Underexpression of Carbamoyl Phosphate Synthetase I as Independent Unfavorable Prognostic Factor in Intrahepatic Cholangiocarcinoma: A Potential Theranostic Biomarker
Abstract
:1. Introduction
2. Materials and Methods
2.1. Analysis of Gene Expression Profiles from Publicly Accessible Intrahepatic Cholangiocarcinoma Database
2.2. Study Cohort of Patients, Tumor Tissue Samples and Histopathological Evaluation
2.3. Immunohistochemical Study and Interpretation
2.4. Statistical Analysis
3. Result
3.1. Urea Cycle-Associated Gene CPS1 Is Significantly Down-Regulated in Intrahepatic Cholangiocarcinomas Compared with Non-Cancerous Counterparts
3.2. CPS1 Expression and the Associations with Clinical and Pathological Variables of Cholangiocarcinoma Patients
3.3. Survival Analyses for Patients with Intrahepatic Cholangiocarcinoma
3.4. CPS1 Expression as an Independent Prognosticator in Patients with Intrahepatic Cholangiocarcinoma
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Antwi, S.O.; Mousa, O.Y.; Patel, T. Racial, Ethnic, and Age Disparities in Incidence and Survival of Intrahepatic Cholangiocarcinoma in the United States; 1995–2014. Ann. Hepatol. 2018, 17, 604–614. [Google Scholar] [CrossRef] [PubMed]
- Banales, J.M.; Cardinale, V.; Carpino, G.; Marzioni, M.; Andersen, J.B.; Invernizzi, P.; Lind, G.E.; Folseraas, T.; Forbes, S.J.; Fouassier, L.; et al. Expert consensus document: Cholangiocarcinoma: Current knowledge and future perspectives consensus statement from the European Network for the Study of Cholangiocarcinoma (ENS-CCA). Nat. Rev. Gastroenterol. Hepatol. 2016, 13, 261–280. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.C.; Coburn, N.G.; Baxter, N.N.; Kiss, A.; Law, C.H. Surgical management of intrahepatic cholangiocarcinoma--a population-based study. Ann. Surg. Oncol. 2008, 15, 600–608. [Google Scholar] [CrossRef]
- Shaib, Y.; El-Serag, H.B. The epidemiology of cholangiocarcinoma. Semin. Liver Dis. 2004, 24, 115–125. [Google Scholar] [CrossRef]
- Mavros, M.N.; Economopoulos, K.P.; Alexiou, V.G.; Pawlik, T.M. Treatment and Prognosis for Patients With Intrahepatic Cholangiocarcinoma: Systematic Review and Meta-analysis. JAMA Surg. 2014, 149, 565–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keshet, R.; Szlosarek, P.; Carracedo, A.; Erez, A. Rewiring urea cycle metabolism in cancer to support anabolism. Nat. Rev. Cancer 2018, 18, 634–645. [Google Scholar] [CrossRef]
- Martinez, A.I.; Perez-Arellano, I.; Pekkala, S.; Barcelona, B.; Cervera, J. Genetic, structural and biochemical basis of carbamoyl phosphate synthetase 1 deficiency. Mol. Genet. Metab. 2010, 101, 311–323. [Google Scholar] [CrossRef]
- Wu, G.; Yan, Y.; Zhou, Y.; Wang, X.; Wei, J.; Chen, X.; Lin, W.; Ou, C.; Zhou, J.; Xu, Z. Expression and clinical significance of CPS1 in glioblastoma multiforme. Curr. Res. Transl. Med. 2019, 67, 123–128. [Google Scholar] [CrossRef]
