Vascular Enlargement as a Predictor of Nodal Involvement in Bladder Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Image Acquisition
2.3. Image Analysis
2.4. Pathology
2.5. Statistical Analysis
3. Results
3.1. Study Population
3.2. CT Findings Correlated to the Nodal Involvement at Pathology (pN+): ROC Curve Analysis
3.3. CT Findings Correlated to the Nodal Involvement at Pathology (pN+): Univariate and Multivariate Analysis
3.4. Inter-Rater Agreement
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer Statistics, 2023. CA: A Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef] [PubMed]
- Lenis, A.T.; Lec, P.M.; Chamie, K.; MSHS, M. Bladder Cancer. JAMA 2020, 324, 1980–1991. [Google Scholar] [CrossRef]
- Flaig, T.W.; Spiess, P.E.; Agarwal, N.; Bangs, R.; Boorjian, S.A.; Buyyounouski, M.K.; Downs, T.M.; Efstathiou, J.A.; Friedlander, T.; Greenberg, R.E.; et al. NCCN Guidelines Insights: Bladder Cancer, Version 5.2018. J. Natl. Compr. Cancer Netw. 2018, 16, 1041–1053. [Google Scholar] [CrossRef] [Green Version]
- Macvicar, A.D. Bladder Cancer Staging. BJU Int. 2000, 86, 111–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vikram, R.; Sandler, C.M.; Ng, C.S. Imaging and Staging of Transitional Cell Carcinoma: Part 1, Lower Urinary Tract. Am. J. Roentgenol. 2009, 192, 1481–1487. [Google Scholar] [CrossRef] [PubMed]
- Witjes, J.A.; Bruins, H.M.; Carrión, A.; Cathomas, R.; Compérat, E.M.; Efstathiou, J.A.; Fietkau, R.; Gakis, G.; van der Heijden, A.G.; Lorch, A.; et al. EAU Guidelines on Muscle-Invasive and Metastatic Bladder Cancer. Available online: https://uroweb.org/guidelines/muscle-invasive-and-metastatic-bladder-cancer (accessed on 30 April 2023).
- Thoeny, H.C.; Froehlich, J.M.; Triantafyllou, M.; Huesler, J.; Bains, L.J.; Vermathen, P.; Fleischmann, A.; Studer, U.E. Metastases in Normal-Sized Pelvic Lymph Nodes: Detection with Diffusion-Weighted MR Imaging. Radiology 2014, 273, 125–135. [Google Scholar] [CrossRef]
- Borgheresi, A.; Muzio, F.D.; Agostini, A.; Ottaviani, L.; Bruno, A.; Granata, V.; Fusco, R.; Danti, G.; Flammia, F.; Grassi, R.; et al. Lymph Nodes Evaluation in Rectal Cancer: Where Do We Stand and Future Perspective. J. Clin. Med. 2022, 11, 2599. [Google Scholar] [CrossRef]
- O’Shea, A.; Kilcoyne, A.; Hedgire, S.S.; Harisinghani, M.G. Pelvic Lymph Nodes and Pathways of Disease Spread in Male Pelvic Malignancies. Abdom. Radiol. 2020, 45, 2198–2212. [Google Scholar] [CrossRef]
- Kitajima, K.; Suenaga, Y.; Ueno, Y.; Kanda, T.; Maeda, T.; Deguchi, M.; Ebina, Y.; Yamada, H.; Takahashi, S.; Sugimura, K. Fusion of PET and MRI for Staging of Uterine Cervical Cancer: Comparison with Contrast-Enhanced 18F-FDG PET/CT and Pelvic MRI. Clin. Imaging 2014, 38, 464–469. [Google Scholar] [CrossRef]
- Woo, S.; Suh, C.H.; Kim, S.Y.; Cho, J.Y.; Kim, S.H. The Diagnostic Performance of MRI for Detection of Lymph Node Metastasis in Bladder and Prostate Cancer: An Updated Systematic Review and Diagnostic Meta-Analysis. Am. J. Roentgenol. 2018, 210, W95–W109. [Google Scholar] [CrossRef]
- Bicchetti, M.; Simone, G.; Giannarini, G.; Girometti, R.; Briganti, A.; Brunocilla, E.; Cardone, G.; Cobelli, F.D.; Gaudiano, C.; Giudice, F.D.; et al. A Novel Pathway to Detect Muscle-Invasive Bladder Cancer Based on Integrated Clinical Features and VI-RADS Score on MRI: Results of a Prospective Multicenter Study. Radiol. Med. 2022, 127, 881–890. [Google Scholar] [CrossRef] [PubMed]
