Magnetic Resonance Imaging Evaluation of Bone Metastases Treated with Radiotherapy in Palliative Intent: A Multicenter Prospective Study on Clinical and Instrumental Evaluation Assessment Concordance (MARTE Study)
Abstract
:1. Introduction
- -
- -
- recalcificy osteolytic lesions and prevent the development of “pathological” fractures;
- -
- reducing the systemic burden of disease [20];
- -
- achieving a “decompressive” effect in spinal cord compression cases (8);
- -
- allowing disease control, which is particularly relevant role when bone represents the only site of progression disease in a patient undergoing systemic therapy, as such patients may benefit from locoregional treatment by continuing the current chemotherapy line without having to resort to the next line of treatment [21].
Study Rationale
2. Objective of This Study
3. Study Design
3.1. Study Population
3.1.1. Inclusion Criteria
- Patients with bone metastatic localization;
- Patients in follow-up and/or undergoing systemic therapy via chemotherapy, target therapy, immunotherapy, hormone therapy, or bisphosphonate therapy, or patients developing any bone metastases requiring radiotherapic treatment;
- An indication for radiotherapy treatment with palliative intent, using a 3D conformal technique, intensity modulated radiotherapy (IMRT), or volumetric modulated arc therapy (VMAT);
- The absence of contraindications to MRI imaging; and
- An estimated survival prognosis of more than six months.
3.1.2. Exclusion Criteria
- Previous radiotherapy in the same bone district;
- Patient’s refusal to undergo MRI.
4. Material and Methods
5. Statistical Analysis
6. Discussion
7. Limits
8. Future Perspectives
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Berardi, R.; Berruti, A.; Brogelli, L.; Zucali, P.A. An Italian survey on the use of denosumab for the management of skeletal-related events in patients with bone metastases. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 4659–4665. [Google Scholar] [CrossRef] [PubMed]
- Ciabattoni, A.; Gregucci, F.; De Rose, F.; Falivene, S.; Fozza, A.; Daidone, A.; Morra, A.; Smaniotto, D.; Barbara, R.; Lozza, L.; et al. AIRO Breast Cancer Group Best Clinical Practice 2022 Update. Tumori 2022, 108, 1–144. [Google Scholar] [CrossRef] [PubMed]
- Coleman, R.E. Skeletal complications of malignancy. Cancer 1997, 80, 1588–1594. [Google Scholar] [CrossRef]
- Coughlin, T.R.; Romero-Moreno, R.; Mason, D.E.; Nystrom, L.; Boerckel, J.D.; Niebur, G.; Littlepage, L.E. Bone: A Fertile Soil for Cancer Metastasis. Curr. Drug. Targets 2017, 18, 1281–1295. [Google Scholar] [CrossRef]
- Georgy, B.A. Metastatic spinal lesions: State-of-the-art treatment options and future trends. AJNR Am. J. Neuroradiol. 2008, 29, 1605–1611. [Google Scholar] [CrossRef] [Green Version]
- Jacobs, W.B.; Perrin, R.G. Evaluation and treatment of spinal metastases: An overview. Neurosurg. Focus 2001, 11, e10. [Google Scholar] [CrossRef] [Green Version]
- Kakhki, V.R.; Anvari, K.; Sadeghi, R.; Mahmoudian, A.S.; Torabian-Kakhki, M. Pattern and distribution of bone metastases in common malignant tumors. Nucl. Med. Rev. 2013, 16, 66–69. [Google Scholar] [CrossRef] [Green Version]
- Thanindratarn, P.; Dean, D.C.; Nelson, S.D.; Hornicek, F.J.; Duan, Z. Advances in immune checkpoint inhibitors for bone sarcoma therapy. J. Bone Oncol. 2019, 15, 100221. [Google Scholar] [CrossRef]
- Mundy, G.R. Metastasis to bone: Causes, consequences and therapeutic opportunities. Nat. Rev. Cancer 2002, 2, 584–593. [Google Scholar] [CrossRef]
- Sekine, I.; Sumi, M.; Saijo, N. Local control of regional and metastatic lesions and indication for systemic chemotherapy in patients with non-small cell lung cancer. Oncologist 2008, 13 (Suppl. 1), 21–27. [Google Scholar] [CrossRef]