- Seborova, K.; Kloudova-Spalenkova, A.; Koucka, K.; Holy, P.; Ehrlichova, M.; Wang, C.; Ojima, I.; Voleska, I.; Daniel, P.; Balusikova, K.; et al. The Role of TRIP6, ABCC3 and CPS1 Expression in Resistance of Ovarian Cancer to Taxanes. Int. J. Mol. Sci. 2021, 23, 73. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, X.; Bi, J.; Li, Z.; Zhang, Z.; Kong, C. Caspase recruitment domain family member 10 regulates carbamoyl phosphate synthase 1 and promotes cancer growth in bladder cancer cells. J. Cell. Mol. Med. 2019, 23, 8128–8138. [Google Scholar] [CrossRef] [Green Version]
- Celiktas, M.; Tanaka, I.; Tripathi, S.C.; Fahrmann, J.F.; Aguilar-Bonavides, C.; Villalobos, P.; Delgado, O.; Dhillon, D.; Dennison, J.B.; Ostrin, E.J.; et al. Role of CPS1 in Cell Growth, Metabolism and Prognosis in LKB1-Inactivated Lung Adenocarcinoma. J. Natl. Cancer Inst. 2017, 109, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, G.; Zhao, Z.; Yan, Y.; Zhou, Y.; Wei, J.; Chen, X.; Lin, W.; Ou, C.; Li, J.; Wang, X.; et al. CPS1 expression and its prognostic significance in lung adenocarcinoma. Ann. Transl. Med. 2020, 8, 341. [Google Scholar] [CrossRef]
- Daniel, P.; Halada, P.; Jelinek, M.; Balusikova, K.; Kovar, J. Differentially Expressed Mitochondrial Proteins in Human MCF7 Breast Cancer Cells Resistant to Paclitaxel. Int. J. Mol. Sci. 2019, 20, 2986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palaniappan, A.; Ramar, K.; Ramalingam, S. Computational Identification of Novel Stage-Specific Biomarkers in Colorectal Cancer Progression. PLoS ONE 2016, 11, e0156665. [Google Scholar] [CrossRef] [PubMed]
- Kinoshita, M.; Miyata, M. Underexpression of mRNA in human hepatocellular carcinoma focusing on eight loci. Hepatology 2002, 36, 433–438. [Google Scholar] [CrossRef]
- Fang, X.; Wu, X.; Xiang, E.; Luo, F.; Li, Q.; Ma, Q.; Yuan, F.; Chen, P. Expression profiling of CPS1 in Correa’s cascade and its association with gastric cancer prognosis. Oncol. Lett. 2021, 21, 441. [Google Scholar] [CrossRef]
- Cardona, D.M.; Zhang, X.; Liu, C. Loss of carbamoyl phosphate synthetase I in small-intestinal adenocarcinoma. Am. J. Clin. Pathol. 2009, 132, 877–882. [Google Scholar] [CrossRef] [Green Version]
- Andersen, J.B.; Spee, B.; Blechacz, B.R.; Avital, I.; Komuta, M.; Barbour, A.; Conner, E.A.; Gillen, M.C.; Roskams, T.; Roberts, L.R.; et al. Genomic and genetic characterization of cholangiocarcinoma identifies therapeutic targets for tyrosine kinase inhibitors. Gastroenterology 2012, 142, 1021–1031.e1015. [Google Scholar] [CrossRef] [Green Version]
- WHO Classification of Tumours Editorial Board. WHO Classification of Tumours: Digestive System Tumours, 5th ed.; International Agency for Research on Cancer (IARC): Lyon, France, 2019; pp. 254–259.