- Bruno, F.; Granata, V.; Bellisari, F.C.; Sgalambro, F.; Tommasino, E.; Palumbo, P.; Arrigoni, F.; Cozzi, D.; Grassi, F.; Brunese, M.C.; et al. Advanced Magnetic Resonance Imaging (MRI) Techniques: Technical Principles and Applications in Nanomedicine. Cancers 2022, 14, 1626. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-J.; Koo, P.J.; Pak, K.; Kim, I.-J.; Kim, K. Diagnostic Accuracy of C-11 Choline and C-11 Acetate for Lymph Node Staging in Patients with Bladder Cancer: A Systematic Review and Meta-Analysis. World J. Urol. 2018, 36, 331–340. [Google Scholar] [CrossRef]
- Ascenti, G.; Cicero, G.; Bertelli, E.; Papa, M.; Gentili, F.; Ciccone, V.; Manetta, R.; Gandolfo, N.; Cardone, G.; Miele, V. CT-Urography: A Nationwide Survey by the Italian Board of Urogenital Radiology. Radiol. Med. 2022, 127, 577–588. [Google Scholar] [CrossRef]
- Mirmomen, S.M.; Shinagare, A.B.; Williams, K.E.; Silverman, S.G.; Malayeri, A.A. Preoperative Imaging for Locoregional Staging of Bladder Cancer. Abdom. Radiol. 2019, 44, 3843–3857. [Google Scholar] [CrossRef] [PubMed]
- Nassiri, N.; Ghodoussipour, S.; Maas, M.; Nazemi, A.; Asanad, K.; Pearce, S.; Bhanvadia, S.S.; Djaladat, H.; Schuckman, A.; Daneshmand, S. Occult Nodal Metastases in Patients Down-Staged to Nonmuscle Invasive Disease Following Neoadjuvant Chemotherapy. Urology 2020, 142, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Amin, M.B.; Edge, S.B.; Greene, F.L.; Byrd, D.R.; Brookland, R.K.; Washington, M.K.; Gershenwald, J.E.; Compton, C.C.; Hess, K.R.; Sullivan, D.C.; et al. (Eds.) AJCC Cancer Staging Manual, 8th ed.; Springer International Publishing: New York, NY, USA, 2017; ISBN 978-3-319-40617-6. [Google Scholar]
- Magers, M.J.; Lopez-Beltran, A.; Montironi, R.; Williamson, S.R.; Kaimakliotis, H.Z.; Cheng, L. Staging of Bladder Cancer. Histopathology 2019, 74, 112–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simone, G.; Papalia, R.; Ferriero, M.; Guaglianone, S.; Castelli, E.; Collura, D.; Muto, G.; Gallucci, M. Node Dissection in Radical Cystectomy. Int. J. Urol. 2013, 20, 390–397. [Google Scholar] [CrossRef]
- Bruins, H.M.; Veskimae, E.; Hernandez, V.; Imamura, M.; Neuberger, M.M.; Dahm, P.; Stewart, F.; Lam, T.B.; N’Dow, J.; van der Heijden, A.G.; et al. The Impact of the Extent of Lymphadenectomy on Oncologic Outcomes in Patients Undergoing Radical Cystectomy for Bladder Cancer: A Systematic Review. Eur. Urol. 2014, 66, 1065–1077. [Google Scholar] [CrossRef] [Green Version]
- Aljabery, F.; Shabo, I.; Olsson, H.; Gimm, O.; Jahnson, S. Radio-guided Sentinel Lymph Node Detection and Lymph Node Mapping in Invasive Urinary Bladder Cancer: A Prospective Clinical Study. BJU Int. 2017, 120, 329–336. [Google Scholar] [CrossRef] [Green Version]
- Gschwend, J.E.; Heck, M.M.; Lehmann, J.; Ruebben, H.; Albers, P.; Heidenreich, A.; de Geeter, P.; Wolff, J.M.; Frohneberg, D.; Schnoeller, T.; et al. Limited versus Extended Pelvic Lymphadenectomy in Patients with Bladder Cancer Undergoing Radical Cystectomy: Survival Results from a Prospective, Randomized Trial (LEA AUO AB 25/02). J. Clin. Oncol. 2016, 34, 4503. [Google Scholar] [CrossRef]
