Heart Failure Emergency Readmission Prediction Using Stacking Machine Learning Model
Abstract
:1. Introduction
1.1. Background
1.2. Related Works
1.3. Research Objectives and Contribution
- This study examines a large dataset to predict emergency readmissions for heart failure patients.
- Thirteen variants of classical machine learning models were examined using different feature selection techniques along with a stacking machine learning model.
- Based on nine biomarkers, this study produced very good predictions for emergency department readmission for heart failure patients.
- LACE-related feature incorporation to the feature set provided a significant performance boost in the study to predict hospital readmission due to heart failure emergency.
2. Methodology
2.1. Dataset Description
2.2. Statistical Analysis
2.3. Preprocessing
2.3.1. Encoding
2.3.2. Dataset Mapping
2.3.3. Missing Data Imputation
2.3.4. LACE Feature Extraction
2.3.5. Feature Scaling
2.3.6. Feature Selection
- XGBoost
- Random Forest (RF)
- ExtraTrees Classifier (ET)
2.3.7. Stacking Machine Learning Model
2.4. Evaluation Metrics
3. Results and Discussions
3.1. Statistical Analysis
3.2. Feature Ranking
3.3. Classification Performance
3.4. Discussion and Comparison with Similar Works
3.5. Limitations of Our Work
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tan, L.-B.; Williams, S.G.; Tan, D.; Cohen-Solal, A. So many definitions of heart failure: Are they all universally valid? A critical appraisal. Expert Rev. Cardiovasc. Ther. 2010, 8, 217–228. [Google Scholar] [CrossRef]
- Ponikowski, P.; Voors, A.A.; Anker, S.D.; Bueno, H.; Cleland, J.G.F.; Coats, A.J.S.; Falk, V.; González-Juanatey, J.R.; Harjola, V.-P.; Jankowska, E.A.; et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 2016, 37, 2129–2200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chamberlain, A.M.; Dunlay, S.M.; Gerber, Y.; Manemann, S.M.; Jiang, R.; Weston, S.A.; Roger, V.L. Burden and Timing of Hospitalizations in Heart Failure: A Community Study. Mayo Clin. Proc. 2017, 92, 184–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Connor, C.M.; Miller, A.B.; Blair, J.E.; Konstam, M.A.; Wedge, P.; Bahit, M.C.; Carson, P.; Haass, M.; Hauptman, P.J.; Metra, M.; et al. Causes of death and rehospitalization in patients hospitalized with worsening heart failure and reduced left ventricular ejection fraction: Results from efficacy of vasopressin antagonism in heart failure outcome study with tolvaptan (EVEREST) program. Am. Hear. J. 2010, 159, 841–849.e1. [Google Scholar] [CrossRef]
- Dharmarajan, K.; Hsieh, A.F.; Lin, Z.; Bueno, H.; Ross, J.; Horwitz, L.; Barreto-Filho, J.A.; Kim, N.; Bernheim, S.M.; Suter, L.G.; et al. Diagnoses and Timing of 30-Day Readmissions After Hospitalization for Heart Failure, Acute Myocardial Infarction, or Pneumonia. JAMA 2013, 309, 355–363. [Google Scholar] [CrossRef] [PubMed]
- Arora, S.; Lahewala, S.; Virk, H.U.H.; Setareh-Shenas, S.; Patel, P.; Kumar, V.; Tripathi, B.; Shah, H.; Patel, V.; Gidwani, U.; et al. Etiologies, Trends, and Predictors of 30-Day Readmissions in Patients With Diastolic Heart Failure. Am. J. Cardiol. 2017, 120, 616–624. [Google Scholar] [CrossRef]
