Fog-Based Smart Cardiovascular Disease Prediction System Powered by Modified Gated Recurrent Unit
Abstract
:1. Introduction
1.1. Motivation
1.2. Contributions of This Work
- The smart and efficient heart disease diagnostic system encompasses the IoT–fog–cloud technologies;
- The healthcare IoT data acquired is pre-processed by a filtering technique and fuzzy inference system and subjected to predictive analytics at the fog layer using deep learning’s recurrent neural network model of the gated recurrent unit (GRU);
- The proposed fuzzy inference system with improved GRU accurately predicts heart attack risk from IoT patient data and electronic health records (EHR) when compared to the results of the generic GRU model;
- The suggested model is evaluated using metrics that test the deep learning model’s predictive adeptness and performance, with a comparison of cloud and fog.
2. Literature Review
3. Materials and Methods
3.1. IoT–Fog–Cloud Interplay
3.2. Predictive Analytics in Healthcare
3.3. Recurrent Neural Network (RNN)
3.4. Gated Recurrent Unit (GRU)
3.5. Proposed Model
3.5.1. Data Collection Layer
- Dataset
3.5.2. Data Pre-Processing Layer
Algorithm 1: Classifying patients by their health data by FIS |
Step 1: Inputs and relevant member functions define the fuzzy system |
Step 2: Calculate the risk of heart disease by µ1(ECG_1), µ1(MaxHeartRate_1), µ1(BloodPressure_1) as µ1(high) or µ1(normal) or µ1(low) |
Step 3: If HealthRiskState = µ1(high) |
3.1 Notify GD using SPARK as RTA |
3.2 Store Puid in FS and CS |
Step 4: Otherwise store Puid HealthRiskState in CS |
Step 5: Stop the process |
3.5.3. Data Prediction Layer
Modified GRU Model
Experimental Setup
Performance Evaluation
Evaluation Metrics
4. Results and Discussion
4.1. Comparison with State-of-the-Art Systems
4.2. Comparative Analysis—Fog vs. Cloud
4.3. Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
IoT | Internet of Things |
WHO | World Health Organization |
ICU | Intensive Care Unit |
FC | Fog Computing |
AI | Artificial Intelligence |
ML | Machine Learning |
DL | Deep Learning |
QoS | Quality of Service |
RNN | Recurrent Neural Network |
CNN | Convolutional Neural Network |
ANN | Artificial Neural Network |
GRU | Gated Recurrent Unit |
ReLU | Rectified Linear Unit |
EHR | Electronic health record |
UCI | University of California Irvine |
ECG | Electrocardiogram |
EEG | Electroencephalogram |
EMG | Electromyogram |
LSTM | Long Short-Term Memory |
FIS | Fuzzy Inference System |
IDC | International Data Corporation |
ZB | Zettabytes |
ROC | Receiver Operating Characteristics |
AUC | Area Under Curve |
mAP | Mean Average Precision |
References
- Guevara, J.C.; Torres, R.D.S.; da Fonseca, N.L.S. On the classification of fog computing applications: A machine learning perspective. J. Netw. Comput. Appl. 2020, 159, 102596. [Google Scholar] [CrossRef]
- Ijaz, M.; Li, G.; Lin, L.; Cheikhrouhou, O.; Hamam, H.; Noor, A. Integration and applications of fog computing and cloud computing based on the internet of things for provision of healthcare services at home. Electronics 2021, 10, 1077. [Google Scholar] [CrossRef]