- Qiang, Z.; Zhang, H.; Jin, S.; Yan, C.; Li, Z.; Tao, L.; Yu, H. The prognostic value of arginase-1 and glypican-3 expression levels in patients after surgical intrahepatic cholangiocarcinoma resection. World J. Surg. Oncol. 2021, 19, 316. [Google Scholar] [CrossRef]
- Yan, B.C.; Gong, C.; Song, J.; Krausz, T.; Tretiakova, M.; Hyjek, E.; Al-Ahmadie, H.; Alves, V.; Xiao, S.Y.; Anders, R.A.; et al. Arginase-1: A new immunohistochemical marker of hepatocytes and hepatocellular neoplasms. Am. J. Surg. Pathol. 2010, 34, 1147–1154. [Google Scholar] [CrossRef]
- Tyson, G.L.; Ilyas, J.A.; Duan, Z.; Green, L.K.; Younes, M.; El-Serag, H.B.; Davila, J.A. Secular trends in the incidence of cholangiocarcinoma in the USA and the impact of misclassification. Dig. Dis. Sci. 2014, 59, 3103–3110. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.; Zhu, Y.; Zhao, Z.; Wu, Z.; Okanurak, K.; Lv, Z. Liver fluke infection and cholangiocarcinoma: A review. Parasitol. Res. 2017, 116, 11–19. [Google Scholar] [CrossRef]
- Aishima, S.; Oda, Y. Pathogenesis and classification of intrahepatic cholangiocarcinoma: Different characters of perihilar large duct type versus peripheral small duct type. J. Hepato-Biliary-Pancreat. Sci. 2015, 22, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Massarweh, N.N.; El-Serag, H.B. Epidemiology of Hepatocellular Carcinoma and Intrahepatic Cholangiocarcinoma. Cancer Control 2017, 24, 1073274817729245. [Google Scholar] [CrossRef]
- Khan, S.A.; Tavolari, S.; Brandi, G. Cholangiocarcinoma: Epidemiology and risk factors. Liver Int. 2019, 39 (Suppl. 1), 19–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bridgewater, J.; Galle, P.R.; Khan, S.A.; Llovet, J.M.; Park, J.W.; Patel, T.; Pawlik, T.M.; Gores, G.J. Guidelines for the diagnosis and management of intrahepatic cholangiocarcinoma. J. Hepatol. 2014, 60, 1268–1289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hajaj, E.; Sciacovelli, M.; Frezza, C.; Erez, A. The context-specific roles of urea cycle enzymes in tumorigenesis. Mol. Cell 2021, 81, 3749–3759. [Google Scholar] [CrossRef] [PubMed]
- Krebs, H.A. The history of the tricarboxylic acid cycle. Perspect. Biol. Med. 1970, 14, 154–170. [Google Scholar] [CrossRef]
- Holmes, F.L. Hans Krebs and the discovery of the ornithine cycle. Fed. Proc. 1980, 39, 216–225. [Google Scholar]
- Gaasbeek Janzen, J.W.; Lamers, W.H.; Moorman, A.F.; de Graaf, A.; Los, J.A.; Charles, R. Immunohistochemical localization of carbamoyl-phosphate synthetase (ammonia) in adult rat liver; evidence for a heterogeneous distribution. J. Histochem. Cytochem. 1984, 32, 557–564. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.S.; Adler, L.; Karathia, H.; Carmel, N.; Rabinovich, S.; Auslander, N.; Keshet, R.; Stettner, N.; Silberman, A.; Agemy, L.; et al. Urea Cycle Dysregulation Generates Clinically Relevant Genomic and Biochemical Signatures. Cell 2018, 174, 1559–1570.e1522. [Google Scholar] [CrossRef] [Green Version]