- Virani, S.S.; Alonso, A.; Benjamin, E.J.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Delling, F.N.; et al. Heart Disease and Stroke Statistics—2020 Update: A Report from the American Heart Association. Circulation 2020, 141, e139–e596. [Google Scholar] [CrossRef]
- Mozaffarian, D.; Benjamin, E.J.; Go, A.S.; Arnett, D.K.; Blaha, M.J.; Cushman, M.; Das, S.R.; de Ferranti, S.; Després, J.-P.; Fullerton, H.J.; et al. American Heart Association Statistics Committee; Stroke Statistics Subcommittee. Heart Disease and Stroke Statistics–2016 Update: A report from the American Heart Association. Circulation 2016, 133, e38–e360. [Google Scholar] [CrossRef]
- Chun, S.; Tu, J.V.; Wijeysundera, H.C.; Austin, P.C.; Wang, X.; Levy, D.; Lee, D.S. Lifetime Analysis of Hospitalizations and Survival of Patients Newly Admitted With Heart Failure. Circ. Heart Fail. 2012, 5, 414–421. [Google Scholar] [CrossRef] [Green Version]
- Krumholz, H.M.; Merrill, A.R.; Schone, E.M.; Schreiner, G.C.; Chen, J.; Bradley, E.H.; Wang, Y.; Wang, Y.; Lin, Z.; Straube, B.M.; et al. Patterns of Hospital Performance in Acute Myocardial Infarction and Heart Failure 30-Day Mortality and Readmission. Circ. Cardiovasc. Qual. Outcomes 2009, 2, 407–413. [Google Scholar] [CrossRef] [Green Version]
- Joynt, K.E.; Jha, A.K. Who has higher readmission rates for heart failure, and why? Implications for efforts to improve care using financial incentives. Circ. Cardiovasc. Qual. Outcomes 2011, 4, 53–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krumholz, H.M.; Amatruda, J.; Smith, G.L.; Mattera, J.A.; Roumanis, S.A.; Radford, M.J.; Crombie, P.; Vaccarino, V. Randomized trial of an education and support intervention to preventreadmission of patients with heart failure. J. Am. Coll. Cardiol. 2002, 39, 83–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phillips, C.O.; Wright, S.M.; Kern, D.E.; Singa, R.M.; Shepperd, S.; Rubin, H.R. Comprehensive discharge planning with postdischarge support for older patients with congestive heart failure: A meta-analysis. JAMA 2004, 291, 1358–1367. [Google Scholar] [CrossRef]
- Giamouzis, G.; Kalogeropoulos, A.; Georgiopoulou, V.; Laskar, S.; Smith, A.L.; Dunbar, S.; Triposkiadis, F.; Butler, J. Hospitalization Epidemic in Patients With Heart Failure: Risk Factors, Risk Prediction, Knowledge Gaps, and Future Directions. J. Card. Fail. 2011, 17, 54–75. [Google Scholar] [CrossRef] [PubMed]
- Kossovsky, M.P.; Sarasin, F.P.; Perneger, T.V.; Chopard, P.; Sigaud, P.; Gaspoz, J.-M. Unplanned readmissions of patients with congestive heart failure: Do they reflect in-hospital quality of care or patient characteristics? Am. J. Med. 2000, 109, 386–390. [Google Scholar] [CrossRef]
- Ouwerkerk, W.; Voors, A.A.; Zwinderman, A.H. Factors Influencing the Predictive Power of Models for Predicting Mortality and/or Heart Failure Hospitalization in Patients With Heart Failure. JACC Hear. Fail. 2014, 2, 429–436. [Google Scholar]
