRef] [PubMed]
- Zilberberg, M.D.; Nathanson, B.H.; Sulham, K.; Shorr, A.F. Descriptive Epidemiology and Outcomes of Hospitalizations With Complicated Urinary Tract Infections in the United States, 2018. Open Forum Infect. Dis. 2022, 9, ofab591. [Google Scholar] [CrossRef]
- Vallejo-Torres, L.; Pujol, M.; Shaw, E.; Wiegand, I.; Vigo, J.M.; Stoddart, M.; Grier, S.; Gibbs, J.; Vank, C.; Cuperus, N.; et al. Cost of hospitalised patients due to complicated urinary tract infections: A retrospective observational study in countries with high prevalence of multidrug-resistant Gram-negative bacteria: The COMBACTE-MAGNET, RESCUING study. BMJ Open 2018, 8, e020251. [Google Scholar] [CrossRef] [PubMed]
- Magistro, G.; Stief, C.G. The Urinary Tract Microbiome: The Answer to All Our Open Questions? Eur. Urol. Focus 2019, 5, 36–38. [Google Scholar] [CrossRef]
- Hilt, E.E.; McKinley, K.; Pearce, M.M.; Rosenfeld, A.B.; Zilliox, M.J.; Mueller, E.R.; Brubaker, L.; Gai, X.; Wolfe, A.J.; Schreckenberger, P.C. Urine is not sterile: Use of enhanced urine culture techniques to detect resident bacterial flora in the adult female bladder. J. Clin. Microbiol. 2014, 52, 871–876. [Google Scholar] [CrossRef]
- Neugent, M.L.; Hulyalkar, N.V.; Nguyen, V.H.; Zimmern, P.E.; De Nisco, N.J. Advances in Understanding the Human Urinary Microbiome and Its Potential Role in Urinary Tract Infection. mBio 2020, 11, e00218-20. [Google Scholar] [CrossRef]
- Roth, R.S.; Liden, M.; Huttner, A. The urobiome in men and women: A clinical review. Clin. Microbiol. Infect. 2022. [Google Scholar] [CrossRef]
- Shoemaker, R.; Kim, J. Urobiome: An outlook on the metagenome of urological diseases. Investig. Clin. Urol. 2021, 62, 611–622. [Google Scholar] [CrossRef]
- Kenneally, C.; Murphy, C.P.; Sleator, R.D.; Culligan, E.P. The urinary microbiome and biological therapeutics: Novel therapies for urinary tract infections. Microbiol. Res. 2022, 259, 127010. [Google Scholar] [CrossRef]
- Pallares-Mendez, R.; Cervantes-Miranda, D.E.; Gonzalez-Colmenero, A.D.; Ochoa-Arvizo, M.A.; Gutierrez-Gonzalez, A. A Perspective of the Urinary Microbiome in Lower Urinary Tract Infections—A Review. Curr. Urol. Rep. 2022, 23, 235–244. [Google Scholar] [CrossRef]
- Jones, J.; Murphy, C.P.; Sleator, R.D.; Culligan, E.P. The urobiome, urinary tract infections, and the need for alternative therapeutics. Microb. Pathog. 2021, 161, 105295. [Google Scholar] [CrossRef] [PubMed]
- Garofalo, L.; Nakama, C.; Hanes, D.; Zwickey, H. Whole-Person, Urobiome-Centric Therapy for Uncomplicated Urinary Tract Infection. Antibiotics 2022, 11, 218. [Google Scholar] [CrossRef] [PubMed]
- Mestrovic, T.; Matijasic, M.; Peric, M.; Cipcic Paljetak, H.; Baresic, A.; Verbanac, D. The Role of Gut, Vaginal, and Urinary Microbiome in Urinary Tract Infections: From Bench to Bedside. Diagnostics 2020, 11, 7. [Google Scholar] [CrossRef] [PubMed]