- Rubio, V.; Cervera, J. The carbamoyl-phosphate synthase family and carbamate kinase: Structure-function studies. Biochem. Soc. Trans. 1995, 23, 879–883. [Google Scholar] [CrossRef] [Green Version]
- Ryall, J.; Nguyen, M.; Bendayan, M.; Shore, G.C. Expression of nuclear genes encoding the urea cycle enzymes, carbamoyl-phosphate synthetase I and ornithine carbamoyl transferase, in rat liver and intestinal mucosa. Eur. J. Biochem. 1985, 152, 287–292. [Google Scholar] [CrossRef]
- Diez-Fernandez, C.; Haberle, J. Targeting CPS1 in the treatment of Carbamoyl phosphate synthetase 1 (CPS1) deficiency, a urea cycle disorder. Expert Opin. Ther. Targets 2017, 21, 391–399. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Ding, W.; Zhang, J.; Gao, Q.; Yang, H.; Cao, W.; Wang, Z.; Fang, L.; Du, R. Significant Down-Regulation of Urea Cycle Generates Clinically Relevant Proteomic Signature in Hepatocellular Carcinoma Patients with Macrovascular Invasion. J. Proteome Res. 2019, 18, 2032–2044. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Dong, H.; Robertson, K.; Liu, C. DNA methylation suppresses expression of the urea cycle enzyme carbamoyl phosphate synthetase 1 (CPS1) in human hepatocellular carcinoma. Am. J. Pathol. 2011, 178, 652–661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, T.; Luo, G.; Lian, Q.; Sui, C.; Tang, J.; Zhu, Y.; Zheng, B.; Li, Z.; Zhang, Y.; Zhang, Y.; et al. Discovery of a Carbamoyl Phosphate Synthetase 1-Deficient HCC Subtype With Therapeutic Potential Through Integrative Genomic and Experimental Analysis. Hepatology 2021, 74, 3249–3268. [Google Scholar] [CrossRef]
- Kim, J.; Hu, Z.; Cai, L.; Li, K.; Choi, E.; Faubert, B.; Bezwada, D.; Rodriguez-Canales, J.; Villalobos, P.; Lin, Y.F.; et al. CPS1 maintains pyrimidine pools and DNA synthesis in KRAS/LKB1-mutant lung cancer cells. Nature 2017, 546, 168–172. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Deng, X.; Li, Q.; Wang, F.; Miao, L.; Jiang, Q. Emerging roles of long noncoding RNAs in cholangiocarcinoma: Advances and challenges. Cancer Commun. 2020, 40, 655–680. [Google Scholar] [CrossRef]
- Ma, S.L.; Li, A.J.; Hu, Z.Y.; Shang, F.S.; Wu, M.C. Co-expression of the carbamoyl-phosphate synthase 1 gene and its long non-coding RNA correlates with poor prognosis of patients with intrahepatic cholangiocarcinoma. Mol. Med. Rep. 2015, 12, 7915–7926. [Google Scholar] [CrossRef] [Green Version]
- Yao, S.; Nguyen, T.V.; Rolfe, A.; Agrawal, A.A.; Ke, J.; Peng, S.; Colombo, F.; Yu, S.; Bouchard, P.; Wu, J.; et al. Small Molecule Inhibition of CPS1 Activity through an Allosteric Pocket. Cell Chem. Biol. 2020, 27, 259–268.e255. [Google Scholar] [CrossRef] [PubMed]
- Rolfe, A.; Yao, S.; Nguyen, T.V.; Omoto, K.; Colombo, F.; Virrankoski, M.; Vaillancourt, F.H.; Yu, L.; Cook, A.; Reynolds, D.; et al. Discovery of 2,6-Dimethylpiperazines as Allosteric Inhibitors of CPS1. ACS Med. Chem. Lett. 2020, 11, 1305–1309. [Google Scholar] [CrossRef] [PubMed]