- Iribarren, C.; Karter, A.J.; Go, A.S.; Ferrara, A.; Liu, J.Y.; Sidney, S.; Selby, J.V. Glycemic Control and Heart Failure Among Adult Patients With Diabetes. Circulation 2001, 103, 2668–2673. [Google Scholar] [CrossRef] [Green Version]
- Upadhyay, S.; Stephenson, A.; Smith, D.G. Readmission Rates and Their Impact on Hospital Financial Performance: A Study of Washington Hospitals. Inq. J. Health Care Organ. Provis. Financ. 2019, 56, 0046958019860386. [Google Scholar] [CrossRef]
- Theobald, C.N.; Anctil, B.; Vasilevskis, E.E. Reducing Hospital Readmission Rates: Current Strategies and Future Directions. Annu. Rev. Med. 2014, 65, 471–485. [Google Scholar]
- Artetxe, A.; Beristain, A.; Graña, M. Predictive models for hospital readmission risk: A systematic review of methods. Comput. Methods Programs Biomed. 2018, 164, 49–64. [Google Scholar] [CrossRef]
- Awan, S.E.; Sohel, F.; Sanfilippo, F.; Bennamoun, M.; Dwivedi, G. Machine learning in heart failure: Ready for prime time. Curr. Opin. Cardiol. 2018, 33, 190–195. [Google Scholar] [CrossRef]
- Beecy, A.N.; Gummalla, M.; Sholle, E.; Xu, Z.; Zhang, Y.; Michalak, K.; Dolan, K.; Hussain, Y.; Lee, B.C.; Zhang, Y.; et al. Utilizing electronic health data and machine learning for the prediction of 30-day unplanned readmission or all-cause mortality in heart failure. Cardiovasc. Digit. Health J. 2020, 1, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Cao, L.; Chen, R.; Zhao, Y.; Lv, L.; Xu, Z.; Xu, P. Electronic healthcare records and external outcome data for hospitalized patients with heart failure. Sci. Data 2021, 8, 46. [Google Scholar] [CrossRef] [PubMed]
- Ishaq, A.; Sadiq, S.; Umer, M.; Ullah, S.; Mirjalili, S.; Rupapara, V.; Nappi, M. Improving the Prediction of Heart Failure Patients’ Survival Using SMOTE and Effective Data Mining Techniques. IEEE Access 2021, 9, 39707–39716. [Google Scholar] [CrossRef]
- Golas, S.B.; Shibahara, T.; Agboola, S.; Otaki, H.; Sato, J.; Nakae, T.; Hisamitsu, T.; Kojima, G.; Felsted, J.; Kakarmath, S.; et al. A machine learning model to predict the risk of 30-day readmissions in patients with heart failure: A retrospective analysis of electronic medical records data. BMC Med. Inform. Decis. Mak. 2018, 18, 44. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Chen, Y.; Bae, J.; Li, H.; Johnston, J.; Sanger, T. Predicting Heart Failure Readmission from Clinical Notes Using Deep Learning. In Proceedings of the 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), San Diego, CA, USA, 18–21 November 2019; pp. 2642–2648. [Google Scholar] [CrossRef] [Green Version]
- ZZhang Cao, L.; Zhao, Y.; Xu, Z.; Chen, R.; Lv, L.; Xu, P. Hospitalized patients with heart failure: Integrating electronic healthcare records and external outcome data (version 1.3). In PhysioNet; PhysioNet: Cambridge, MA, USA, 2022. [Google Scholar]
- Freedman, D.; Robert, P.; Purves, R. Statistics, 4th ed.; W.W. Norton & Company: New York, NY, USA, 2007. [Google Scholar]
- Ibrahim, H. 20-Year-Old Iranian Confirmed as World’s Shortest Man. Guinness World Records. 2022. Available online: https://www.guinnessworldrecords.com/news/2022/12/20-year-old-iranian-confirmed-as-worlds-shortest-man-730170 (accessed on 5 January 2023).