- Toh, S.L.; Boswell-Ruys, C.L.; Lee, B.S.B.; Simpson, J.M.; Clezy, K.R. Probiotics for preventing urinary tract infection in people with neuropathic bladder. Cochrane Database Syst. Rev. 2017, 9, CD010723. [Google Scholar] [CrossRef]
- Sturov, N.V.; Popov, S.V.; Zhukov, V.A.; Lyapunova, T.V.; Rusanova, E.I.; Kobylyanu, G.N. Intestinal Microbiota Correction in the Treatment and Prevention of Urinary Tract Infection. Turk. J. Urol. 2022, 48, 406–414. [Google Scholar] [CrossRef]
- Akgul, T.; Karakan, T. The role of probiotics in women with recurrent urinary tract infections. Turk. J. Urol. 2018, 44, 377–383. [Google Scholar] [CrossRef]
- Ozen, M.; Dinleyici, E.C. The history of probiotics: The untold story. Benef Microbes 2015, 6, 159–165. [Google Scholar] [CrossRef]
- Barras, V.; Greub, G. History of biological warfare and bioterrorism. Clin. Microbiol. Infect. 2014, 20, 497–502. [Google Scholar] [CrossRef]
- Cho, I.; Blaser, M.J. The human microbiome: At the interface of health and disease. Nat. Rev. Genet. 2012, 13, 260–270. [Google Scholar] [CrossRef]
- Turnbaugh, P.J.; Ley, R.E.; Hamady, M.; Fraser-Liggett, C.M.; Knight, R.; Gordon, J.I. The human microbiome project. Nature 2007, 449, 804–810. [Google Scholar] [CrossRef]
- Qin, J.; Li, R.; Raes, J.; Arumugam, M.; Burgdorf, K.S.; Manichanh, C.; Nielsen, T.; Pons, N.; Levenez, F.; Yamada, T.; et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010, 464, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, A.J.; Toh, E.; Shibata, N.; Rong, R.; Kenton, K.; Fitzgerald, M.; Mueller, E.R.; Schreckenberger, P.; Dong, Q.; Nelson, D.E.; et al. Evidence of uncultivated bacteria in the adult female bladder. J. Clin. Microbiol. 2012, 50, 1376–1383. [Google Scholar] [CrossRef]
- Fouts, D.E.; Pieper, R.; Szpakowski, S.; Pohl, H.; Knoblach, S.; Suh, M.J.; Huang, S.T.; Ljungberg, I.; Sprague, B.M.; Lucas, S.K.; et al. Integrated next-generation sequencing of 16S rDNA and metaproteomics differentiate the healthy urine microbiome from asymptomatic bacteriuria in neuropathic bladder associated with spinal cord injury. J. Transl. Med. 2012, 10, 174. [Google Scholar] [CrossRef] [PubMed]
- Sberro, H.; Fremin, B.J.; Zlitni, S.; Edfors, F.; Greenfield, N.; Snyder, M.P.; Pavlopoulos, G.A.; Kyrpides, N.C.; Bhatt, A.S. Large-Scale Analyses of Human Microbiomes Reveal Thousands of Small, Novel Genes. Cell 2019, 178, 1245–1259.e1214. [Google Scholar] [CrossRef] [PubMed]
- Gasiorek, M.; Hsieh, M.H.; Forster, C.S. Utility of DNA Next-Generation Sequencing and Expanded Quantitative Urine Culture in Diagnosis and Management of Chronic or Persistent Lower Urinary Tract Symptoms. J. Clin. Microbiol. 2019, 58, e00204-19. [Google Scholar] [CrossRef]