Probe | CCA vs. Non-Tumor # | CCA vs. Normal Intrahepatic Bile Duct & | Gene Symbol | Molecular Function | Biological Process | ||
---|---|---|---|---|---|---|---|
Log Ratio | p-Value | Log Ratio | p-Value | ||||
ILMN_1812281 | −4.0505 | 0 * | −2.9184 | 0.0001 * | ARG1 | Metal ion binding, hydrolase activity, arginase activity, manganese ion binding | Arginine catabolism, urea cycle |
ILMN_1792748 | −3.9435 | 0 * | −2.8787 | 0.0002 * | CPS1 | Ligase activity, nucleotide binding, ATP binding, carbamoyl phosphate synthase (ammonia) activity, protein binding | Nitrogen compound metabolism, pyrimidine base biosynthesis, urea cycle, arginine biosynthesis, glutamine metabolism |
ILMN_1749114 | −3.27 | 0 * | −1.8575 | 0.0013 * | OTC | Transferase activity, amino acid binding, ornithine carbamoyltransferase activity | Amino acid biosynthesis, urea cycle, arginine biosynthesis |
ILMN_1667670 | −1.8491 | 0 * | −1.1629 | 0.0014 * | SLC25A15 | L-ornithine transporter activity, transporter activity, binding | Transport, mitochondrial ornithine transport, amino acid metabolism, urea cycle |
ILMN_1708778 | −2.0977 | 0 * | −0.7505 | 0.1192 | ASS1 | Ligase activity, nucleotide binding, ATP binding, protein binding, argininosuccinate synthase activity | Amino acid biosynthesis, urea cycle, arginine biosynthesis |
ILMN_1800898 | −0.1432 | 0.104 | −0.1602 | 0.5411 | ARG2 | Metal ion binding, hydrolase activity, arginase activity, manganese ion binding | Nitric oxide biosynthesis, arginine catabolism, urea cycle |
ILMN_1688234 | −0.0856 | 0.036 * | −0.14 | 0.1737 | ASS1 | Ligase activity, nucleotide binding, ATP binding, protein binding, argininosuccinate synthase activity | Amino acid biosynthesis, urea cycle, arginine biosynthesis |
ILMN_1685142 | −0.1229 | 0.0015 * | −0.091 | 0.3739 | ASL | Lyase activity, argininosuccinate lyase activity, catalytic activity | Arginine catabolism, amino acid biosynthesis, urea cycle, arginine biosynthesis |
ILMN_1685037 | −0.6339 | 0 * | −0.0032 | 0.9827 | ASL | Lyase activity, argininosuccinate lyase activity, catalytic activity | Arginine catabolism, amino acid biosynthesis, urea cycle, arginine biosynthesis |
ILMN_1758597 | −0.6543 | 0 * | 0.0218 | 0.894 | NAGS | Acyltransferase activity, transferase activity, amino acid N-acetyltransferase activity, acetylglutamate kinase activity | Amino acid biosynthesis, urea cycle, arginine biosynthesis |
Parameter | Category | Case No. | CPS1 Expression | p-Value | |
---|---|---|---|---|---|
Low | High | ||||
Gender | Male | 108 | 54 | 54 | 0.591 |
Female | 74 | 34 | 40 | ||
Age (years) | <65 | 107 | 57 | 50 | 0.113 |
≥65 | 75 | 31 | 44 | ||
Hepatitis | Hepatitis B | 72 | 37 | 35 | 0.458 |
Hepatitis C | 29 | 11 | 18 | ||
Non-B, non-C | 81 | 40 | 41 | ||
Intrahepatic lithiasis | Not identified | 102 | 45 | 57 | 0.197 |
Present | 80 | 43 | 37 | ||
Surgical margin | R0 | 163 | 76 | 87 | 0.172 |