- Quintero, M.; LeBoulluec, A. Missing Data Imputation for Ordinal Data. Int. J. Comput. Appl. 2018, 181, 10–16. [Google Scholar] [CrossRef]
- Hu, Z.; Melton, G.B.; Arsoniadis, E.G.; Wang, Y.; Kwaan, M.R.; Simon, G.J. Strategies for handling missing clinical data for automated surgical site infection detection from the electronic health record. J. Biomed. Inform. 2017, 68, 112–120. [Google Scholar] [CrossRef]
- Sharafoddini, A.; Dubin, J.A.; Maslove, D.M.; Lee, J. A New Insight Into Missing Data in Intensive Care Unit Patient Profiles: Observational Study. JMIR Public Health Surveill. 2019, 7, e11605. [Google Scholar] [CrossRef] [Green Version]
- Van Smeden, M.; Groenwold, R.H.; Moons, K.G. A cautionary note on the use of the missing indicator method for handling missing data in prediction research. J. Clin. Epidemiol. 2020, 125, 188–190. [Google Scholar]
- Shin, S.; Austin, P.C.; Ross, H.J.; Abdel-Qadir, H.; Freitas, C.; Tomlinson, G.; Chicco, D.; Mahendiran, M.; Lawler, P.R.; Billia, F.; et al. Machine learning vs. conventional statistical models for predicting heart failure readmission and mortality. ESC Heart Fail. 2020, 8, 106–115. [Google Scholar] [CrossRef]
- Frizzell, J.D.; Liang, L.; Schulte, P.J.; Yancy, C.W.; Heidenreich, P.A.; Hernandez, A.F.; Bhatt, D.L.; Fonarow, G.C.; Laskey, W.K. Prediction of 30-Day All-Cause Readmissions in Patients Hospitalized for Heart Failure. JAMA Cardiol. 2017, 2, 204–209. [Google Scholar] [CrossRef] [Green Version]
- Jiang, W.; Siddiqui, S.; Barnes, S.; Barouch, L.A.; Korley, F.; Martinez, D.A.; Toerper, M.; Cabral, S.; Hamrock, E.; Levin, S. Readmission Risk Trajectories for Patients With Heart Failure Using a Dynamic Prediction Approach: Retrospective Study. JMIR Public Health Surveill. 2019, 7, e14756. [Google Scholar] [CrossRef] [PubMed]
- Van Buuren, S.; Groothuis-Oudshoorn, K. Mice: Multivariate Imputation by Chained Equations in R. J. Stat. Softw. 2011, 45, 1–67. [Google Scholar] [CrossRef] [Green Version]
- Jazayeri, A.; Liang, O.S.; Yang, C.C. Imputation of Missing Data in Electronic Health Records Based on Patients’ Similarities. J. Health Inform. Res. 2020, 4, 295–307. [Google Scholar] [CrossRef] [PubMed]
- Damery, S.; Combes, G. Evaluating the predictive strength of the LACE index in identifying patients at high risk of hospital readmission following an inpatient episode: A retrospective cohort study. BMJ Open 2017, 7, e016921. [Google Scholar] [CrossRef] [Green Version]
- Hakim, M.; Garden, F.L.; Jennings, M.D.; Dobler, C.C. Performance of the LACE index to predict 30-day hospital readmissions in patients with chronic obstructive pulmonary disease. Clin. Epidemiol. 2017, 10, 51–59. [Google Scholar] [CrossRef] [Green Version]
- Robinson, R.; Bhattarai, M.; Hudali, T.; Vogler, C. Predictors of 30-day hospital readmission: The direct comparison of number of discharge medications to the HOSPITAL score and LACE index. Future Health J. 2019, 6, 209–214. [Google Scholar] [CrossRef] [Green Version]