- Price, T.K.; Dune, T.; Hilt, E.E.; Thomas-White, K.J.; Kliethermes, S.; Brincat, C.; Brubaker, L.; Wolfe, A.J.; Mueller, E.R.; Schreckenberger, P.C. The Clinical Urine Culture: Enhanced Techniques Improve Detection of Clinically Relevant Microorganisms. J. Clin. Microbiol. 2016, 54, 1216–1222. [Google Scholar] [CrossRef]
- Siddiqui, H.; Nederbragt, A.J.; Lagesen, K.; Jeansson, S.L.; Jakobsen, K.S. Assessing diversity of the female urine microbiota by high throughput sequencing of 16S rDNA amplicons. BMC Microbiol. 2011, 11, 244. [Google Scholar] [CrossRef]
- Price, T.K.; Wolff, B.; Halverson, T.; Limeira, R.; Brubaker, L.; Dong, Q.; Mueller, E.R.; Wolfe, A.J. Temporal Dynamics of the Adult Female Lower Urinary Tract Microbiota. mBio 2020, 11, e00475-20. [Google Scholar] [CrossRef]
- Price, T.K.; Hilt, E.E.; Thomas-White, K.; Mueller, E.R.; Wolfe, A.J.; Brubaker, L. The urobiome of continent adult women: A cross-sectional study. BJOG 2020, 127, 193–201. [Google Scholar] [CrossRef]
- Nelson, D.E.; Van Der Pol, B.; Dong, Q.; Revanna, K.V.; Fan, B.; Easwaran, S.; Sodergren, E.; Weinstock, G.M.; Diao, L.; Fortenberry, J.D. Characteristic male urine microbiomes associate with asymptomatic sexually transmitted infection. PLoS ONE 2010, 5, e14116. [Google Scholar] [CrossRef] [PubMed]
- Dong, Q.; Nelson, D.E.; Toh, E.; Diao, L.; Gao, X.; Fortenberry, J.D.; Van der Pol, B. The microbial communities in male first catch urine are highly similar to those in paired urethral swab specimens. PLoS ONE 2011, 6, e19709. [Google Scholar] [CrossRef] [PubMed]
- Nelson, D.E.; Dong, Q.; Van der Pol, B.; Toh, E.; Fan, B.; Katz, B.P.; Mi, D.; Rong, R.; Weinstock, G.M.; Sodergren, E.; et al. Bacterial communities of the coronal sulcus and distal urethra of adolescent males. PLoS ONE 2012, 7, e36298. [Google Scholar] [CrossRef]
- Frolund, M.; Wikstrom, A.; Lidbrink, P.; Abu Al-Soud, W.; Larsen, N.; Harder, C.B.; Sorensen, S.J.; Jensen, J.S.; Ahrens, P. The bacterial microbiota in first-void urine from men with and without idiopathic urethritis. PLoS ONE 2018, 13, e0201380. [Google Scholar] [CrossRef] [PubMed]
- Lewis, D.A.; Brown, R.; Williams, J.; White, P.; Jacobson, S.K.; Marchesi, J.R.; Drake, M.J. The human urinary microbiome; bacterial DNA in voided urine of asymptomatic adults. Front. Cell Infect. Microbiol. 2013, 3, 41. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.H.; Jung, S.I. The Potential Role of Urinary Microbiome in Benign Prostate Hyperplasia/Lower Urinary Tract Symptoms. Diagnostics 2022, 12, 1862. [Google Scholar] [CrossRef]
- Moustafa, A.; Li, W.; Singh, H.; Moncera, K.J.; Torralba, M.G.; Yu, Y.; Manuel, O.; Biggs, W.; Venter, J.C.; Nelson, K.E.; et al. Microbial metagenome of urinary tract infection. Sci. Rep. 2018, 8, 4333. [Google Scholar] [CrossRef]
- Zandbergen, L.E.; Halverson, T.; Brons, J.K.; Wolfe, A.J.; de Vos, M.G.J. The Good and the Bad: Ecological Interaction Measurements Between the Urinary Microbiota and Uropathogens. Front. Microbiol. 2021, 12, 659450. [Google Scholar] [CrossRef] [PubMed]