- Díaz, M.; Martín, C.; Rubio, B. State-of-the-art, challenges, and open issues in the integration of Internet of things and cloud computing. J. Netw. Comput. Appl. 2016, 67, 99–117. [Google Scholar] [CrossRef]
- Nancy, A.A.; Ravindran, D.; Raj Vincent, P.M.D.; Srinivasan, K.; Gutierrez Reina, D. IoT-cloud-based smart healthcare monitoring system for heart disease prediction via deep learning. Electronics 2022, 11, 2292. [Google Scholar] [CrossRef]
- Farahani, B.; Barzegari, M.; Shams Aliee, F.; Shaik, K.A. Towards collaborative intelligent IoT eHealth: From device to fog, and cloud. Microprocess. Microsyst. 2020, 72, 102938. [Google Scholar] [CrossRef]
- Nadakinamani, R.G.; Reyana, A.; Kautish, S.; Vibith, A.S.; Gupta, Y.; Abdelwahab, S.F.; Mohamed, A.W. Clinical Data Analysis for Prediction of Cardiovascular Disease Using Machine Learning Techniques. Comput. Intell. Neurosci. 2022, 2022, 2973324. [Google Scholar] [CrossRef]
- Farahani, B.; Firouzi, F.; Chang, V.; Badaroglu, M.; Constant, N.; Mankodiya, K. Towards fog-driven IoT eHealth: Promises and challenges of IoT in medicine and healthcare. Future Gener. Comput. Syst. 2018, 78, 659–676. [Google Scholar] [CrossRef] [Green Version]
- Kraemer, F.A.; Braten, A.E.; Tamkittikhun, N.; Palma, D. Fog computing in healthcare–A review and discussion. IEEE Access 2017, 5, 9206–9222. [Google Scholar] [CrossRef]
- Borthakur, D.; Dubey, H.; Constant, N.; Mahler, L.; Mankodiya, K. Smart fog: Fog computing framework for unsupervised clustering analytics in wearable Internet of Things. In Proceedings of the 2017 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Montreal, QC, Canada, 14–16 November 2017; IEEE: Piscataway, NJ, USA, 2017. [Google Scholar]
- De Moura Costa, H.J.; da Costa, C.A.; da Rosa Righi, R.; Antunes, R.S. Fog computing in health: A systematic literature review. Health Technol. 2020, 10, 1025–1044. [Google Scholar] [CrossRef]
- Andriopoulou, F.; Dagiuklas, T.; Orphanoudakis, T. Integrating IoT and fog computing for healthcare service delivery. In Components and Services for IoT Platforms; Springer International Publishing: Cham, Switzerland, 2017; pp. 213–232. [Google Scholar]
- Gia, T.N.; Jiang, M.; Rahmani, A.-M.; Westerlund, T.; Liljeberg, P.; Tenhunen, H. Fog computing in healthcare internet of things: A case study on ECG feature extraction. In Proceedings of the 2015 IEEE International Conference on Computer and Information Technology, Ubiquitous Computing and Communications, Dependable, Autonomic and Secure Computing, Pervasive Intelligence and Computing, Liverpool, UK, 26–28 October 2015; IEEE: Piscataway, NJ, USA, 2015. [Google Scholar]
- Kumari, A.; Tanwar, S.; Tyagi, S.; Kumar, N.; Parizi, R.M.; Choo, K.-K.R. Fog data analytics: A taxonomy and process model. J. Netw. Comput. Appl. 2019, 128, 90–104. [Google Scholar] [CrossRef]
- Mudawi, N.A. Integration of IoT and Fog Computing in Healthcare Based the Smart Intensive Units. IEEE Access 2022, 10, 59906–59918. [Google Scholar] [CrossRef]
- Ansarullah, S.I.; Kumar, P.A. systematic literature review on cardiovascular disorder identification using knowledge mining and machine learning method. Int. J. Recent Technol. Eng. 2019, 7, 1009–1015. [Google Scholar]