- Zekri, J.; Ahmed, N.; Coleman, R.E.; Hancock, B.W. The skeletal metastatic complications of renal cell carcinoma. Int. J. Oncol. 2001, 19, 379–382. [Google Scholar] [CrossRef] [PubMed]
- Cassinello Espinosa, J.; Gonzalez Del Alba Baamonde, A.; Rivera Herrero, F.; Holgado Martin, E. SEOM guidelines for the treatment of bone metastases from solid tumours. Clin. Transl. Oncol. 2012, 14, 505–511. [Google Scholar] [CrossRef]
- Karsenty, G. Transcriptional control of skeletogenesis. Annu. Rev. Genom. Hum. Genet. 2008, 9, 183–196. [Google Scholar] [CrossRef] [Green Version]
- Terpos, E.; Christoulas, D.; Gavriatopoulou, M.; Dimopoulos, M.A. Mechanisms of bone destruction in multiple myeloma. Eur. J. Cancer Care 2017, 26, e12761. [Google Scholar] [CrossRef]
- Reginelli, A.; Silvestro, G.; Fontanella, G.; Sangiovanni, A.; Conte, M.; Nuzzo, I.; Di Lecce, A.; Martino, A.; Grassi, R.; Murino, P.; et al. Performance status versus anatomical recovery in metastatic disease: The role of palliative radiation treatment. Int. J. Surg. 2016, 33 (Suppl. 1), S126–S131. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Gong, Z. Clinical Characteristics and Prognostic Factors in Bone Metastases from Lung Cancer. Med. Sci. Monit. 2017, 23, 4087–4094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weinfurt, K.P.; Li, Y.; Castel, L.D.; Saad, F.; Timbie, J.W.; Glendenning, G.A.; Schulman, K.A. The significance of skeletal-related events for the health-related quality of life of patients with metastatic prostate cancer. Ann. Oncol. 2005, 16, 579–584. [Google Scholar] [CrossRef]
- Carla, R.; Fabio, T.; Gloria, B.; Ernesto, M. Prevention and Treatment of Bone Metastases in Breast Cancer. J. Clin. Med. 2013, 2, 151–175. [Google Scholar] [CrossRef]
- De Felice, F.; Piccioli, A.; Musio, D.; Tombolini, V. The role of radiation therapy in bone metastases management. Oncotarget 2017, 8, 25691–25699. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Lei, X.; Zhu, J.; Zhong, Y.; Yang, J.; Wang, J.; Tan, H. Radiotherapy/Chemotherapy-Immunotherapy for Cancer Management: From Mechanisms to Clinical Implications. Oxid. Med. Cell. Longev. 2023, 2023, 7530794. [Google Scholar] [CrossRef]
- Luo, Y.; Huang, X.; Chen, J.; Zhang, S. Evaluation of the Clinical Efficacy of Intensity-Modulated Radiotherapy Combined with Transcatheter Arterial Chemoembolization for Hepatocellular Carcinoma with Extrahepatic Oligometastasis and Prognostic Factors for Patient Survival. Int. J. Gen. Med. 2023, 16, 1271–1278. [Google Scholar] [CrossRef] [PubMed]
- Aubry, S.; Dubut, J.; Nueffer, J.P.; Chaigneau, L.; Vidal, C.; Kastler, B. Prospective 1-year follow-up pilot study of CT-guided microwave ablation in the treatment of bone and soft-tissue malignant tumours. Eur. Radiol. 2017, 27, 1477–1485. [Google Scholar] [CrossRef] [PubMed]
- Guinan, E.M.; Devenney, K.; Quinn, C.; Sheill, G.; Eochagain, C.M.; Kennedy, M.J.; McDermott, R.; Balding, L. Associations Among Physical Activity, Skeletal Related Events, and Patient Reported Outcomes in Patients with Bone Metastases. Semin. Oncol. Nurs. 2022, 38, 151274. [Google Scholar] [CrossRef]
- Stecco, A.; Trisoglio, A.; Soligo, E.; Berardo, S.; Sukhovei, L.; Carriero, A. Whole-Body MRI with Diffusion-Weighted Imaging in Bone Metastases: A Narrative Review. Diagnostics 2018, 8, 45. [Google Scholar] [CrossRef] [Green Version]
- Oprea-Lager, D.E.; Cysouw, M.C.F.; Boellaard, R.; Deroose, C.M.; de Geus-Oei, L.F.; Lopci, E.; Bidaut, L.; Herrmann, K.; Fournier, L.S.; Bauerle, T.; et al. Bone Metastases Are Measurable: The Role of Whole-Body MRI and Positron Emission Tomography. Front. Oncol. 2021, 11, 772530. [Google Scholar] [CrossRef] [PubMed]
- Van Nieuwenhove, S.; Van Damme, J.; Padhani, A.R.; Vandecaveye, V.; Tombal, B.; Wuts, J.; Pasoglou, V.; Lecouvet, F.E. Whole-body magnetic resonance imaging for prostate cancer assessment: Current status and future directions. J. Magn. Reson. Imaging 2022, 55, 653–680. [Google Scholar] [CrossRef] [PubMed]