- Willner, D.; Low, S.; Steen, J.A.; George, N.; Nimmo, G.R.; Schembri, M.A.; Hugenholtz, P. Single clinical isolates from acute uncomplicated urinary tract infections are representative of dominant in situ populations. mBio 2014, 5, e01064-01013. [Google Scholar] [CrossRef]
- Garretto, A.; Miller-Ensminger, T.; Ene, A.; Merchant, Z.; Shah, A.; Gerodias, A.; Biancofiori, A.; Canchola, S.; Canchola, S.; Castillo, E.; et al. Genomic Survey of E. coli From the Bladders of Women With and Without Lower Urinary Tract Symptoms. Front. Microbiol. 2020, 11, 2094. [Google Scholar] [CrossRef]
- Hasman, H.; Saputra, D.; Sicheritz-Ponten, T.; Lund, O.; Svendsen, C.A.; Frimodt-Moller, N.; Aarestrup, F.M. Rapid whole-genome sequencing for detection and characterization of microorganisms directly from clinical samples. J. Clin. Microbiol. 2014, 52, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Santiago-Rodriguez, T.M.; Ly, M.; Bonilla, N.; Pride, D.T. The human urine virome in association with urinary tract infections. Front. Microbiol. 2015, 6, 14. [Google Scholar] [CrossRef] [PubMed]
- Nickel, J.C.; Stephens, A.; Landis, J.R.; Mullins, C.; van Bokhoven, A.; Anger, J.T.; Ackerman, A.L.; Kim, J.; Sutcliffe, S.; Krol, J.E.; et al. Urinary fungi associated with urinary symptom severity among women with interstitial cystitis/bladder pain syndrome (IC/BPS). World J. Urol. 2020, 38, 433–446. [Google Scholar] [CrossRef]
- Josephs-Spaulding, J.; Krogh, T.J.; Rettig, H.C.; Lyng, M.; Chkonia, M.; Waschina, S.; Graspeuntner, S.; Rupp, J.; Moller-Jensen, J.; Kaleta, C. Recurrent Urinary Tract Infections: Unraveling the Complicated Environment of Uncomplicated rUTIs. Front. Cell Infect. Microbiol. 2021, 11, 562525. [Google Scholar] [CrossRef]
- Thomas-White, K.J.; Gao, X.; Lin, H.; Fok, C.S.; Ghanayem, K.; Mueller, E.R.; Dong, Q.; Brubaker, L.; Wolfe, A.J. Urinary microbes and postoperative urinary tract infection risk in urogynecologic surgical patients. Int. Urogynecol. J. 2018, 29, 1797–1805. [Google Scholar] [CrossRef] [PubMed]
- Magruder, M.; Sholi, A.N.; Gong, C.; Zhang, L.; Edusei, E.; Huang, J.; Albakry, S.; Satlin, M.J.; Westblade, L.F.; Crawford, C.; et al. Gut uropathogen abundance is a risk factor for development of bacteriuria and urinary tract infection. Nat. Commun. 2019, 10, 5521. [Google Scholar] [CrossRef] [PubMed]
- Glover, M.; Moreira, C.G.; Sperandio, V.; Zimmern, P. Recurrent urinary tract infections in healthy and nonpregnant women. Urol. Sci. 2014, 25, 1–8. [Google Scholar] [CrossRef]
- Forde, B.M.; Roberts, L.W.; Phan, M.D.; Peters, K.M.; Fleming, B.A.; Russell, C.W.; Lenherr, S.M.; Myers, J.B.; Barker, A.P.; Fisher, M.A.; et al. Population dynamics of an Escherichia coli ST131 lineage during recurrent urinary tract infection. Nat. Commun. 2019, 10, 3643. [Google Scholar] [CrossRef]
