Classification of Maxillofacial Morphology by Artificial Intelligence Using Cephalometric Analysis Measurements
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Determining Training and Testing Data
2.3. AI Model Creation
2.4. Feature Selection
3. Results
3.1. Cephalogram Analysis Results
3.2. Comparing ML Models
3.3. Nine Maxillofacial Classifications
3.4. Separate Anteroposterior- and Vertical-Only Classifications
3.4.1. Anteroposterior-Only Classification
3.4.2. Vertical-Only Classification
3.5. Feature Selection
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ogawa, K.; Ishida, Y.; Kuwajima, Y.; Lee, C.; Emge, J.R.; Izumisawa, M.; Satoh, K.; Ishikawa-Nagai, S.; Da Silva, J.D.; Chen, C.Y. Accuracy of a Method to Monitor Root Position Using a 3D Digital Crown/Root Model during Orthodontic Treatments. Tomography 2022, 8, 550–559. [Google Scholar] [CrossRef] [PubMed]
- Jingang, J.; Yongde, Z.; Mingliang, J. Bending Process Analysis and Structure Design of Orthodontic Archwire Bending Robot. Int. J. Smart Home 2013, 7, 345–352. [Google Scholar] [CrossRef]
- Schendel, S.A.; Jacobson, R.; Khalessi, S. 3-dimensional facial simulation in orthognathic surgery: Is it accurate? J. Oral Maxillofac. Surg. 2013, 71, 1406–1414. [Google Scholar] [CrossRef] [PubMed]
- Kaul, V.; Enslin, S.; Gross, S.A. History of artificial intelligence in medicine. Gastrointest. Endosc. 2020, 92, 807–812. [Google Scholar] [CrossRef] [PubMed]
- Joda, T.; Yeung, A.W.K.; Hung, K.; Zitzmann, N.U.; Bornstein, M.M. Disruptive Innovation in Dentistry: What It Is and What Could Be Next. J. Dent. Res. 2021, 100, 448–453. [Google Scholar] [CrossRef]
- Mörch, C.M.; Atsu, S.; Cai, W.; Li, X.; Madathil, S.A.; Liu, X.; Mai, V.; Tamimi, F.; Dilhac, M.A.; Ducret, M. Artificial Intelligence and Ethics in Dentistry: A Scoping Review. J. Dent. Res. 2021, 100, 1452–1460. [Google Scholar] [CrossRef]
- Chen, Y.W.; Stanley, K.; Att, W. Artificial intelligence in dentistry: Current applications and future perspectives. Quintessence Int. 2020, 51, 248–257. [Google Scholar] [CrossRef]
- Wu, L.; He, X.; Liu, M.; Xie, H.; An, P.; Zhang, J.; Zhang, H.; Ai, Y.; Tong, Q.; Guo, M.; et al. Evaluation of the effects of an artificial intelligence system on endoscopy quality and preliminary testing of its performance in detecting early gastric cancer: A randomized controlled trial. Endoscopy 2021, 53, 1199–1207. [Google Scholar] [CrossRef]
- Yamamoto, S.; Kinugasa, H.; Hamada, K.; Tomiya, M.; Tanimoto, T.; Ohto, A.; Toda, A.; Takei, D.; Matsubara, M.; Suzuki, S.; et al. The diagnostic ability to classify neoplasias occurring in inflammatory bowel disease by artificial intelligence and endoscopists: A pilot study. J. Gastroenterol. Hepatol. 2022, 37, 1610–1616. [Google Scholar] [CrossRef]
- Wallace, M.B.; Sharma, P.; Bhandari, P.; East, J.; Antonelli, G.; Lorenzetti, R.; Vieth, M.; Speranza, I.; Spadaccini, M.; Desai, M.; et al. Impact of Artificial Intelligence on Miss Rate of Colorectal Neoplasia. Gastroenterology 2022, 163, 295–304.e295. [Google Scholar] [CrossRef]
- Noseworthy, P.A.; Attia, Z.I.; Behnken, E.M.; Giblon, R.E.; Bews, K.A.; Liu, S.; Gosse, T.A.; Linn, Z.D.; Deng, Y.; Yin, J.; et al. Artificial intelligence-guided screening for atrial fibrillation using electrocardiogram during sinus rhythm: A prospective non-randomised interventional trial. Lancet 2022, 400, 1206–1212. [Google Scholar] [CrossRef]
- Araki, K.; Matsumoto, N.; Togo, K.; Yonemoto, N.; Ohki, E.; Xu, L.; Hasegawa, Y.; Satoh, D.; Takemoto, R.; Miyazaki, T. Developing Artificial Intelligence Models for Extracting Oncologic Outcomes from Japanese Electronic Health Records. Adv. Ther. 2023, 40, 934–950. [Google Scholar] [CrossRef]