- Van Walraven, C.; Dhalla, I.A.; Bell, C.; Etchells, E.; Stiell, I.G.; Zarnke, K.; Austin, P.C.; Forster, A.J. Derivation and validation of an index to predict early death or unplanned readmission after discharge from hospital to the community. Can. Med. Assoc. J. 2010, 182, 551–557. [Google Scholar] [CrossRef] [Green Version]
- Saluk, J.L.; Blackwell, R.H.; Gange, W.; Zapf, M.A.C.; Kothari, A.N.; Kuo, P.C.; Quek, M.L.; Flanigan, R.C.; Gupta, G.N. The LACE Score as a Tool to Identify Radical Cystectomy Patients at Increased Risk of 90-Day Readmission and Mortality. Curr. Urol. 2018, 12, 20–26. [Google Scholar] [CrossRef]
- Wu, J.-R.; Moser, D.K. Medication Adherence Mediates the Relationship Between Heart Failure Symptoms and Cardiac Event-Free Survival in Patients With Heart Failure. J. Cardiovasc. Nurs. 2018, 33, 40–46. [Google Scholar] [CrossRef]
- Singh, D.; Singh, B. Investigating the impact of data normalization on classification performance. Appl. Soft Comput. 2020, 97, 105524. [Google Scholar] [CrossRef]
- Kasim, S.; Malek, S.; Song, C.; Ahmad, W.A.W.; Fong, A.; Ibrahim, K.S.; Safiruz, M.S.; Aziz, F.; Hiew, J.H.; Ibrahim, N. In-hospital mortality risk stratification of Asian ACS patients with artificial intelligence algorithm. PLoS ONE 2022, 17, e0278944. [Google Scholar] [CrossRef]
- Athanasiou, M.; Sfrintzeri, K.; Zarkogianni, K.; Thanopoulou, A.C.; Nikita, K.S. An explainable XGBoost–based approach towards assessing the risk of cardiovascular disease in patients with Type 2 Diabetes Mellitus. In Proceedings of the 2020 IEEE 20th International Conference on Bioinformatics and Bioengineering (BIBE), Cincinnati, OH, USA, 26–28 October 2020; pp. 859–864. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Huang, J.Z.; Nguyen, T.T. Unbiased feature selection in learning random forests for high-dimensional data. Sci. World J. 2015, 2015, 471371. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the KDD’16: 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016. [Google Scholar] [CrossRef] [Green Version]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Xu, Y.; Yang, X.; Huang, H.; Peng, C.; Ge, Y.; Wu, H.; Wang, J.; Xiong, G.; Yi, Y. Extreme Gradient Boosting Model Has a Better Performance in Predicting the Risk of 90-Day Readmissions in Patients with Ischaemic Stroke. J. Stroke Cerebrovasc. Dis. 2019, 28, 104441. [Google Scholar] [CrossRef]
- Singh, Y.K.; Sinha, N.; Singh, S.K. Heart Disease Prediction System Using Random Forest. In Communications in Computer and Information Science; Singh, M., Gupta, P.K., Tyagi, V., Sharma, A., Ören, T., Grosky, W., Eds.; Springer: Singapore, 2017; pp. 613–623. [Google Scholar] [CrossRef]
- Geurts, P.; Ernst, D.; Wehenkel, L. Extremely randomized trees. Mach. Learn. 2006, 63, 3–42. [Google Scholar] [CrossRef] [Green Version]
- Alfian, G.; Syafrudin, M.; Fahrurrozi, I.; Fitriyani, N.L.; Atmaji, F.T.D.; Widodo, T.; Bahiyah, N.; Benes, F.; Rhee, J. Predicting Breast Cancer from Risk Factors Using SVM and Extra-Trees-Based Feature Selection Method. Computers 2022, 11, 136. [Google Scholar] [CrossRef]