- Hannan, T.J.; Mysorekar, I.U.; Hung, C.S.; Isaacson-Schmid, M.L.; Hultgren, S.J. Early severe inflammatory responses to uropathogenic E. coli predispose to chronic and recurrent urinary tract infection. PLoS Pathog. 2010, 6, e1001042. [Google Scholar] [CrossRef]
- Rosen, D.A.; Hooton, T.M.; Stamm, W.E.; Humphrey, P.A.; Hultgren, S.J. Detection of intracellular bacterial communities in human urinary tract infection. PLoS Med. 2007, 4, e329. [Google Scholar] [CrossRef]
- De Nisco, N.J.; Neugent, M.; Mull, J.; Chen, L.; Kuprasertkul, A.; de Souza Santos, M.; Palmer, K.L.; Zimmern, P.; Orth, K. Direct Detection of Tissue-Resident Bacteria and Chronic Inflammation in the Bladder Wall of Postmenopausal Women with Recurrent Urinary Tract Infection. J. Mol. Biol. 2019, 431, 4368–4379. [Google Scholar] [CrossRef]
- Werneburg, G.T.; Rhoads, D.D. Diagnostic stewardship for urinary tract infection: A snapshot of the expert guidance. Cleve Clin. J. Med. 2022, 89, 581–587. [Google Scholar] [CrossRef]
- Trautner, B.W. Urinary Tract Infections as a Continuum: Implications for Diagnostic and Antibiotic Stewardship. Clin. Infect. Dis. 2021, 72, 1339–1341. [Google Scholar] [CrossRef] [PubMed]
- Davies, J.; Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. 2010, 74, 417–433. [Google Scholar] [CrossRef] [PubMed]
- Gottschick, C.; Deng, Z.L.; Vital, M.; Masur, C.; Abels, C.; Pieper, D.H.; Wagner-Dobler, I. The urinary microbiota of men and women and its changes in women during bacterial vaginosis and antibiotic treatment. Microbiome 2017, 5, 99. [Google Scholar] [CrossRef]
- Mulder, M.; Radjabzadeh, D.; Hassing, R.J.; Heeringa, J.; Uitterlinden, A.G.; Kraaij, R.; Stricker, B.H.; Verbon, A. The effect of antimicrobial drug use on the composition of the genitourinary microbiota in an elderly population. BMC Microbiol. 2019, 19, 9. [Google Scholar] [CrossRef]
- Stapleton, A.E.; Au-Yeung, M.; Hooton, T.M.; Fredricks, D.N.; Roberts, P.L.; Czaja, C.A.; Yarova-Yarovaya, Y.; Fiedler, T.; Cox, M.; Stamm, W.E. Randomized, placebo-controlled phase 2 trial of a Lactobacillus crispatus probiotic given intravaginally for prevention of recurrent urinary tract infection. Clin. Infect. Dis. 2011, 52, 1212–1217. [Google Scholar] [CrossRef]
- Cohen, C.R.; Wierzbicki, M.R.; French, A.L.; Morris, S.; Newmann, S.; Reno, H.; Green, L.; Miller, S.; Powell, J.; Parks, T.; et al. Randomized Trial of Lactin-V to Prevent Recurrence of Bacterial Vaginosis. N. Engl. J. Med. 2020, 382, 1906–1915. [Google Scholar] [CrossRef]
- Pino, A.; Bartolo, E.; Caggia, C.; Cianci, A.; Randazzo, C.L. Detection of vaginal lactobacilli as probiotic candidates. Sci. Rep. 2019, 9, 3355. [Google Scholar] [CrossRef]
- Tapiainen, T. Preventing Urinary Tract Infections with E. coli Nissle. Available online: https://ClinicalTrials.gov/show/NCT04608851 (accessed on 30 March 2023).
