Histopathological Images Analysis and Predictive Modeling Implemented in Digital Pathology—Current Affairs and Perspectives
Abstract
:1. Introduction
2. Data Sources and Literature Search Strategy
3. Whole-Slide Imaging
3.1. Standard Steps in the Automatic Analysis of Histopathological Images [7]
3.1.1. Pre-Processing
3.1.2. Processing through Machine Learning Algorithms
3.2. The Deep-Learning Algorithms
4. Current Applications of Digital Pathology
4.1. Clinical Diagnosis
Automatic Image Analysis Includes
- -
- Detection of ductal carcinoma in situ on H&E-stained WSI biopsies [60].
- -
- Detection of tumor regions in neuroendocrine pancreatic tumors [43].
- -
- Development of a new adaptive sampling method for WSI based on the Monte-Carlo technique [61].
- -
- Developing a new method for region-of-interest selection in breast cancer that minimizes the data transfer [28].
- -
- The TissueMark™ platform (Philips Pathology, The Philips Centre, Guildford, Surrey, UK) is used for the automatic annotation of tumor outlines and the evaluation of tumor cell percentage—this provides better results than the manual evaluation [62].
- (1)
- Image analysis: specific measurements (features) are extracted from digital images to describe each cell’s status in terms of shape, color, texture, microenvironment, and context; as many features as possible are recorded in order to maximize the chances of detecting changes under the action of external factors;
- (2)
- Image quality control: this is carried out with statistical methods in order to eliminate the images or areas affected by artifacts: blurring, saturated pixels, atypical cells/outliers;
- (3)
- Preprocessing of extracted features: elimination of absent values, correction of plateau and batch effects, normalization;
- (4)
- Size reduction: irrelevant features are eliminated, and the similar ones are joined in order to reduce redundancies, through statistical methods: calculation of correlations in compliance with the principle of “minimum redundancy–maximum relevance”, linear transformations, PCA (principal components analysis), factorial analysis and discrimination analysis;
- (5)
- Aggregation of individual data through vector representations at the population level, which summarize its typical features. Statistical methods are also used—simple aggregation by calculating the average, median or KS profile, or sub-population identification by clustering and classification;
- (6)
- Similarities between profiles measured based on distances and the concentration effect quantification—such an effect occurs in the case of chemical perturbagens, tested at different concentrations;
- (7)
- Sample quality evaluation;
- (8)
- Downstream analysis, to interpret and validate the patterns identified in the morphological profiles, by hierarchical classification, visualization (data projections—PCA, Isomap, tSNE t-distributed stochastic neighbor embedding) and data/methods sharing in the scientific community. Examples of software developed for cell profiling are: CellProfiler and EBImage (open source), Columbus and MetaXpress (commercial solutions), Cytominer (package of function in R for morphological profiling) or Python and MatLab (for processing with specific algorithms).
- -
- -
- A better understanding of the tumor microenvironment—the types of cells that border each other, their heterogeneity and number, evaluated through statistical methods. This allows us to identify the tissue composition and the phenotypic signature (in colorectal cancer) [67];
- -
- -
- The evaluation of evolution forecast and sensitivity to chemotherapy treatment in breast cancer through the combined study of genetic expression, copy number alteration and histopathological images (FusionGP) [71];
- -
- The anticipation of somatic mutations;
- -
- The discovery of new genetic combinations responsible for certain pathologies (e.g., autoimmune thyroiditis) [72], etc.
4.2. Education and Training
- -
- Libraries for digital image management, e.g., OpenSlide [85], Bio-Formats [86], NEPTUNE, CureGN [87]. The DPR (Digital Pathology Repository) concept is being used more and more frequently—this is a new and inexpensive way to organize resources, for the long-term storage of high-resolution WSI histological images, in Web-hosted imaging libraries, available online, without geographical boundaries and with significant time savings [87];
- -
- -
- -
- Web platforms for data management and collaborative analysis, e.g., Cytomine [95].