- Afonso, J.; Freitas, R.; Lobo, F.; Morais, A.; Oliveira, J.; Amaro, T.; Reis, R.; Baltazar, F.; Longatto-Filho, A.; Santos, L. Urothelial Bladder Cancer Progression: Lessons Learned from the Bench. J. Cancer Metastasis Treat. 2015, 1, 57. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Zhang, C.; Peng, X.; Li, Y.; Chen, G.; Gou, X.; Zhou, X.; Ma, C. A Novel Risk Score Model Based on Five Angiogenesis-Related Long Non-Coding RNAs for Bladder Urothelial Carcinoma. Cancer Cell Int. 2022, 22, 157. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; He, L.; Zu, X.; Zhang, H.; Zeng, H.; Qi, L. Lymphatic Vessel Density as a Predictor of Lymph Node Metastasis and Its Relationship with Prognosis in Urothelial Carcinoma of the Bladder. BJU Int. 2011, 107, 1930–1935. [Google Scholar] [CrossRef]
- Katsuno, H.; Zacharakis, E.; Aziz, O.; Rao, C.; Deeba, S.; Paraskeva, P.; Ziprin, P.; Athanasiou, T.; Darzi, A. Does the Presence of Circulating Tumor Cells in the Venous Drainage of Curative Colorectal Cancer Resections Determine Prognosis? A Meta-Analysis. Ann. Surg. Oncol. 2008, 15, 3083–3091. [Google Scholar] [CrossRef]
- McMahon, C.J.; Rofsky, N.M.; Pedrosa, I. Lymphatic Metastases from Pelvic Tumors: Anatomic Classification, Characterization, and Staging. Radiology 2009, 254, 31–46. [Google Scholar] [CrossRef]
- Mills, R.D.; Turner, W.H.; Fleischmann, A.; Markwalder, R.; Thalmann, G.N.; Studer, U.E. Pelvic Lymph Node Metastases from Bladder Cancer: Outcome in 83 Patients after Radical Cystectomy and Pelvic Lymphadenectomy. J. Urol. 2001, 166, 19–23. [Google Scholar] [CrossRef]
- Abol-Enein, H.; El-Baz, M.; El-Hameed, M.A.A.; Abdel-Latif, M.; Ghoneim, M.A. Lymph Node Involvement in Patients with Bladder Cancer Treated with Radical Cystectomy: A Patho-Anatomical Study—A Single Center Experience. J. Urol. 2004, 172, 1818–1821. [Google Scholar] [CrossRef]
- Caglic, I.; Panebianco, V.; Vargas, H.A.; Bura, V.; Woo, S.; Pecoraro, M.; Cipollari, S.; Sala, E.; Barrett, T. MRI of Bladder Cancer: Local and Nodal Staging. J. Magn. Reson. Imaging 2020, 52, 649–667. [Google Scholar] [CrossRef]
- Vinnicombe, S.J.; Norman, A.R.; Nicolson, V.; Husband, J.E. Normal Pelvic Lymph Nodes: Evaluation with CT after Bipedal Lymphangiography. Radiology 1995, 194, 349–355. [Google Scholar] [CrossRef]
- Grubnic, S.; Vinnicombe, S.J.; Norman, A.R.; Husband, J.E. MR Evaluation of Normal Retroperitoneal and Pelvic Lymph Nodes. Clin. Radiol. 2002, 57, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Diao, F.; Shi, S.; Li, K.; Zhu, W.; Wu, S.; Lin, T. Computed Tomography and Magnetic Resonance Imaging Evaluation of Pelvic Lymph Node Metastasis in Bladder Cancer. Chin. J. Cancer 2018, 37, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eismann, L.; Rodler, S.; Tamalunas, A.; Schulz, G.; Jokisch, F.; Volz, Y.; Pfitzinger, P.; Schlenker, B.; Stief, C.; Solyanik, O.; et al. Computed-Tomography Based Scoring System Predicts Outcome for Clinical Lymph Node-Positive Patients Undergoing Radical Cystectomy. Int. Braz. J. Urol. 2022, 48, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Vargas, H.A.; Akin, O.; Schöder, H.; Olgac, S.; Dalbagni, G.; Hricak, H.; Bochner, B.H. Prospective Evaluation of MRI, 11C-Acetate PET/CT and Contrast-Enhanced CT for Staging of Bladder Cancer. Eur. J. Radiol. 2012, 81, 4131–4137. [Google Scholar] [CrossRef]