- Pradhan, S.; Weiss, A.A. Probiotic Properties of Escherichia coli Nissle in Human Intestinal Organoids. mBio 2020, 11, e01470-20. [Google Scholar] [CrossRef]
- Schwenger, E.M.; Tejani, A.M.; Loewen, P.S. Probiotics for preventing urinary tract infections in adults and children. Cochrane Database Syst. Rev. 2015, 2015, CD008772. [Google Scholar] [CrossRef]
- Sunden, F.; Hakansson, L.; Ljunggren, E.; Wullt, B. Escherichia coli 83972 bacteriuria protects against recurrent lower urinary tract infections in patients with incomplete bladder emptying. J. Urol. 2010, 184, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Darouiche, R.O.; Green, B.G.; Donovan, W.H.; Chen, D.; Schwartz, M.; Merritt, J.; Mendez, M.; Hull, R.A. Multicenter randomized controlled trial of bacterial interference for prevention of urinary tract infection in patients with neurogenic bladder. Urology 2011, 78, 341–346. [Google Scholar] [CrossRef]
- Lindberg, U.; Hanson, L.A.; Jodal, U.; Lidin-Janson, G.; Lincoln, K.; Olling, S. Asymptomatic bacteriuria in schoolgirls. II. Differences in escherichia coli causing asymptomatic bacteriuria. Acta Paediatr. Scand. 1975, 64, 432–436. [Google Scholar] [CrossRef] [PubMed]
- Klemm, P.; Roos, V.; Ulett, G.C.; Svanborg, C.; Schembri, M.A. Molecular characterization of the Escherichia coli asymptomatic bacteriuria strain 83972: The taming of a pathogen. Infect. Immun. 2006, 74, 781–785. [Google Scholar] [CrossRef]
- Darouiche, R.O.; Hull, R.A. Bacterial interference for prevention of urinary tract infection. Clin. Infect. Dis. 2012, 55, 1400–1407. [Google Scholar] [CrossRef] [PubMed]
- Bonkat, G.; Pickard, R.; Bartoletti, R.; Bruyère, F.; Geerlings, S.E.; Wagenlehner, F.; Cai, T.; Köves, B.; Pilatz, A.; Pradere, B.; et al. EAU Guidelines on Urological Infections, European Association of Urology. Available online: https://uroweb.org/guidelines/urological-infections/chapter/the-guideline (accessed on 30 March 2023).
- Green, J.E.; Davis, J.A.; Berk, M.; Hair, C.; Loughman, A.; Castle, D.; Athan, E.; Nierenberg, A.A.; Cryan, J.F.; Jacka, F.; et al. Efficacy and safety of fecal microbiota transplantation for the treatment of diseases other than Clostridium difficile infection: A systematic review and meta-analysis. Gut Microbes 2020, 12, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Tariq, R.; Pardi, D.S.; Tosh, P.K.; Walker, R.C.; Razonable, R.R.; Khanna, S. Fecal Microbiota Transplantation for Recurrent Clostridium difficile Infection Reduces Recurrent Urinary Tract Infection Frequency. Clin. Infect. Dis. 2017, 65, 1745–1747. [Google Scholar] [CrossRef]
- Biehl, L.M.; Cruz Aguilar, R.; Farowski, F.; Hahn, W.; Nowag, A.; Wisplinghoff, H.; Vehreschild, M. Fecal microbiota transplantation in a kidney transplant recipient with recurrent urinary tract infection. Infection 2018, 46, 871–874. [Google Scholar] [CrossRef] [PubMed]
- Aira, A.; Rubio, E.; Vergara Gomez, A.; Feher, C.; Casals-Pascual, C.; Gonzalez, B.; Morata, L.; Rico, V.; Soriano, A. rUTI Resolution After FMT for Clostridioides difficile Infection: A Case Report. Infect. Dis. Ther. 2021, 10, 1065–1071. [Google Scholar] [CrossRef]
- Cascales, E.; Buchanan, S.K.; Duche, D.; Kleanthous, C.; Lloubes, R.; Postle, K.; Riley, M.; Slatin, S.; Cavard, D. Colicin biology. Microbiol. Mol. Biol. Rev. 2007, 71, 158–229. [Google Scholar] [CrossRef]
- Trautner, B.W.; Hull, R.A.; Darouiche, R.O. Colicins prevent colonization of urinary catheters. J. Antimicrob. Chemother 2005, 56, 413–415. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.M.; Riley, M.A. Evaluation of the potential of colicins to prevent extraluminal contamination of urinary catheters by Escherichia coli. Int. J. Antimicrob. Agents 2019, 54, 619–625. [Google Scholar] [CrossRef]
- Malik, S.; Sidhu, P.K.; Rana, J.S.; Nehra, K. Managing urinary tract infections through phage therapy: A novel approach. Folia Microbiol. (Praha) 2020, 65, 217–231. [Google Scholar] [CrossRef] [PubMed]