- Singh, A.; Kumar, R. Heart disease prediction using machine learning algorithms. In Proceedings of the 2020 International Conference on Electrical and Electronics Engineering (ICE3), Gorakhpur, India, 14–15 February 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 452–457. [Google Scholar]
- Rajdhan, A.; Agarwal, A.; Sai, M.; Ravi, D.; Ghuli, P. Heart disease prediction using machine learning. Int. J. Res. Technol. 2020, 9, 659–662. [Google Scholar]
- Nashif, S.; Raihan, M.R.; Islam, M.R.; Imam, M.H. Heart disease detection by using machine learning algorithms and a real-time cardiovascular health monitoring system. World J. Eng. Technol. 2018, 06, 854–873. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Wang, X.; Su, Q.; Zhang, M.; Zhu, Y.; Wang, Q.; Wang, Q. A hybrid classification system for heart disease diagnosis based on the RFRS method. Comput. Math. Methods Med. 2017, 2017, 8272091. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Kim, Y. Classification of heart diseases based on ECG signals using Long Short-Term Memory. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2018, 2018, 2707–2710. [Google Scholar]
- Amer, S.S.; Wander, G.; Singh, M.; Bahsoon, R.; Jennings, N.R.; Gill, S.S. BioLearner: A machine learning-powered smart heart disease risk prediction system utilizing biomedical markers. J. Interconnect. Netw. 2022, 22, 2145003. [Google Scholar] [CrossRef]
- Rao, J.N.; Prasad, R.S. An Ensemble Deep Dynamic Algorithm (EDDA) to predict the heart disease. Int. J. Sci. Res. Sci. Eng. Technol. 2021, 8, 105–111. [Google Scholar] [CrossRef]
- Elhadad, A.; Alanazi, F.; Taloba, A.I.; Abozeid, A. Fog computing service in the healthcare monitoring system for managing the real-time notification. J. Healthc. Eng. 2022, 2022, 5337733. [Google Scholar] [CrossRef]
- Tuli, S.; Basumatary, N.; Gill, S.S.; Kahani, M.; Arya, R.C.; Wander, G.S.; Buyya, R. HealthFog: An ensemble deep learning based Smart Healthcare System for Automatic Diagnosis of Heart Diseases in integrated IoT and fog computing environments. Future Gener. Comput. Syst. 2020, 104, 187–200. [Google Scholar] [CrossRef] [Green Version]
- Tuli, S.; Mahmud, R.; Tuli, S.; Buyya, R. FogBus: A Blockchain-Based Lightweight Framework for Edge and Fog Computing. J. Syst. Softw. 2019, 154, 22–36. [Google Scholar] [CrossRef] [Green Version]
- Shukla, S.; Hassan, M.F.; Khan, M.K.; Jung, L.T.; Awang, A. An analytical model to minimize the latency in healthcare internet-of-things in fog computing environment. PLoS ONE 2019, 14, e0224934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desai, F.; Chowdhury, D.; Kaur, R.; Peeters, M.; Arya, R.C.; Wander, G.S.; Gill, S.S.; Buyya, R. HealthCloud: A system for monitoring health status of heart patients using machine learning and cloud computing. Internet Things 2022, 17, 100485. [Google Scholar] [CrossRef]
- Chakraborty, C.; Kishor, A. Real-time cloud-based patient-centric monitoring using computational health systems. IEEE Trans. Comput. Soc. Syst. 2022, 9, 1613–1623. [Google Scholar] [CrossRef]
- Khan, M.A. An IoT framework for heart disease prediction based on MDCNN classifier. IEEE Access 2020, 8, 34717–34727. [Google Scholar] [CrossRef]