R1 | 19 | 12 | 7 | ||
Primary tumor (T) | T1 | 87 | 32 | 55 | 0.003 * |
T2 | 61 | 32 | 29 | ||
T3 | 34 | 24 | 10 | ||
Histological variants | Large duct type | 105 | 56 | 49 | 0.116 |
Small duct type | 77 | 32 | 45 | ||
Histological grade | Well differentiated | 61 | 27 | 34 | 0.660 |
Moderately differentiated | 66 | 32 | 34 | ||
Poorly differentiated | 55 | 29 | 26 |
Parameter | Category | Case No. | Overall Survival | Disease-Specific Survival | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Univariate Analysis | Multivariate Analysis | Univariate Analysis | Multivariate Analysis | |||||||||
No. of Event | p-Value | R.R. | 95% C.I. | p-Value | No. of Event | p-Value | R.R. | 95% C.I. | p-Value | |||
Gender | Male | 108 | 50 | 0.0254 * | 1 | - | 0.080 | 9 | 0.0072 * | 1 | - | 0.050 |
Female | 74 | 21 | 1.587 | 0.946–2.662 | - | 32 | 2.141 | 1.001–4.582 | - | |||
Age (years) | <65 | 107 | 37 | 0.2626 | - | - | - | 28 | 0.2125 | - | - | - |
≥65 | 75 | 34 | - | - | - | 13 | - | - | - | |||
Hepatitis | Hepatitis B | 72 | 32 | 0.2379 | - | - | - | 16 | 0.4561 | - | - | - |
Hepatitis C | 29 | 8 | - | - | - | 19 | - | - | - | |||
Non-B, non-C | 81 | 31 | - | - | - | 6 | - | - | - | |||
Intrahepatic lithiasis | Not identified | 102 | 36 | 0.2831 | - | - | - | 19 | 0.1613 | - | - | - |
Present | 80 | 35 | - | - | - | 22 | - | - | - | |||
Surgical margin | R0 | 163 | 59 | <0.0001 * | 1 | - | 0.002 * | 31 | <0.0001 * | 1 | - | <0.001 * |
R1 | 19 | 12 | 3.013 | 1.517–5.985 | 10 | 5.639 | 2.472–12.863 | |||||
Primary tumor (T) | T1 | 87 | 25 | 0.0001 * | 1 | - | 0.055 | 9 | <0.0001 * | 1 | - | 0.016 * |
T2 | 61 | 27 | 1.678 | 0.966–2.915 | - | 19 | 2.679 | 1.102–6.514 | - | |||
T3 | 34 | 19 | 2.101 | 1.102–4.006 | - | 13 | 3.185 | 1.424–7.121 | - | |||
Histological variants | Large duct type | 105 | 43 | 0.4281 | - | - | - | 27 | 0.1984 | - | - | - |
Small duct type | 77 | 28 | - | - | - | 14 | - | - | - | |||
Histological grade (differentiation) | Well | 61 | 20 | 0.1663 | - | - | - | 12 | 0.3881 | - | - | - |
Moderately | 66 | 28 | - | - | - | 16 | - | - | - | |||
Poorly | 55 | 23 | - | - | - | 13 | - | - | - | |||
CPS1 expression | High expression | 94 | 25 | <0.0001 * | 1 | - | 0.001 * | 5 | <0.0001 * | 1 | - | <0.001 * |
Low expression | 88 | 46 | 2.378 | 1.424–3.971 | - | 36 | 9.957 | 3.817–25.975 | - |
Parameter | Category | Case No. | Local Recurrence-Free Survival | Metastasis-Free Survival | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Univariate Analysis | Multivariate Analysis | Univariate Analysis | Multivariate Analysis | |||||||||
No. of Event | p-Value | R.R. | 95% C.I. | p-Value | No. of Event | p-Value | R.R. | 95% C.I. | p-Value | |||
Gender | Male | 108 | 54 | 0.2170 | - | - | - | 21 | 0.1008 | - | - | - |
Female | 74 | 31 | - | - | - | 44 | - | - | - | |||
Age (years) | <65 | 107 | 55 | 0.2993 | - | - | - | 42 | 0.2936 | - | - | - |