- Shigehara, K.; Sasagawa, T.; Kawaguchi, S.; Kobori, Y.; Nakashima, T.; Shimamura, M.; Taya, T.; Furubayashi, K.; Namiki, M. Prevalence of human papillomavirus infection in the urinary tract of men with urethritis. Int. J. Urol. 2010, 17, 563–568. [Google Scholar] [CrossRef] [PubMed]
- Garretto, A.; Miller-Ensminger, T.; Wolfe, A.J.; Putonti, C. Bacteriophages of the lower urinary tract. Nat. Rev. Urol. 2019, 16, 422–432. [Google Scholar] [CrossRef] [PubMed]
- Leitner, L.; Ujmajuridze, A.; Chanishvili, N.; Goderdzishvili, M.; Chkonia, I.; Rigvava, S.; Chkhotua, A.; Changashvili, G.; McCallin, S.; Schneider, M.P.; et al. Intravesical bacteriophages for treating urinary tract infections in patients undergoing transurethral resection of the prostate: A randomised, placebo-controlled, double-blind clinical trial. Lancet Infect. Dis. 2021, 21, 427–436. [Google Scholar] [CrossRef]
Author/Date | Subjects | Evaluation Method | Taxa | Significance |
---|---|---|---|---|
Female patients | ||||
Siddiqui et al., 2011 [28] | 8 healthy females | Clean-catch midstream urine 16s rRNA sequencing | Lactobacillus, Prevotella, Gardnerella | Normal female urine shows rich bacterial profile |
Wolfe et al., 2012 [23] | Women undergoing gynecologic surgery | Midstream, catheterized, suprapubic aspirated urine Culture, microscopy, 16S rRNA sequencing | Lactobacillus, Gardnerella, Prevotella | Regardless of symptoms, bacteria not routinely cultivated could be found in urine |
Hilt et al., 2014 [6] | Women with overactive bladder (41) and normal bladder function (24) undergoing gynecologic surgery | Catheterized urine EQUC, 16s rRNA sequencing | Lactobacillus, Corynebacterium, Streptococcus | Bacteria detected using 16S rRNA sequencing can be grown with enhanced methods |
Price et al., 2020 [30] | Continent adult women (224) without lower urinary tract symptoms | Catheterized urine samples EQUC, 16s rRNA sequencing | Lactobacillus, Streptococcus, Gardnerella | Bladder microbiome differs by age and gynecological history Younger females: Gardnerella, Older females: Escherichia |
Male patients | ||||
Nelson et al., 2010 [31] | Men without symptoms of urethral infection (19) | First-catch urine specimens 16s rRNA sequencing | Lactobacillus, Corynebacterium, Streptococcus | STI causes differences in male urine microbiome composition STI (+): Prevotella, Sneathia, Gemella |
Donq et al., 2011 [32] | 32 men | First-catch urine and urethral swabs 16s rRNA sequencing | STI (-): Lactobacillus, Sneathia, Veillonella STI (+): Neisseria, Streptococcus, Corynebacterium | First-catch urine and urethral swab microbiomes were nearly identical regardless of inflammation or infection |
Nelson et al., 2012 [33] | 18 male adolescents | Urine, coronal sulcus samples 16s rRNA sequencing | Urine: Streptococcus, Lactobacillus, Gardnerella Coronal sulcus: Corynebacteria, Staphylococcus, Anaerococcus | Urine and coronal sulcus host distinct bacterial communities, sexual behavior can alter the urogenital microbiota |
Frolund et al., 2018 [34] | Men with idiopathic urethritis (39) and a control group (46) | First-void urine samples 16s rRNA sequencing | Control: Lactobacillus, Alphaproteobacterium | Distribution of genera varied considerably between samples and no genus was present in all samples |
Male and female patients | ||||
Fouts et al., 2012 [24] | 26 healthy controls and 27 subjects at risk of asymptomatic bacteriuria due to spinal-cord-injury-related neuropathic bladder | Urine samples 16s rRNA sequencing, metaproteomics | Lactobacillus, Enterobacteriales, Actinomycetales | Urine microbiomes differ by bladder function, gender, type of bladder catheter utilized, and duration of neuropathic bladder Healthy females: Lactobacillus Healthy males: Corynebacterium |