- Shafique, R.; Mehmood, A.; Ullah, S.; Choi, G.S. Cardiovascular Disease Prediction System Using Extra Trees Classifie. Res. Sq. 2019, 4, 1–7. [Google Scholar] [CrossRef]
- Zhang, Z.; Qiu, H.; Li, W.; Chen, Y. A stacking-based model for predicting 30-day all-cause hospital readmissions of patients with acute myocardial infarction. BMC Med. Inform. Decis. Mak. 2020, 20, 335. [Google Scholar] [CrossRef]
- Yusuf, M.; Atal, I.; Li, J.; Smith, P.; Ravaud, P.; Fergie, M.; Callaghan, M.; Selfe, J. Reporting quality of studies using machine learning models for medical diagnosis: A systematic review. BMJ Open 2020, 10, e034568. [Google Scholar] [CrossRef] [Green Version]
- Alba, A.C.; Agoritsas, T.; Walsh, M.; Hanna, S.; Iorio, A.; Devereaux, P.J.; McGinn, T.; Guyatt, G. Discrimination and Calibration of Clinical Prediction Models: Users’ Guides to the Medical Literature. JAMA 2017, 318, 1377–1384. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Chen, P.-H.C.; Krause, J.; Peng, L. How to Read Articles That Use Machine Learning. JAMA 2019, 322, 1806–1816. [Google Scholar] [CrossRef]
- Valverde-Albacete, F.J.; Peláez-Moreno, C. 100% Classification Accuracy Considered Harmful: The Normalized Information Transfer Factor Explains the Accuracy Paradox. PLoS ONE 2014, 9, e84217. [Google Scholar] [CrossRef] [Green Version]
- Sharma, V.; Kulkarni, V.; Mcalister, F.; Eurich, D.; Keshwani, S.; Simpson, S.H.; Voaklander, D.; Samanani, S. Predicting 30-Day Readmissions in Patients with Heart Failure Using Administrative Data: A Machine Learning Approach. J. Card. Fail. 2021, 28, 710–722. [Google Scholar] [CrossRef] [PubMed]
- Bat-Erdene, B.-I.; Zheng, H.; Son, S.H.; Lee, J.Y. Deep learning-based prediction of heart failure rehospitalization during 6, 12, 24-month follow-ups in patients with acute myocardial infarction. Health Inform. J. 2022, 28, 14604582221101529. [Google Scholar] [CrossRef] [PubMed]
- Chiu, C.-C.; Wu, C.-M.; Chien, T.-N.; Kao, L.-J.; Li, C.; Jiang, H.-L. Applying an Improved Stacking Ensemble Model to Predict the Mortality of ICU Patients with Heart Failure. J. Clin. Med. 2022, 11, 6460. [Google Scholar] [CrossRef]
- Jing, L.; Cerna, A.E.U.; Good, C.W.; Sauers, N.M.; Schneider, G.; Hartzel, D.N.; Leader, J.B.; Kirchner, H.L.; Hu, Y.; Riviello, D.M.; et al. A Machine Learning Approach to Management of Heart Failure Populations. JACC Heart Fail. 2020, 8, 578–587. [Google Scholar]
- Chen, S.; Hu, W.; Yang, Y.; Cai, J.; Luo, Y.; Gong, L.; Li, Y.; Si, A.; Zhang, Y.; Liu, S.; et al. Predicting Six-Month Re-Admission Risk in Heart Failure Patients Using Multiple Machine Learning Methods: A Study Based on the Chinese Heart Failure Population Database. J. Clin. Med. 2023, 12, 870. [Google Scholar] [CrossRef]
Disease Name | Yes | No |
---|---|---|
Myocardial Infarction | 1865 | 143 |
Congestive Heart Failure | 1872 | 136 |
Peripheral Vascular Disease | 1907 | 101 |
Cerebrovascular Disease | 1858 | 150 |
Dementia | 1893 | 115 |
Chronic Obstructive Pulmonary Disease (COPD) | 1775 | 233 |
Connective Tissue Disease | 2004 | 4 |
Peptic Ulcer Disease | 1961 | 45 |
Chronic Kidney Disease | 1532 | 474 |
Hemiplegia | 1996 | 12 |
Solid Tumor | 1969 | 39 |