- Cui, Q.; Chen, Q.; Liu, P.; Liu, D.; Wen, Z. Clinical decision support model for tooth extraction therapy derived from electronic dental records. J. Prosthet. Dent. 2021, 126, 83–90. [Google Scholar] [CrossRef]
- Cantu, A.G.; Gehrung, S.; Krois, J.; Chaurasia, A.; Rossi, J.G.; Gaudin, R.; Elhennawy, K.; Schwendicke, F. Detecting caries lesions of different radiographic extension on bitewings using deep learning. J. Dent. 2020, 100, 103425. [Google Scholar] [CrossRef]
- Lee, S.J.; Chung, D.; Asano, A.; Sasaki, D.; Maeno, M.; Ishida, Y.; Kobayashi, T.; Kuwajima, Y.; Da Silva, J.D.; Nagai, S. Diagnosis of Tooth Prognosis Using Artificial Intelligence. Diagnostics 2022, 12, 1422. [Google Scholar] [CrossRef]
- Takahashi, T.; Nozaki, K.; Gonda, T.; Ikebe, K. A system for designing removable partial dentures using artificial intelligence. Part 1. Classification of partially edentulous arches using a convolutional neural network. J. Prosthodont. Res. 2021, 65, 115–118. [Google Scholar] [CrossRef]
- Hung, M.; Voss, M.W.; Rosales, M.N.; Li, W.; Su, W.; Xu, J.; Bounsanga, J.; Ruiz-Negrón, B.; Lauren, E.; Licari, F.W. Application of machine learning for diagnostic prediction of root caries. Gerodontology 2019, 36, 395–404. [Google Scholar] [CrossRef]
- Gomes, R.F.T.; Schmith, J.; Figueiredo, R.M.; Freitas, S.A.; Machado, G.N.; Romanini, J.; Carrard, V.C. Use of Artificial Intelligence in the Classification of Elementary Oral Lesions from Clinical Images. Int. J. Environ. Res. Public Health 2023, 20, 3894. [Google Scholar] [CrossRef]
- Schwendicke, F.; Samek, W.; Krois, J. Artificial Intelligence in Dentistry: Chances and Challenges. J. Dent. Res. 2020, 99, 769–774. [Google Scholar] [CrossRef]
- Ma, J.; Schneider, L.; Lapuschkin, S.; Achtibat, R.; Duchrau, M.; Krois, J.; Schwendicke, F.; Samek, W. Towards Trustworthy AI in Dentistry. J. Dent. Res. 2022, 101, 1263–1268. [Google Scholar] [CrossRef] [PubMed]
- Rischke, R.; Schneider, L.; Müller, K.; Samek, W.; Schwendicke, F.; Krois, J. Federated Learning in Dentistry: Chances and Challenges. J. Dent. Res. 2022, 101, 1269–1273. [Google Scholar] [CrossRef] [PubMed]
- Shin, W.; Yeom, H.G.; Lee, G.H.; Yun, J.P.; Jeong, S.H.; Lee, J.H.; Kim, H.K.; Kim, B.C. Deep learning based prediction of necessity for orthognathic surgery of skeletal malocclusion using cephalogram in Korean individuals. BMC Oral Health 2021, 21, 130. [Google Scholar] [CrossRef] [PubMed]
- Kunz, F.; Stellzig-Eisenhauer, A.; Zeman, F.; Boldt, J. Artificial intelligence in orthodontics: Evaluation of a fully automated cephalometric analysis using a customized convolutional neural network. J. Orofac. Orthop. 2020, 81, 52–68. [Google Scholar] [CrossRef] [PubMed]
- Patcas, R.; Bernini, D.A.J.; Volokitin, A.; Agustsson, E.; Rothe, R.; Timofte, R. Applying artificial intelligence to assess the impact of orthognathic treatment on facial attractiveness and estimated age. Int. J. Oral Maxillofac. Surg. 2019, 48, 77–83. [Google Scholar] [CrossRef] [Green Version]
- Patcas, R.; Timofte, R.; Volokitin, A.; Agustsson, E.; Eliades, T.; Eichenberger, M.; Bornstein, M.M. Facial attractiveness of cleft patients: A direct comparison between artificial-intelligence-based scoring and conventional rater groups. Eur. J. Orthod. 2019, 41, 428–433. [Google Scholar] [CrossRef]
- Kök, H.; Acilar, A.M.; İzgi, M.S. Usage and comparison of artificial intelligence algorithms for determination of growth and development by cervical vertebrae stages in orthodontics. Prog. Orthod. 2019, 20, 41. [Google Scholar] [CrossRef]