- Horn, T.; Zahel, T.; Adt, N.; Schmid, S.C.; Heck, M.M.; Thalgott, M.K.; Hatzichristodoulou, G.; Haller, B.; Autenrieth, M.; Kübler, H.R.; et al. Evaluation of Computed Tomography for Lymph Node Staging in Bladder Cancer Prior to Radical Cystectomy. Urol. Int. 2016, 96, 51–56. [Google Scholar] [CrossRef]
- Bookwalter, C.A.; VanBuren, W.M.; Neisen, M.J.; Bjarnason, H. Imaging Appearance and Nonsurgical Management of Pelvic Venous Congestion Syndrome. RadioGraphics 2019, 39, 596–608. [Google Scholar] [CrossRef]
- Krasna, M.J.; Flancbaum, L.; Cody, R.P.; Shneibaum, S.; Ari, G.B. Vascular and Neural Invasion in Colorectal Carcinoma. Incidence and Prognostic Significance. Cancer 1988, 61, 1018–1023. [Google Scholar] [CrossRef]
- Bayar, S.; Saxena, R.; Emir, B.; Salem, R.R. Venous Invasion May Predict Lymph Node Metastasis in Early Rectal Cancer. Eur. J. Surg. Oncol. (EJSO) 2002, 28, 413–417. [Google Scholar] [CrossRef]
- Tsutsuyama, M.; Nakanishi, H.; Yoshimura, M.; Oshiro, T.; Kinoshita, T.; Komori, K.; Shimizu, Y.; Ichinosawa, Y.; Kinuta, S.; Wajima, K.; et al. Detection of Circulating Tumor Cells in Drainage Venous Blood from Colorectal Cancer Patients Using a New Filtration and Cytology-Based Automated Platform. PLoS ONE 2019, 14, e0212221. [Google Scholar] [CrossRef]
- Smith, N.J.; Barbachano, Y.; Norman, A.R.; Swift, R.I.; Abulafi, A.M.; Brown, G. Prognostic Significance of Magnetic Resonance Imaging-detected Extramural Vascular Invasion in Rectal Cancer. Br. J. Surg. 2007, 95, 229–236. [Google Scholar] [CrossRef]
- Lord, A.C.; D’Souza, N.; Shaw, A.; Rokan, Z.; Moran, B.; Abulafi, M.; Rasheed, S.; Chandramohan, A.; Corr, A.; Chau, I.; et al. MRI-Diagnosed Tumor Deposits and EMVI Status Have Superior Prognostic Accuracy to Current Clinical TNM Staging in Rectal Cancer. Ann. Surg. 2022, 276, 334–344. [Google Scholar] [CrossRef] [PubMed]
- Glynne-Jones, R.; Wyrwicz, L.; Tiret, E.; Brown, G.; Rödel, C.; Cervantes, A.; Arnold, D. Rectal Cancer: ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-up †. Ann. Oncol. 2017, 28, IV22–IV40. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.-C.; Lee, R.-C.; Chang, C.-Y. Prediction of Lymphovascular Invasion in Rectal Cancer by Preoperative CT. Am. J. Roentgenol. 2013, 201, 985–992. [Google Scholar] [CrossRef] [PubMed]
- Coruh, A.G.; Peker, E.; Elhan, A.; Erden, I.; Erden, A. Evaluation of Extramural Venous Invasion by Diffusion-Weighted Magnetic Resonance Imaging and Computed Tomography in Rectal Adenocarcinoma. Can. Assoc. Radiol. J. 2019, 70, 457–465. [Google Scholar] [CrossRef]
- Yao, X.; Yang, S.-X.; Song, X.-H.; Cui, Y.-C.; Ye, Y.-J.; Wang, Y. Prognostic Significance of Computed Tomography-Detected Extramural Vascular Invasion in Colon Cancer. World J. Gastroenterol. 2016, 22, 7157–7165. [Google Scholar] [CrossRef]
- Cheng, J.; Wu, J.; Ye, Y.; Zhang, C.; Zhang, Y.; Wang, Y. The Prognostic Significance of Extramural Venous Invasion Detected by Multiple-Row Detector Computed Tomography in Stage III Gastric Cancer. Abdom. Radiol. 2016, 41, 1219–1226. [Google Scholar] [CrossRef]
- Green, D.B.; Kawashima, A.; Menias, C.O.; Tanaka, T.; Redelman-Sidi, G.; Bhalla, S.; Shah, R.; King, B.F. Complications of Intravesical BCG Immunotherapy for Bladder Cancer. RadioGraphics 2018, 39, 80–94. [Google Scholar] [CrossRef]
Patients (N ≤ 38) | Median (25–75 p) N (%) |
---|---|
Age (y.o.) | 73 (68–82) |
Gender (M/F) | 33 (87%)/5 (13%) |
T Stage. Pathology | |