Liver Disease | 1923 | 84 |
LACE Score Components | Score |
---|---|
L: Length of stay (days) Associated features in the dataset: ‘dischargeDay’ | |
1 | 1 |
2 | 2 |
3 | 3 |
4–6 | 4 |
7–14 | 5 |
≥14 | 7 |
A: Acuity of admission Associated feature in the dataset: ‘admission.way’ | |
Non-emergency | 0 |
Emergency | 3 |
C: Charlson comorbidity score Associated feature in the dataset: ‘CCI.score’ | |
0 | 0 |
1 | 1 |
2 | 2 |
3 | 3 |
≥4 | 4 |
E: Emergency department visits in the preceding 6 months Associated feature in the dataset: ‘return.to.emergency.department.within.6.months’ | |
0 | 0 |
1 | 1 |
2 | 2 |
3 ≥4 | 3 4 |
Features | Unit | Missing Rate (%) | Not Readmitted (0) | Readmitted (1) | Overall | p-Value |
---|---|---|---|---|---|---|
[Mean ± std] | [Mean ± std] | [Mean ± std] | ||||
Neutrophil Ratio | N/A | 1 | 0.756 ± 0.107 | 0.744 ± 0.10 | 0.751 ± 0.104 | <0.05 |
Discharge Day | Days | 0 | 9 ± 7.06 | 10 ± 9.01 | 9 ± 8.03 | 0.10 |
Cholesterol | mmol/L | 10 | 3.77 ± 1.07 | 3.66 ± 1.11 | 3.72 ± 1.09 | 0.06 |
Sodium | mmol/L | <1 | 138.5 ± 4.91 | 137.9 ± 4.87 | 138.2 ± 4.90 | <0.05 |
Partial Pressure of CO2 | mmHg | 51 | 36 ± 10.4 | 35.1 ± 8.13 | 36 ± 9.56 | 0.10 |
Direct Bilirubin | μmol/L | 5 | 9 ± 9.76 | 9 ± 9.28 | 9 ± 9.55 | <0.05 |
Albumin | g/L | 5 | 36.3 ± 5.05 | 36.9 ± 4.87 | 36.5 ± 4.98 | <0.05 |
Globulin | g/L | 5 | 28.7 ± 6.33 | 28.4 ± 5.70 | 28.6 ± 6.06 | <0.05 |
FiO2 | (%) | 0 | 33.0 ± 5.18 | 32.33 ± 4.15 | 32.7 ± 4.76 | 0.07 |
Systolic Blood Pressure | mmHg | 0 | 133 ± 25.0 | 129 ± 24.2 | 131 ± 24.7 | 0.07 |
Cystatin | mg/L | 2 | 1.8 ± 0.971 | 1.89 ± 0.925 | 1.8 ± 0.951 | 0.05 |
Potassium Ion | mmol/L | 51 | 3.84 ± 0.652 | 3.98 ± 0.685 | 3.89 ± 0.669 | 0.07 |
White Globulin Ratio | N/A | 5 | 1.32 ± 0.316 | 1.35 ± 0.30 | 1.33 ± 0.309 | <0.05 |
D-dimer | mg/L | 8 | 3 ± 6.34 | 2.0 ± 3.64 | 2 ± 5.33 | 0.08 |
Indirect Bilirubin | μmol/L | 5 | 13 ± 9.57 | 14.0 ± 8.83 | 14 ± 9.25 | <0.05 |
Fucosidase | U/L | 26 | 19.3 ± 6.31 | 19.5 ± 5.78 | 19.4 ± 6.08 | <0.05 |
Sodium Ion | mmol/L | 51 | 136.4 ± 5.14 | 135.9 ± 4.71 | 136.2 ± 4.97 | 0.09 |
Left Ventricular End Diastolic Diameter, LV | cm | 35 | 52.4 ± 10.6 | 54.2 ± 11.3 | 53.1 ± 10.9 | 0.12 |
Eosinophil Ratio | N/A | 1 | 0.017 ± 0.031 | 0.02 ± 0.031 | 0.019 ± 0.031 | 0.05 |
High Sensitivity Protein | mg/L | 53 | 26 ± 35.5 | 24 ± 33.5 | 25 ± 34.7 | <0.05 |
Measured Residual Base | mmol/L | 51 | −1.8 ± 4.90 | −2.1 ± 4.44 | −1.9 ± 4.72 | <0.05 |
Glomerular Filtration Rate | mL/min/1.73 m2 | 3 | 71 ± 36.5 | 66 ± 36.5 | 69 ± 36.6 | 0.05 |
Mean Hemoglobin Volume | pg | 1 | 29.9 ± 3.28 | 30.0 ± 3.59 | 29.9 ± 3.42 | <0.05 |
Mitral Valve EMS | m/s | 51 | 6 ± 42.9 | 3 ± 29.9 | 5 ± 38.6 | <0.05 |
Diastolic Blood Pressure | mmHg | 0 | 77 ± 14.6 | 76 ± 14.2 | 77 ± 14.5 | <0.05 |
Weight | kg | 0 | 52 ± 10.7 | 52.5 ± 11.1 | 52 ± 10.9 | <0.05 |
Basophil Count | ×109/L | 1 | 0.030 ± 0.031 | 0.033 ± 0.028 | 0.031 ± 0.029 | <0.05 |
Platelet Hematocrit | (%) | 5 | 0.176 ± 0.068 | 0.17 ± 0.067 | 0.174 ± 0.068 | <0.05 |
Prothrombin Activity | (%) | 2 | 67 ± 18.3 | 65 ± 18.6 | 66 ± 18.4 | 0.05 |