- Caruso, S.; Caruso, S.; Pellegrino, M.; Skafi, R.; Nota, A.; Tecco, S. A Knowledge-Based Algorithm for Automatic Monitoring of Orthodontic Treatment: The Dental Monitoring System. Two Cases. Sensors 2021, 21, 1856. [Google Scholar] [CrossRef]
- Silva, M.A.; Wolf, U.; Heinicke, F.; Bumann, A.; Visser, H.; Hirsch, E. Cone-beam computed tomography for routine orthodontic treatment planning: A radiation dose evaluation. Am. J. Orthod. Dentofacial. Orthop. 2008, 133, 640.e1–640.e5. [Google Scholar] [CrossRef]
- Ricketts, R.M. A foundation for cephalometric communication. Am. J. Orthod. 1960, 46, 330–357. [Google Scholar] [CrossRef]
- Coben, S.E. The integration of facial skeletal variants: A serial cephalometric roentgenographic analysis of craniofacial form and growth. Am. J. Orthod. 1955, 41, 407–434. [Google Scholar] [CrossRef]
- Downs, W.B. Variations in facial relationships; their significance in treatment and prognosis. Am. J. Orthod. 1948, 34, 812–840. [Google Scholar] [CrossRef]
- Sassouni, V. A classification of skeletal facial types. Am. J. Orthod. 1969, 55, 109–123. [Google Scholar] [CrossRef]
- Sella Tunis, T.; May, H.; Sarig, R.; Vardimon, A.D.; Hershkovitz, I.; Shpack, N. Are chin and symphysis morphology facial type-dependent? A computed tomography-based study. Am. J. Orthod. Dentofacial. Orthop. 2021, 160, 84–93. [Google Scholar] [CrossRef]
- Mohammad-Rahimi, H.; Nadimi, M.; Rohban, M.H.; Shamsoddin, E.; Lee, V.Y.; Motamedian, S.R. Machine learning and orthodontics, current trends and the future opportunities: A scoping review. Am. J. Orthod. Dentofacial. Orthop. 2021, 160, 170–192.e174. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Couronné, R.; Probst, P.; Boulesteix, A.L. Random forest versus logistic regression: A large-scale benchmark experiment. BMC Bioinform. 2018, 19, 270. [Google Scholar] [CrossRef] [Green Version]
- Bonte, C.; Vercauteren, F. Privacy-preserving logistic regression training. BMC Med. Genom. 2018, 11, 86. [Google Scholar] [CrossRef]
- Mottaqi, M.S.; Mohammadipanah, F.; Sajedi, H. Contribution of machine learning approaches in response to SARS-CoV-2 infection. Inform. Med. Unlocked 2021, 23, 100526. [Google Scholar] [CrossRef]
- Shokri, A.; Mahmoudzadeh, M.; Baharvand, M.; Mortazavi, H.; Faradmal, J.; Khajeh, S.; Yousefi, F.; Noruzi-Gangachin, M. Position of impacted mandibular third molar in different skeletal facial types: First radiographic evaluation in a group of Iranian patients. Imaging Sci. Dent. 2014, 44, 61–65. [Google Scholar] [CrossRef] [Green Version]
- Eraydin, F.; Cakan, D.G.; Tozlu, M.; Ozdemir, F. Evaluation of buccolingual molar inclinations among different vertical facial types. Korean J. Orthod. 2018, 48, 333–338. [Google Scholar] [CrossRef]
- Fontenele, R.C.; Farias Gomes, A.; Moreira, N.R.; Costa, E.D.; Oliveira, M.L.; Freitas, D.Q. Do the location and dimensions of the mental foramen differ among individuals of different facial types and skeletal classes? A CBCT study. J. Prosthet. Dent. 2021, 129, 741–747. [Google Scholar] [CrossRef] [PubMed]
- Miralles, R.; Hevia, R.; Contreras, L.; Carvajal, R.; Bull, R.; Manns, A. Patterns of electromyographic activity in subjects with different skeletal facial types. Angle Orthod. 1991, 61, 277–284. [Google Scholar] [PubMed]
- Utsuno, H.; Kageyama, T.; Uchida, K.; Kibayashi, K. Facial soft tissue thickness differences among three skeletal classes in Japanese population. Forensic. Sci. Int. 2014, 236, 175–180. [Google Scholar] [CrossRef] [PubMed]