pT2a pT2b pT3a pT3b pT4a | 6 (15%) 11 (29%) 4 (11%) 13 (34%) 4 (11%) |
N Stage. Pathology | |
N0 N+ | 18 (47%) 20 (53%) |
M0 Stage. Pathology | 38 (100%) |
Lymphovascular Invasion (LVI). Pathology | 10 (26%) |
CT Finding | Parameter | Median (25–75 p) N (%) |
---|---|---|
Nodal shape | Round/Irregular | 10 (26%) |
Oval | 28 (74%) | |
Fatty hilum | Present | 4 (11%) |
Absent | 34 (89%) | |
Nodal short axis (mm) | 5.8 (4.0–7.0) | |
Nodal enhancement | Present | 19 (50%) |
Absent | 19 (50%) | |
LVD (mm) * | 3.2 (2.5–4.0) | |
Invasion of perivesical fat | Present | 13 (34%) |
Absent | 25 (66%) |
CT Finding | Parameter/ Cutoff | AUC (95% CI) | Sensitivity (%) | Specificity (%) | p |
---|---|---|---|---|---|
Nodal shape | Round/irregular | 0.592 (0.421–0.748) | 35.00 | 83.33 | 0.1964 |
Fatty hilum | Absent | 0.547 (0.378–0.709) | 15.00 | 94.44 | 0.3400 |
Nodal short axis (mm) | >5 | 0.751 (0.585–0.877) | 80.00 | 72.22 | 0.0021 |
Nodal enhancement | Present | 0.817 (0.658–0.923) | 80.00 | 83.33 | <0.0001 |
LVD (mm) * | >3 | 0.949 (0.824–0.994) | 90.00 | 94.44 | <0.0001 |
Invasion of perivesical fat | Present | 0.508 (0.341–0.674) | 35.00 | 66.67 | 0.9161 |
CT Parameter | Parameter | pN− N (%) | pN+ N (%) | Univariate | Logistic Regression | ||
---|---|---|---|---|---|---|---|
χ2 | p | OR (95% CI) | p | ||||
Nodal shape | Round/irregular | 3 (8%) | 7 (18%) | 1.599 | 0.2061 | ¥ | |
Oval | 15 (40%) | 13 (34%) | |||||
Fatty hilum | Present | 1 (2%) | 3 (8%) | 0.874 | 0.3500 | ¥ | |
Absent | 17 (45%) | 17 (45%) | |||||
Nodal short axis | >5 mm | 5 (13%) | 16 (42%) | 10.175 | 0.0014 | ‡ | |
≤5 mm | 13 (34%) | 4 (11%) | |||||
Nodal Enhancement | Present | 3 (8%) | 16 (42%) | 14.800 | 0.0001 | 13.208 (0.847–106.049) | 0.0656 |
Absent | 15 (39%) | 4 (11%) | |||||
LVD * | >3 mm | 1 (3%) | 18 (47%) | 26.311 | <0.0001 | 26.885 (3.481–107.655) | 0.0016 |
≤3 mm | 17 (45%) | 2 (5%) | |||||
Invasion of perivesical fat | Present | 6 (16%) | 7 (18%) | 0.011 | 0.9150 | ¥ | |
Absent | 12 (32%) | 13 (34%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borgheresi, A.; Agostini, A.; Sternardi, F.; Cesari, E.; Ventura, F.; Ottaviani, L.; Delle Fave, R.F.; Pretore, E.; Cimadamore, A.; Filosa, A.; et al. Vascular Enlargement as a Predictor of Nodal Involvement in Bladder Cancer. Diagnostics 2023, 13, 2227. https://doi.org/10.3390/diagnostics13132227
Borgheresi A, Agostini A, Sternardi F, Cesari E, Ventura F, Ottaviani L, Delle Fave RF, Pretore E, Cimadamore A, Filosa A, et al. Vascular Enlargement as a Predictor of Nodal Involvement in Bladder Cancer. Diagnostics. 2023; 13(13):2227. https://doi.org/10.3390/diagnostics13132227
Chicago/Turabian StyleBorgheresi, Alessandra, Andrea Agostini, Francesca Sternardi, Elisa Cesari, Fiammetta Ventura, Letizia Ottaviani, Rocco Francesco Delle Fave, Eugenio Pretore, Alessia Cimadamore, Alessandra Filosa, and et al. 2023. "Vascular Enlargement as a Predictor of Nodal Involvement in Bladder Cancer" Diagnostics 13, no. 13: 2227. https://doi.org/10.3390/diagnostics13132227
APA StyleBorgheresi, A., Agostini, A., Sternardi, F., Cesari, E., Ventura, F., Ottaviani, L., Delle Fave, R. F., Pretore, E., Cimadamore, A., Filosa, A., Galosi, A. B., & Giovagnoni, A. (2023). Vascular Enlargement as a Predictor of Nodal Involvement in Bladder Cancer. Diagnostics, 13(13), 2227. https://doi.org/10.3390/diagnostics13132227