Reduced Hemoglobin | (%) | 51 | 4.3 ± 6.22 | 4.1 ± 6.0 | 4.2 ± 6.13 | 0.05 |
Urea | mmol/L | 1 | 9.4 ± 5.84 | 9.8 ± 5.16 | 9.6 ± 5.55 | <0.05 |
Model Name | Accuracy | Precision | Recall | Specificity | F1-Score |
---|---|---|---|---|---|
MLP Classifier | 82.19 | 82.2 | 82.19 | 81.27 | 82.12 |
Linear Discriminant Analysis | 78.02 | 78.13 | 78.03 | 77.94 | 78.06 |
XGBClassifier | 75.51 | 75.46 | 75.51 | 74.44 | 75.41 |
Random Forest Classifier | 76.12 | 76.06 | 76.11 | 75.27 | 76.05 |
Logistic Regression | 78.98 | 79.01 | 78.98 | 78.73 | 78.99 |
Support Vector Machine | 47.17 | 58.32 | 47.16 | 55.83 | 34.84 |
ExtraTree Classifier | 70.7 | 70.66 | 70.7 | 69.99 | 70.67 |
AdaBoost Classifier | 87 | 87.11 | 87.01 | 86.04 | 86.94 |
K-nearest neighbor Classifier | 70.55 | 70.47 | 70.55 | 69.62 | 70.48 |
Gradient Boosting Classifier | 84.9 | 84.92 | 84.9 | 84.07 | 84.84 |
CatBoost | 88.36 | 88.89 | 88.36 | 86.86 | 88.23 |
LGB Classifier | 80.73 | 80.78 | 80.73 | 79.58 | 80.62 |
ElasticNet | 78.98 | 79.02 | 78.98 | 78.74 | 78.99 |
Model | Accuracy | Precision | Recall | Specificity | F1-Score |
---|---|---|---|---|---|
MLP Classifier | 89.11 | 90.1 | 89.11 | 87.27 | 88.94 |
Linear Discriminant Analysis | 88.21 | 88.69 | 88.21 | 86.76 | 88.09 |
XGBClassifier | 89.41 | 90.1 | 89.41 | 87.83 | 89.28 |
Random Forest Classifier | 89.16 | 90.07 | 89.16 | 87.39 | 89.01 |
Logistic Regression | 87.36 | 87.61 | 87.36 | 86.16 | 87.27 |
Support Vector Machine (SVM) | 29.4 | 29.89 | 29.41 | 30.33 | 29.25 |
ExtraTrees Classifier | 89.06 | 90.01 | 89.06 | 87.25 | 88.9 |
AdaBoost Classifier | 89.06 | 89.86 | 89.06 | 87.36 | 88.91 |
K-nearest Neighbours Classifier | 86.4 | 86.63 | 86.4 | 85.2 | 86.31 |
Gradient Boosting Classifier | 85.85 | 86.02 | 85.85 | 84.72 | 85.76 |
CatBoost | 89.11 | 89.92 | 89.11 | 87.4 | 88.96 |
LGB classifier | 88.91 | 89.74 | 88.91 | 87.18 | 88.75 |
ElasticNet | 87.31 | 87.56 | 87.31 | 86.09 | 87.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, M.S.; Rahman, H.R.; Prithula, J.; Chowdhury, M.E.H.; Ahmed, M.U.; Kumar, J.; Murugappan, M.; Khan, M.S. Heart Failure Emergency Readmission Prediction Using Stacking Machine Learning Model. Diagnostics 2023, 13, 1948. https://doi.org/10.3390/diagnostics13111948
Rahman MS, Rahman HR, Prithula J, Chowdhury MEH, Ahmed MU, Kumar J, Murugappan M, Khan MS. Heart Failure Emergency Readmission Prediction Using Stacking Machine Learning Model. Diagnostics. 2023; 13(11):1948. https://doi.org/10.3390/diagnostics13111948
Chicago/Turabian StyleRahman, Md. Sohanur, Hasib Ryan Rahman, Johayra Prithula, Muhammad E. H. Chowdhury, Mosabber Uddin Ahmed, Jaya Kumar, M. Murugappan, and Muhammad Salman Khan. 2023. "Heart Failure Emergency Readmission Prediction Using Stacking Machine Learning Model" Diagnostics 13, no. 11: 1948. https://doi.org/10.3390/diagnostics13111948
APA StyleRahman, M. S., Rahman, H. R., Prithula, J., Chowdhury, M. E. H., Ahmed, M. U., Kumar, J., Murugappan, M., & Khan, M. S. (2023). Heart Failure Emergency Readmission Prediction Using Stacking Machine Learning Model. Diagnostics, 13(11), 1948. https://doi.org/10.3390/diagnostics13111948