- Prado, G.M.; Fontenele, R.C.; Costa, E.D.; Freitas, D.Q.; Oliveira, M.L. Morphological and topographic evaluation of the mandibular canal and its relationship with the facial profile, skeletal class, and sex. Oral Maxillofac. Surg. 2023, 27, 17–23. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, Q.; Yi, P.; Huang, F.; Zhou, X.; Gao, Q.; Tsay, T.P.; Liu, C. Quantitative evaluation of retromolar space in adults with different vertical facial types. Angle Orthod. 2020, 90, 857–865. [Google Scholar] [CrossRef]
- Oh, H.; Knigge, R.; Hardin, A.; Sherwood, R.; Duren, D.; Valiathan, M.; Leary, E.; McNulty, K. Predicting adult facial type from mandibular landmark data at young ages. Orthod. Craniofac. Res. 2019, 22 (Suppl. S1), 154–162. [Google Scholar] [CrossRef]
- Sugiki, Y.; Kobayashi, Y.; Uozu, M.; Endo, T. Association between skeletal morphology and agenesis of all four third molars in Japanese orthodontic patients. Odontology 2018, 106, 282–288. [Google Scholar] [CrossRef] [Green Version]
RF | LR | SVC | |
---|---|---|---|
Accuracy | 0.823 ± 0.060 | 0.732 ± 0.046 | 0.677 ± 0.049 |
F1 score | 0.806 ± 0.076 | 0.654 ± 0.044 | 0.568 ± 0.086 |
Recall | 0.790 ± 0.077 | 0.660 ± 0.031 | 0.562 ± 0.072 |
Precision | 0.865 ± 0.072 | 0.692 ± 0.050 | 0.629 ± 0.109 |
Classification | Precision | Recall | F1 Score |
---|---|---|---|
Class I and Short | 0.84 | 0.76 | 0.80 |
Class I and Medium | 0.76 | 0.90 | 0.82 |
Class I and Long | 1.00 | 0.67 | 0.80 |
Class II and Short | 0.87 | 0.68 | 0.76 |
Class II and Medium | 0.81 | 0.92 | 0.86 |
Class II and Long | 0.80 | 0.86 | 0.83 |
Class III and Short | 0.90 | 0.78 | 0.84 |
Class III and Medium | 0.82 | 0.82 | 0.82 |
Class III and Long | 1.00 | 0.71 | 0.83 |
accuracy | 0.82 | ||
macro avg. | 0.87 | 0.79 | 0.82 |
weighted avg. | 0.83 | 0.82 | 0.82 |
Anteroposterior Model | Vertical Model | |
---|---|---|
Accuracy | 0.986 ± 0.011 | 0.850 ± 0.037 |
F1 score | 0.987 ± 0.011 | 0.844 ± 0.035 |
Recall | 0.985 ± 0.012 | 0.828 ± 0.040 |
Precision | 0.989 ± 0.009 | 0.885 ± 0.044 |
Classification | Precision | Recall | F1 Score |
---|---|---|---|
Class I | 0.98 | 0.99 | 0.98 |
Class II | 0.99 | 0.99 | 0.99 |
Class III | 1.00 | 0.98 | 0.99 |
Accuracy | 0.99 | ||
Macro avg. | 0.99 | 0.99 | 0.99 |
Weighted avg. | 0.99 | 0.99 | 0.99 |
Classification | Precision | Recall | F1 Score |
---|---|---|---|
Long | 0.89 | 0.80 | 0.84 |
Medium | 0.82 | 0.91 | 0.86 |
Short | 0.89 | 0.78 | 0.83 |
Accuracy | 0.85 | ||
Macro avg. | 0.87 | 0.83 | 0.85 |
Weighted avg. | 0.85 | 0.85 | 0.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ueda, A.; Tussie, C.; Kim, S.; Kuwajima, Y.; Matsumoto, S.; Kim, G.; Satoh, K.; Nagai, S. Classification of Maxillofacial Morphology by Artificial Intelligence Using Cephalometric Analysis Measurements. Diagnostics 2023, 13, 2134. https://doi.org/10.3390/diagnostics13132134
Ueda A, Tussie C, Kim S, Kuwajima Y, Matsumoto S, Kim G, Satoh K, Nagai S. Classification of Maxillofacial Morphology by Artificial Intelligence Using Cephalometric Analysis Measurements. Diagnostics. 2023; 13(13):2134. https://doi.org/10.3390/diagnostics13132134
Chicago/Turabian StyleUeda, Akane, Cami Tussie, Sophie Kim, Yukinori Kuwajima, Shikino Matsumoto, Grace Kim, Kazuro Satoh, and Shigemi Nagai. 2023. "Classification of Maxillofacial Morphology by Artificial Intelligence Using Cephalometric Analysis Measurements" Diagnostics 13, no. 13: 2134. https://doi.org/10.3390/diagnostics13132134
APA StyleUeda, A., Tussie, C., Kim, S., Kuwajima, Y., Matsumoto, S., Kim, G., Satoh, K., & Nagai, S. (2023). Classification of Maxillofacial Morphology by Artificial Intelligence Using Cephalometric Analysis Measurements. Diagnostics, 13(13), 2134. https://doi.org/10.3390/diagnostics13132134