4.3. Quality Assurance
5. Advantages Brought by Digital Pathology
5.1. Reducing the Risks for Patients
5.2. Workflow Optimization
5.3. Improving the Quality of the Working Environment
5.4. Improving the Quality of Services
6. Limits in Digital Pathology
7. The Future in Digital Pathology
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Niazi, M.K.K.; Parwani, A.V.; Gurcan, M.N. Digital pathology and artificial intelligence. Lancet Oncol. 2019, 20, e253–e261. [Google Scholar] [CrossRef]
- Williams, B.J.; Bottoms, D.; Treanor, D. Future-proofing pathology: The case for clinical adoption of digital pathology. J. Clin. Pathol. 2017, 70, 1010–1018. [Google Scholar] [CrossRef] [Green Version]
- Tizhoosh, H.R.; Pantanowitz, L. Artificial intelligence and digital pathology: Challenges and opportunities. J. Pathol. Inform. 2018, 9, 38. [Google Scholar] [CrossRef] [PubMed]
- Zarella, M.D.; Bowman, D.; Aeffner, F.; Farahani, N.; Xthona, A.; Absar, S.F.; Parwani, A.; Bui, M.; Hartman, D.J. A practical guide to whole slide imaging: A white paper from the digital pathology association. Arch. Pathol. Lab. Med. 2019, 143, 222–234. [Google Scholar] [CrossRef] [Green Version]
- Rees, G.; Salto-Tellez, M.; Lee, J.L.; Oien, K.; Verrill, C.; Freeman, A.; Mirabile, I.; West, N.P.; National Cancer Research Institute (NCRI) Cellular-Molecular Pathology (CM-Path) Clinical Trials Working Group. Training and accreditation standards for pathologists undertaking clinical trial work. J. Pathol. Clin. Res. 2019, 5, 100–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farahani, N.; Parwani, A.V.; Pantanowitz, L. Whole slide imaging in pathology: Advantages, limitations, and emerging perspectives. Pathol. Lab. Med. Int. 2015, 7, 23–33. [Google Scholar]
- Komura, D.; Ishikawa, S. Machine learning methods for histopathological image analysis. Comput. Struct. Biotechnol. J. 2018, 16, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, P.W.; Bankhead, P.; Wang, Y.; Hutchinson, R.; Kieran, D.; McArt, D.G.; James, J.; Salto-Tellez, M. Digital pathology and image analysis in tissue biomarker research. Methods 2014, 70, 59–73. [Google Scholar] [CrossRef] [PubMed]
- Pantanowitz, L.; Valenstein, P.N.; Evans, A.J.; Kaplan, K.J.; Pfeifer, J.D.; Wilbur, D.C.; Collins, L.C.; Colgan, T.J. Review of the current state of whole slide imaging in pathology. J. Pathol. Inform. 2011, 2, 36. [Google Scholar] [CrossRef]
- Bankhead, P.; Loughrey, M.B.; Fernández, J.A.; Dombrowski, Y.; McArt, D.G.; Dunne, P.D.; McQuaid, S.; Gray, R.T.; Murray, L.J.; Coleman, H.G.; et al. QuPath: Open source software for digital pathology image analysis. Sci. Rep. 2017, 7, 16878. [Google Scholar] [CrossRef] [Green Version]
- Wise, J. AI system interprets eye scans as accurately as top specialists. BMJ 2018, 362, K3484. [Google Scholar] [CrossRef]
- Abels, E.; Pantanowitz, L.; Aeffner, F.; Zarella, M.D.; van der Laak, J.; Bui, M.M.; Vemuri, V.N.; Parwani, A.V.; Gibbs, J.; Agosto-Arroyo, E.; et al. Computational pathology definitions, best practices, and recommendations for regulatory guidance: A white paper from the Digital Pathology Association. J. Pathol. 2019, 249, 286–294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fraggetta, F.; Yagi, Y.; Garcia-Rojo, M.; Evans, A.J.; Tuthill, J.M.; Baidoshvili, A.; Hartman, D.J.; Fukuoka, J.; Pantanowitz, L. The importance of eSlide macro images for primary diagnosis with whole slide imaging. J. Pathol. Inform. 2018, 9, 46. [Google Scholar] [CrossRef] [PubMed]
- Senaras, C.; Niazi, M.K.K.; Lozanski, G.; Gurcan, M.N. DeepFocus: Detection of out-of-focus regions in whole slide digital images using deep learning. PLoS ONE 2018, 13, e0205387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moles Lopez, X.; D'Andrea, E.; Barbot, P.; Bridoux, A.S.; Rorive, S.; Salmon, I.; Debeir, O.; Decaestecker, C. An automated blur detection method for histological whole slide imaging. PLoS ONE 2013, 8, e82710. [Google Scholar] [CrossRef] [Green Version]
- Zarella, M.D.; Garcia, F.U.; Breen, D.E. A template matching model for nuclear segmentation in digital images of H&E stained slides. In Proceedings of the 9th International Conference on Bioinformatics and Biomedical Technology, ICBBT, Lisbon, Portugal, 17 May 2017; Association for Computing Machinery: New York, NY, USA, 2017; pp. 11–15. [Google Scholar]