- Subahi, A.F.; Khalaf, O.I.; Alotaibi, Y.; Natarajan, R.; Mahadev, N.; Ramesh, T. Modified Self-Adaptive Bayesian algorithm for smart heart disease prediction in IoT system. Sustainability 2022, 14, 14208. [Google Scholar] [CrossRef]
- Sood, S.K.; Mahajan, I. IoT-fog-based healthcare framework to identify and control hypertension attack. IEEE Internet Things J. 2019, 6, 1920–1927. [Google Scholar] [CrossRef]
- Bhatia, M.; Kumari, S. A novel IoT-fog-cloud-based healthcare system for monitoring and preventing encephalitis. Cogn. Comput. 2022, 14, 1609–1626. [Google Scholar] [CrossRef]
- Devarajan, M.; Subramaniyaswamy, V.; Vijayakumar, V.; Ravi, L. Fog-assisted personalized healthcare-support system for remote patients with diabetes. J. Ambient. Intell. Humaniz. Comput. 2019, 10, 3747–3760. [Google Scholar] [CrossRef]
- Singh, S.; Bansal, A.; Sandhu, R.; Sidhu, J. Fog computing and IoT based healthcare support service for dengue fever. Int. J. Pervasive Comput. Commun. 2018, 14, 197–207. [Google Scholar] [CrossRef]
- Snehi, M.; Bhandari, A. IoT-based DDoS on cyber physical systems: Research challenges, datasets and future prospects. In Proceedings of the 2022 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS), Toronto, ON, Canada, 1–4 June 2022; IEEE: Piscataway, NJ, USA, 2022. [Google Scholar]
- Angel, N.A.; Ravindran, D.; Vincent PM, D.R.; Srinivasan, K.; Hu, Y.-C. Recent Advances in Evolving Computing Paradigms: Cloud, Edge, and Fog Technologies. Sensors 2021, 22, 196. [Google Scholar] [CrossRef]
- Chegini, H.; Naha, R.K.; Mahanti, A.; Thulasiraman, P. Process automation in an IoT–fog–cloud ecosystem: A survey and taxonomy. IoT 2021, 2, 92–118. [Google Scholar] [CrossRef]
- Ketu, S.; Mishra, P.K. Cloud, fog and mist computing in IoT: An indication of emerging opportunities. IETE Tech. Rev. 2022, 39, 713–724. [Google Scholar] [CrossRef]
- Kharel, J.; Reda, H.T.; Shin, S.Y. Fog computing-based smart health monitoring system deploying LoRa wireless communication. IETE Tech. Rev. 2019, 36, 69–82. [Google Scholar] [CrossRef]
- Mondragón-Ruiz, G.; Tenorio-Trigoso, A.; Castillo-Cara, M.; Caminero, B.; Carrión, C. An experimental study of fog and cloud computing in CEP-based Real-Time IoT applications. J. Cloud Comput. 2021, 10, 32. [Google Scholar] [CrossRef]
- Leung, C.K.; Fung, D.L.X.; Mushtaq, S.B.; Leduchowski, O.T.; Bouchard, R.L.; Jin, H.; Cuzzocrea, A.; Zhang, C.Y. Data science for healthcare predictive analytics. In Proceedings of the 24th Symposium on International Database Engineering & Applications, New York, NY, USA, 12–14 August 2020; ACM: New York, NY, USA, 2020. [Google Scholar]
- Liu, V.X.; Bates, D.W.; Wiens, J.; Shah, N.H. The number needed to benefit: Estimating the value of predictive analytics in healthcare. J. Am. Med. Inf. Assoc. 2019, 26, 1655–1659. [Google Scholar] [CrossRef]
- Beam, A.L.; Kohane, I.S. Big data and machine learning in health care. JAMA 2018, 319, 1317–1318. [Google Scholar] [CrossRef]
- Attaran, M.; Attaran, S. Opportunities and challenges of implementing predictive analytics for competitive advantage. Int. J. Bus. Intell. Res. 2018, 9, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Purba, J.H.; Ratodi, M.; Mulyana, M.; Wahyoedi, S.; Andriana, R.; Shankar, K.; Nguyen, P.T. Prediction model in medical science and health care. Predict. Model Med. Sci. Health Care 2019, 8, 815–818. [Google Scholar]