- Switlyk, M.D.; Hole, K.H.; Skjeldal, S.; Hald, J.K.; Knutstad, K.; Seierstad, T.; Zaikova, O. MRI and neurological findings in patients with spinal metastases. Acta Radiol. 2012, 53, 1164–1172. [Google Scholar] [CrossRef] [Green Version]
- Gaeta, M.; Benedetto, C.; Minutoli, F.; D’Angelo, T.; Amato, E.; Mazziotti, S.; Racchiusa, S.; Mormina, E.; Blandino, A.; Pergolizzi, S. Use of diffusion-weighted, intravoxel incoherent motion, and dynamic contrast-enhanced MR imaging in the assessment of response to radiotherapy of lytic bone metastases from breast cancer. Acad. Radiol. 2014, 21, 1286–1293. [Google Scholar] [CrossRef]
- Filograna, L.; Lenkowicz, J.; Cellini, F.; Dinapoli, N.; Manfrida, S.; Magarelli, N.; Leone, A.; Colosimo, C.; Valentini, V. Identification of the most significant magnetic resonance imaging (MRI) radiomic features in oncological patients with vertebral bone marrow metastatic disease: A feasibility study. Radiol. Med. 2019, 124, 50–57. [Google Scholar] [CrossRef]
- Bredius, R.G.; Laan, L.A.; Lankester, A.C.; Poorthuis, B.J.; van Tol, M.J.; Egeler, R.M.; Arts, W.F. Early marrow transplantation in a pre-symptomatic neonate with late infantile metachromatic leukodystrophy does not halt disease progression. Bone Marrow Transplant. 2007, 39, 309–310. [Google Scholar] [CrossRef] [Green Version]
- Hochster, H.S.; Grothey, A.; Hart, L.; Rowland, K.; Ansari, R.; Alberts, S.; Chowhan, N.; Ramanathan, R.K.; Keaton, M.; Hainsworth, J.D.; et al. Improved time to treatment failure with an intermittent oxaliplatin strategy: Results of CONcePT. Ann. Oncol. 2014, 25, 1172–1178. [Google Scholar] [CrossRef] [PubMed]
- Gottumukkala, R.V.; Gee, M.S.; Hampilos, P.J.; Greer, M.C. Current and Emerging Roles of Whole-Body MRI in Evaluation of Pediatric Cancer Patients. Radiographics 2019, 39, 516–534. [Google Scholar] [CrossRef]
- Zanoni, L.; Mattana, F.; Calabro, D.; Paccagnella, A.; Broccoli, A.; Nanni, C.; Fanti, S. Overview and recent advances in PET/CT imaging in lymphoma and multiple myeloma. Eur. J. Radiol. 2021, 141, 109793. [Google Scholar] [CrossRef] [PubMed]
- Kintzele, L.; Weber, M.A. Imaging diagnostics in bone metastases. Radiologe 2017, 57, 113–128. [Google Scholar] [CrossRef] [PubMed]
- Marazzi, F.; Orlandi, A.; Manfrida, S.; Masiello, V.; Di Leone, A.; Massaccesi, M.; Moschella, F.; Franceschini, G.; Bria, E.; Gambacorta, M.A.; et al. Diagnosis and Treatment of Bone Metastases in Breast Cancer: Radiotherapy, Local Approach and Systemic Therapy in a Guide for Clinicians. Cancers 2020, 12, 2390. [Google Scholar] [CrossRef]
- Sawicki, L.M.; Kirchner, J.; Buddensieck, C.; Antke, C.; Ullrich, T.; Schimmoller, L.; Boos, J.; Schleich, C.; Schaarschmidt, B.M.; Buchbender, C.; et al. Prospective comparison of whole-body MRI and (68)Ga-PSMA PET/CT for the detection of biochemical recurrence of prostate cancer after radical prostatectomy. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 1542–1550. [Google Scholar] [CrossRef]
- Soliman, H.; El-Noueam, K.; Ettaby, A.; Fadel, S.; Abougabal, A.M. Whole-body three-dimensional short tau inversion recovery and T1-weighted in/opposed phase MRI in the detection of neuroblastoma bone marrow metastasis: Comparative study with PET/CT utilising bone marrow biopsy as the reference standard. Clin. Radiol. 2023, 78, e535–e541. [Google Scholar] [CrossRef]
- Basha, M.A.A.; Hamed, M.A.G.; Refaat, R.; AlAzzazy, M.Z.; Bessar, M.A.; Mohamed, E.M.; Ahmed, A.F.; Tantawy, H.F.; Altaher, K.M.; Obaya, A.A.; et al. Diagnostic performance of (18)F-FDG PET/CT and whole-body MRI before and early after treatment of multiple myeloma: A prospective comparative study. Jpn. J. Radiol. 2018, 36, 382–393. [Google Scholar] [CrossRef]