≥65 | 75 | 30 | - | - | - | 23 | - | - | - | |||
Hepatitis | Hepatitis B | 72 | 33 | 0.7333 | - | - | - | 26 | 0.8762 | - | - | - |
Hepatitis C | 29 | 13 | - | - | - | 11 | - | - | - | |||
Non-B, non-C | 81 | 39 | - | - | - | 28 | - | - | - | |||
Intrahepatic lithiasis | Not identified | 102 | 41 | 0.0551 | - | - | - | 31 | 0.1000 | - | - | - |
Present | 80 | 44 | - | - | - | 34 | - | - | - | |||
Surgical margin | R0 | 163 | 71 | <0.0001 * | 1 | - | <0.001 * | 54 | <0.0001 * | 1 | 0.003 * | |
R1 | 19 | 14 | 4.209 | 2.122–8.348 | 11 | 3.034 | 1.470–6.260 | |||||
Primary tumor (T) | T1 | 87 | 28 | <0.0001 * | 1 | - | 0.041 * | 21 | <0.0001 * | 1 | - | 0.032 * |
T2 | 61 | 32 | 1.797 | 1.028–3.143 | 26 | 2.055 | 1.145–3.689 | |||||
T3 | 34 | 25 | 2.099 | 1.142–3.858 | 18 | 2.049 | 1.058–3.968 | |||||
Histological variants | Large duct type | 105 | 58 | 0.0085 * | 1 | - | 0.571 | 43 | 0.0759 | - | - | - |
Small duct type | 77 | 27 | 0.868 | 0.532–1.417 | 22 | - | - | - | ||||
Histological grade (differentiation) | Well | 61 | 28 | 0.0299 * | 1 | - | 0.568 | 22 | 0.1794 | - | - | - |
Moderately | 66 | 27 | 0.854 | 0.495–1.473 | 22 | - | - | - | ||||
Poorly | 55 | 30 | 1.610 | 0.670–2.011 | 21 | - | - | - | ||||
CPS1 expression | High expression | 94 | 19 | <0.0001 * | 1 | - | <0.001 * | 11 | <0.0001 * | 1 | - | <0.001 * |
Low expression | 88 | 66 | 5.519 | 3.214–9.477 | 54 | 7.417 | 3.814–14.422 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ong, K.H.; Hsieh, Y.-Y.; Sun, D.-P.; Huang, S.K.-H.; Tian, Y.-F.; Chou, C.-L.; Shiue, Y.-L.; Joseph, K.; Chang, I.-W. Underexpression of Carbamoyl Phosphate Synthetase I as Independent Unfavorable Prognostic Factor in Intrahepatic Cholangiocarcinoma: A Potential Theranostic Biomarker. Diagnostics 2023, 13, 2296. https://doi.org/10.3390/diagnostics13132296
Ong KH, Hsieh Y-Y, Sun D-P, Huang SK-H, Tian Y-F, Chou C-L, Shiue Y-L, Joseph K, Chang I-W. Underexpression of Carbamoyl Phosphate Synthetase I as Independent Unfavorable Prognostic Factor in Intrahepatic Cholangiocarcinoma: A Potential Theranostic Biomarker. Diagnostics. 2023; 13(13):2296. https://doi.org/10.3390/diagnostics13132296
Chicago/Turabian StyleOng, Khaa Hoo, Yao-Yu Hsieh, Ding-Ping Sun, Steven Kuan-Hua Huang, Yu-Feng Tian, Chia-Ling Chou, Yow-Ling Shiue, Keva Joseph, and I-Wei Chang. 2023. "Underexpression of Carbamoyl Phosphate Synthetase I as Independent Unfavorable Prognostic Factor in Intrahepatic Cholangiocarcinoma: A Potential Theranostic Biomarker" Diagnostics 13, no. 13: 2296. https://doi.org/10.3390/diagnostics13132296
APA StyleOng, K. H., Hsieh, Y. -Y., Sun, D. -P., Huang, S. K. -H., Tian, Y. -F., Chou, C. -L., Shiue, Y. -L., Joseph, K., & Chang, I. -W. (2023). Underexpression of Carbamoyl Phosphate Synthetase I as Independent Unfavorable Prognostic Factor in Intrahepatic Cholangiocarcinoma: A Potential Theranostic Biomarker. Diagnostics, 13(13), 2296. https://doi.org/10.3390/diagnostics13132296