- Van Calster, B.; Wynants, L.; Timmerman, D.; Steyerberg, E.W.; Collins, G.S. Predictive analytics in health care: How can we know it works? J. Am. Med. Inf. Assoc. 2019, 26, 1651–1654. [Google Scholar] [CrossRef]
- Smys, S.; Chen, J.I.Z.; Shakya, S. Survey on neural network architectures with deep learning. J. Soft Comput. Paradig. 2020, 2, 186–194. [Google Scholar]
- Lalapura, V.S.; Amudha, J.; Satheesh, H.S. Recurrent Neural Networks for edge intelligence: A survey. ACM Comput. Surv. 2022, 54, 1–38. [Google Scholar] [CrossRef]
- Sharma, S.; Guleria, K. Deep Learning Models for Image Classification: Comparison and Applications. In Proceedings of the 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), Greater Noida, India, 28–29 April 2022; IEEE: Piscataway, NJ, USA, 2022. [Google Scholar]
- Abdel-Jaber, H.; Devassy, D.; Al Salam, A.; Hidaytallah, L.; EL-Amir, M. A Review of Deep Learning Algorithms and Their Applications in Healthcare. Algorithms 2022, 15, 71. [Google Scholar] [CrossRef]
- Weerakody, P.B.; Wong, K.W.; Wang, G.; Ela, W. A review of irregular time series data handling with gated recurrent neural ne works. Neurocomputing 2021, 441, 161–178. [Google Scholar] [CrossRef]
- Saba Raoof, S.; Durai, M.A.S. A Comprehensive Review on Smart Health Care: Applications, Paradigms, and Challenges with Case Studies. Contrast Media Mol. Imaging 2022, 2022, 4822235. [Google Scholar] [CrossRef]
- Cho, K.; van Merrienboer, B.; Bahdanau, D.; Bengio, Y. On the properties of neural machine translation: Encoder–decoder approaches. In Proceedings of the SSST-8, Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation, Doha, Qatar, 25 October 2014; Association for Computational Linguistics: Stroudsburg, PA, USA, 2014. [Google Scholar]
- Dey, R.; Salem, F.M. Gate-variants of Gated Recurrent Unit (GRU) neural networks. In Proceedings of the 2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS), Boston, MA, USA, 6–9 August 2017; IEEE: Piscataway, NJ, USA, 2017. [Google Scholar]
- Yang, S.; Yu, X.; Zhou, Y. LSTM and GRU neural network performance comparison study: Taking yelp review dataset as an example. In Proceedings of the 2020 International Workshop on Electronic Communication and Artificial Intelligence (IWECAI), Shanghai, China, 12–14 June 2020; IEEE: Piscataway, NJ, USA, 2020. [Google Scholar]
- Zhao, R.; Wang, D.; Yan, R.; Mao, K.; Shen, F.; Wang, J. Machine Health Monitoring Using Local Feature-Based Gated Recurrent Unit Networks. IEEE Trans. Ind. Electron. 2018, 65, 1539–1548. [Google Scholar] [CrossRef]
- Ali, F.; El-Sappagh, S.; Islam, S.M.R.; Kwak, D.; Ali, A.; Imran, M.; Kwak, K.-S. A Smart Healthcare Monitoring System for Heart Disease Prediction Based on Ensemble Deep Learning and Feature Fusion. Inf. Fusion 2020, 63, 208–222. [Google Scholar] [CrossRef]
- Janosi, A.; Steinbrunn, W.; Pfisterer, M.; Detrano, R. Heart Disease. UCI Machine Learning Repository. 1988. [Google Scholar] [CrossRef]