- Metser, U.; Chan, R.; Veit-Haibach, P.; Ghai, S.; Tau, N. Comparison of MRI Sequences in Whole-Body PET/MRI for Staging of Patients with High-Risk Prostate Cancer. AJR Am. J. Roentgenol. 2019, 212, 377–381. [Google Scholar] [CrossRef]
- Chow, E.; Harris, K.; Fan, G.; Tsao, M.; Sze, W.M. Palliative radiotherapy trials for bone metastases: A systematic review. J. Clin. Oncol. 2007, 25, 1423–1436. [Google Scholar] [CrossRef]
- Lutz, S.; Berk, L.; Chang, E.; Chow, E.; Hahn, C.; Hoskin, P.; Howell, D.; Konski, A.; Kachnic, L.; Lo, S.; et al. Palliative radiotherapy for bone metastases: An ASTRO evidence-based guideline. Int. J. Radiat. Oncol. Biol. Phys. 2011, 79, 965–976. [Google Scholar] [CrossRef] [PubMed]
- Cook, G.J.; Azad, G.; Padhani, A.R. Bone imaging in prostate cancer: The evolving roles of nuclear medicine and radiology. Clin. Transl. Imaging 2016, 4, 439–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Scope | Data |
---|---|
Biographical data | Sex, age, date of recrutiment |
Medical histoy | Comorbidity, current antalgic drug therapy |
General evaluation | ECOG performance status, pain status accordind to NRS and EORTC QLQ questionnaire—BMI |
Disease characteristics | Histology, date of diagnosis, secondary bone disease, date of onset of symptoms |
Treatment | Possible chemotherapy/target therapy/concurrent or sequential immunotherapy/hormone therapy |
Response to therapy | Instrumental: according to RECIST criteria 1.1 Clinical: according to specific questionnaires |
Radiotheapric treatment | Conventional RT/IMRT/VMAT radiothetrapy (technique, total dose, dose per fraction, volumes, start/end date) |
Other clinical outcomes | Patient status (alive, deceased), relapse status (local or distant progression y/n), local and distant disease progression free survival. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reginelli, A.; Patanè, V.; Urraro, F.; Russo, A.; De Chiara, M.; Clemente, A.; Atripaldi, U.; Balestrucci, G.; Buono, M.; D’ippolito, E.; et al. Magnetic Resonance Imaging Evaluation of Bone Metastases Treated with Radiotherapy in Palliative Intent: A Multicenter Prospective Study on Clinical and Instrumental Evaluation Assessment Concordance (MARTE Study). Diagnostics 2023, 13, 2334. https://doi.org/10.3390/diagnostics13142334
Reginelli A, Patanè V, Urraro F, Russo A, De Chiara M, Clemente A, Atripaldi U, Balestrucci G, Buono M, D’ippolito E, et al. Magnetic Resonance Imaging Evaluation of Bone Metastases Treated with Radiotherapy in Palliative Intent: A Multicenter Prospective Study on Clinical and Instrumental Evaluation Assessment Concordance (MARTE Study). Diagnostics. 2023; 13(14):2334. https://doi.org/10.3390/diagnostics13142334
Chicago/Turabian StyleReginelli, Alfonso, Vittorio Patanè, Fabrizio Urraro, Anna Russo, Marco De Chiara, Alfredo Clemente, Umberto Atripaldi, Giovanni Balestrucci, Mauro Buono, Emma D’ippolito, and et al. 2023. "Magnetic Resonance Imaging Evaluation of Bone Metastases Treated with Radiotherapy in Palliative Intent: A Multicenter Prospective Study on Clinical and Instrumental Evaluation Assessment Concordance (MARTE Study)" Diagnostics 13, no. 14: 2334. https://doi.org/10.3390/diagnostics13142334
APA StyleReginelli, A., Patanè, V., Urraro, F., Russo, A., De Chiara, M., Clemente, A., Atripaldi, U., Balestrucci, G., Buono, M., D’ippolito, E., Grassi, R., D’onofrio, I., Napolitano, S., Troiani, T., De Vita, F., Ciardiello, F., Nardone, V., & Cappabianca, S. (2023). Magnetic Resonance Imaging Evaluation of Bone Metastases Treated with Radiotherapy in Palliative Intent: A Multicenter Prospective Study on Clinical and Instrumental Evaluation Assessment Concordance (MARTE Study). Diagnostics, 13(14), 2334. https://doi.org/10.3390/diagnostics13142334