Author and Date | Subjects | Study Details | Significance |
---|---|---|---|
Probiotics | |||
Stapleton et al., 2011 [57] | Women with a history of recurrent UTIs treated for UTI. | Randomized, double-blind, placebo-controlled phase 2 trial of L. crispatus CTV-05 (Lactin-V) | Lactin-V associated with reduction in recurrent UTIs |
Cohen et al., 2020 [58] | Women treated for bacterial vaginosis | Randomized, double-blind, placebo-controlled, phase 2b trial of L. crispatus CTV-05 (Lactin-V) | Lactin-V resulted in a significantly lower incidence of recurrence of bacterial vaginosis than placebo at 12 weeks |
Tapiainen, T NCT04608851 [60] | Young children | Evaluate efficacy of E. coli Nissle in secondary prevention of UTI | Ongoing trial |
Bacterial interference | |||
Sunden et al., 2010 [63] | Patients with recurrent UTIs due to neurogenic bladder | Phase 1: randomized, blind, placebo-controlled trial; outcome: time to the first UTI after establishment of E. coli 83972 Phase 2: blinded, observational placebo controlled; outcome: number of UTI | Phase 1: median time to first UTI was longer for E. coli 83972 bacteriuria Phase 2: fewer UTI episodes were observed |
Darouiche et al., 2011 [64] | Patients with recurrent UTI history due to neurogenic bladder after spinal cord injury | Multicenter randomized control trial Evaluated the effects of E. coli HU2117 | Bladder inoculation with E. coli HU2117 showed fewer multiple UTI episodes compared to placebo Number of episodes of UTI/patient-year was lower for the treated group |
Fecal microbiota transplantation (FMT) | |||
Tariq et al., 2017 [70] | Recurrent UTI cases before FMT for recurrent C. difficile infection (CDI) | Retrospectively analyzed against an untreated control group with a prior history of recurrent UTIs and CDI. | FMT successfully treated recurrent CDI, decreased UTI recurrence, and improved antibiotic susceptibility |
Biehl et al., 2018 [71] | Kidney transplant recipient with recurrent UTIs | Case report of FMT | No UTI was observed 9 months after FMT and with no adverse effects |
Aira et al., 2021 [72] | 93-year-old female with an end-sigmoid colostomy and recurrent UTIs | Case report of FMT for recurrent episodes of CDI | Colonoscopy showed resolution of CDI and no other treatments were needed during follow-up |
Bacteriocins | |||
Trautner et al., 2005 [74] | Urinary catheter | Catheter inoculated with colicin-producing E. coli K-12 and exposed to E. coli | Colicin inhibited E. coli growth in susceptible strains |
Roy et al., 2019 [75] | Urinary catheter | Catheter was dipped in colicin-mixed catheter lubricant (purified colicin with sterile lubricant) | Colicin achieved the same antimicrobial efficacy as using gentamycin, at a 20–30% smaller dosage |
Bacteriophage therapy | |||
Leitner et al., 2021 [79] | Patients undergoing transurethral resection of the prostate with symptomatic, non-febrile, non-systematic, culture-positive UTIs | Randomized, placebo-controlled, double-blind trial Received either intravesical bacteriophage solution, intravesical placebo solution, or antibiotic treatment | Treatment success rates did not differ between groups Adverse events were more favorable for the bacteriophage group |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.S.; Lee, J.W. Urinary Tract Infection and Microbiome. Diagnostics 2023, 13, 1921. https://doi.org/10.3390/diagnostics13111921
Kim DS, Lee JW. Urinary Tract Infection and Microbiome. Diagnostics. 2023; 13(11):1921. https://doi.org/10.3390/diagnostics13111921
Chicago/Turabian StyleKim, Dong Soo, and Jeong Woo Lee. 2023. "Urinary Tract Infection and Microbiome" Diagnostics 13, no. 11: 1921. https://doi.org/10.3390/diagnostics13111921
APA StyleKim, D. S., & Lee, J. W. (2023). Urinary Tract Infection and Microbiome. Diagnostics, 13(11), 1921. https://doi.org/10.3390/diagnostics13111921