- Kim, Y.; Bang, H. Introduction to Kalman filter and its applications. In Introduction and Implementations of the Kalman Filter; IntechOpen: London, UK, 2019. [Google Scholar]
- Park, S.; Gil, M.-S.; Im, H.; Moon, Y.-S. Measurement noise recommendation for efficient Kalman filtering over a large amount of sensor data. Sensors 2019, 19, 1168. [Google Scholar] [CrossRef] [Green Version]
- Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. arXiv 2014. [Google Scholar] [CrossRef]
- Ramachandran, P.; Zoph, B.; Le, Q.V. Searching for Activation Functions. arXiv 2017, arXiv:1710.05941. [Google Scholar]
- Zhang, X.; Wang, Y.; Shi, W. PCAMP: Performance Comparison of Machine Learning Packages on the Edges. arXiv 2019. [Google Scholar] [CrossRef]
- Salloum, S.; Dautov, R.; Chen, X.; Peng, P.X.; Huang, J.Z. Big Data Analytics on Apache Spark. Int. J. Data Sci. Anal. 2016, 1, 145–164. [Google Scholar] [CrossRef] [Green Version]
- Guo, R.; Zhao, Y.; Zou, Q.; Fang, X.; Peng, S. Bioinformatics Applications on Apache Spark. GigaScience 2018, 7, giy098. [Google Scholar] [CrossRef]
- Pinheiro, G.; Vinagre, E.; Praça, I.; Vale, Z.; Ramos, C. Smart Grids Data Management: A Case for Cassandra. In Proceedings of the Distributed Computing and Artificial Intelligence, 14th International Conference, Porto, Portugal, 21–23 June 2017; Springer International Publishing: Cham, Switzerland, 2018; pp. 87–95. [Google Scholar]
- Saha, S.; Roy, J.; Pradhan, B.; Hembram, T.K. Hybrid ensemble machine learning approaches for landslide susceptibility mapping using different sampling ratios at East Sikkim Himalayan, India. Adv. Space Res. 2021, 68, 2819–2840. [Google Scholar] [CrossRef]
- Asif, M.A.A.R.; Nishat, M.M.; Faisal, F.; Dip, R.R.; Udoy, M.H.; Shikder, M.F.; Ahsan, R. Performance Evaluation and Comparative Analysis of Different Machine Learning Algorithms in Predicting Cardiovascular Disease. Eng. Lett. 2021, 29, EL_29_2_42. [Google Scholar]
- Asif, S.; Yi, W.; Ain, Q.U.; Hou, J.; Yi, T.; Si, J. Improving Effectiveness of Different Deep Transfer Learning-Based Models for Detecting Brain Tumors from MR Images. IEEE Access 2022, 10, 34716–34730. [Google Scholar] [CrossRef]
No. | Attribute | Description | Value Range |
---|---|---|---|
1 | age | Patient age in years | 29–77 |
2 | sex | Gender instance | 1 = Male; 0 = Female |
3 | cp | Type of chest pain | 1 = Angina, 2 = Atypical form of angina, 3 = Non-angina, 4 = No symptoms of angina |
4 | trestbps | Resting blood pressure in mm Hg | [94; 200] |
5 | chol | Cholesterol value in mg/dL | [126; 564] |
6 | fbs | Fasting blood sugar Value > 120 mg/dL | 1 = True and 0 = False |
7 | restecg | Value of ECG at rest | 0 = Normal, 1 = Abnormal (ST-T wave), 2 = Definite Ventricular |
8 | thalach | Maximum heart rate recorded | [71; 202] |
9 | exang | Exercise induced angina | 1 = yes; 0 = no |
10 | oldpeak | Exercise induced ST depression | [0.0; 62.0] |
11 | slope | slope of T segment peak exercise | 1 = up-sloping, 2 = flat and 3 = down sloping |
12 | ca | Major vessels number coloured by fluoroscopy | 0–3 |
13 | thal | Defect types | 3 = normal; 6 = fixed defect; 7 = reversable defect |
age | sex | cp | trestbps | chol | fbs | restecg | thalac | exang | oldpeak | slope | ca | thal |
---|---|---|---|---|---|---|---|---|---|---|---|---|
40 | 1 | 1 | 97 | 539 | 1 | 2 | 198 | 0 | 0.2 | 2 | 1 | 2 |
65 | 0 | 0 | 157 | 281 | 1 | 2 | 142 | 0 | 2 | 1 | 4 | 3 |
55 | 0 | 1 | 180 | 408 | 0 | 2 | 119 | 0 | 3 | 0 | 0 | 1 |
70 | 1 | 3 | 118 | 208 | 1 | 2 | 153 | 0 | 4 | 1 | 0 | 0 |
40 | 0 | 3 | 153 | 409 | 0 | 1 | 186 | 1 | 2.4 | 0 | 2 | 0 |
32 | 0 | 2 | 127 | 245 | 1 | 2 | 192 | 0 | 1.8 | 1 | 4 | 3 |
70 | 0 | 1 | 142 | 160 | 0 | 2 | 188 | 0 | 0.6 | 0 | 2 | 1 |
59 | 1 | 3 | 157 | 481 | 0 | 1 | 117 | 1 | 0.9 | 2 | 3 | 1 |
62 | 1 | 2 | 151 | 490 | 1 | 1 | 146 | 0 | 1.2 | 0 | 4 | 3 |
63 | 0 | 0 | 129 | 505 | 1 | 0 | 189 | 1 | 1 | 1 | 1 | 3 |
Hyperparameter | Value |
---|---|
Lag (Length of time lags) | 1039 |
Number of layers | 4 |
Number of hidden layers | 2 |
Number of units in dense layer | 5 |
Dropout rate | 16 |
Decay rate | 0.94 |
Learning rate | 0.018 |
Number of epochs | 765 |
Batch size | 128 |
Performance Metrics | GRU | FGRU | Proposed |
---|---|---|---|
Accuracy (%) | 96.55 | 98.85 | 99.1250 |
Precision (%) | 96.57 | 98.90 | 99.1300 |
Recall (%) | 96.53 | 98.81 | 99.1200 |
Specificity (%) | 96.57 | 98.90 | 99.1299 |
F1 Score (%) | 96.55 | 98.86 | 99.1250 |
No. | Author/Year | Method | Accuracy (%) |
---|---|---|---|
1 | Desai et al. [26], 2022 | Logistic Regression | 85.96% |
2 | Singh et al. [16], 2020 | K-Nearest Neighbor | 87.00% |
3 | Subhahi et al. [29], 2022 | Kernel Discriminant Analysis and Modified Self-Adaptive Bayesian Algorithm | 90.00% |
4 | Rajdhan et al. [17], 2020 | Random Forest | 90.16% |
5 | Liu et al. [19], 2017 | Relief and Rough Set Feature Selection and Ensemble Classifier Model | 92.59% |
6 | Khan et al. [28], 2020 | Modified Deep Convolutional Neural Network | 93.30% |
7 | Nancy et al. [4], 2022 | Fuzzy Inference System and Modified Bi-LSTM | 97.32% |
8 | Nashif et al. [18], 2018 | Support Vector Machine | 97.53% |
9 | Rao et al. [22], 2021 | Ensemble Deep Dynamic Algorithm | 98.12% |
10 | Liu et al. [20], 2018 | Symbolic aggregate Approximation and Long Short-Term Memory | 98.40% |
11 | Proposed Model | Fuzzy Inference System and Gated Recurrent Unit | 99.13% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nancy, A.A.; Ravindran, D.; Vincent, D.R.; Srinivasan, K.; Chang, C.-Y. Fog-Based Smart Cardiovascular Disease Prediction System Powered by Modified Gated Recurrent Unit. Diagnostics 2023, 13, 2071. https://doi.org/10.3390/diagnostics13122071
Nancy AA, Ravindran D, Vincent DR, Srinivasan K, Chang C-Y. Fog-Based Smart Cardiovascular Disease Prediction System Powered by Modified Gated Recurrent Unit. Diagnostics. 2023; 13(12):2071. https://doi.org/10.3390/diagnostics13122071
Chicago/Turabian StyleNancy, A Angel, Dakshanamoorthy Ravindran, Durai Raj Vincent, Kathiravan Srinivasan, and Chuan-Yu Chang. 2023. "Fog-Based Smart Cardiovascular Disease Prediction System Powered by Modified Gated Recurrent Unit" Diagnostics 13, no. 12: 2071. https://doi.org/10.3390/diagnostics13122071
APA StyleNancy, A. A., Ravindran, D., Vincent, D. R., Srinivasan, K., & Chang, C. -Y. (2023). Fog-Based Smart Cardiovascular Disease Prediction System Powered by Modified Gated Recurrent Unit. Diagnostics, 13(12), 2071. https://doi.org/10.3390/diagnostics13122071