- Shrestha, P.; Kneepkens, R.; Vrijnsen, J.; Vossen, D.; Abels, E.; Hulsken, B. A quantitative approach to evaluate image quality of whole slide imaging scanners. J. Pathol. Inform. 2016, 7, 56. [Google Scholar] [CrossRef]
- Akbar, S.; Jordan, L.B.; Purdie, C.A.; Thompson, A.M.; McKenna, S.J. Comparing computer generated and pathologist-generated tumour segmentations for immunohistochemical scoring of breast tissue microarrays. Br. J. Cancer 2015, 113, 1075–1080. [Google Scholar] [CrossRef] [Green Version]
- Roy, S.; Kumar Jain, A.; Lal, S.; Kini, J. A study about color normalization methods for histopathology images. Micronics 2018, 114, 42–61. [Google Scholar] [CrossRef]
- Pei, Z.; Cao, S.; Lu, L.; Chen, W. Direct cellularity estimation on breast cancer histopathology images using transfer learning. Comput. Math. Methods Med. 2019, 2019, 3041250. [Google Scholar] [CrossRef] [Green Version]
- Tabata, K.; Mori, I.; Sasaki, T.; Itoh, T.; Shiraishi, T.; Yoshimi, N.; Maeda, I.; Harada, O.; Taniyama, K.; Taniyama, D. Whole-slide imaging at primary pathological diagnosis: Validation of whole-slide imaging-based primary pathological diagnosis at twelve Japanese academic institutes. Pathol. Int. 2017, 67, 547–554. [Google Scholar] [CrossRef] [Green Version]
- Loughrey, M.B.; Kelly, P.J.; Houghton, O.P.; Coleman, H.G.; Houghton, J.P.; Carson, A.; Salto-Tellez, M.; Hamilton, P.W. Digital slide viewing for primary reporting in gastrointestinal pathology: A validation study. Virchows Arch. 2015, 467, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Thorstenson, S.; Molin, J.; Lundström, C. Implementation of large-scale routine diagnostics using whole slide imaging in Sweden: Digital pathology experiences 2006–2013. J. Pathol. Inform. 2014, 5, 14. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, M.; Kellough, D.; Shanks, T.; Whitaker, B.; Pifher, M.; Deshpande, A.; Rupp, S.; Singhal, S.; Kipp, K.M.; Li, Z.; et al. How to Acquire over 500,000 Whole Slides Images a Year: Creating a Massive Novel Data Modality to Accelerate Cancer Research; United States and Canadian Academy of Pathology Annual Meeting (USCAP): Vancouver, BC, Canada, 2018; Abstract 1647. [Google Scholar]
- Sirinukunwattana, K.; Ahmed Raza, S.E.; Yee-Wah Tsang Snead, D.R.; Cree, I.A.; Rajpoot, N.M. Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images. IEEE Trans. Med. Imaging 2016, 35, 1196–1206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hegde, N.; Hipp, J.D.; Liu, Y.; Emmert-Buck, M.; Reif, E.; Smilkov, D.; Terry, M.; Cai, C.J.; Amin, M.B.; Mermel, C.H.; et al. Similar image search for histopathology: SMILY. NPJ Digit. Med. 2019, 2, 56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaha, D.C. Significance of immunohistochemistry in breast cancer. World J. Clin. Oncol. 2014, 5, 382. [Google Scholar] [CrossRef]
- Niazi, M.K.K.; Downs-Kelly, E.; Gurcan, M.N. Hot spot detection for breast cancer in Ki-67 stained slides: Image dependent filtering approach. SPIE Med. Imaging 2014, 9041, 9041061–9041068. [Google Scholar]
- Das, H.; Wang, Z.; Niazi, M.K.; Aggarwal, R.; Lu, J.; Kanji, S.; Das, M.; Joseph, M.; Gurcan, M.; Cristini, V. Impact of diffusion barriers to small cytotoxic molecules on the efficacy of immunotherapy in breast cancer. PLoS ONE 2013, 8, e61398. [Google Scholar] [CrossRef]
- Shaban, M.T.; Baur, C.; Navab, N.; Albarqouni, S. Staingan: Stain. Style Transfer for Digital Histological Images. arXiv 2018, arXiv:1804.01601. [Google Scholar]
- Aeffner, F.; Zarella, M.D.; Buchbinder, N.; Bui, M.M.; Goodman, M.R.; Hartman, D.J.; Lujan, G.M.; Molani, M.A.; Parwani, A.V.; Lillard, K.; et al. Introduction to digital image analysis in whole-slide imaging: A white paper from the Digital Pathology Association. J. Pathol. Inform. 2019, 10, 15. [Google Scholar]
- Bentaieb, A.; Hamarneh, G. Adversarial stain transfer for histopathology image analysis. IEEE Trans. Med. Imaging 2018, 37, 792–802. [Google Scholar] [CrossRef]
- Gatys, L.A.; Ecker, A.S.; Bethge, M. (Eds.) Image Style Transfer Using Convolutional Neural Networks. 2016. Available online: https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Gatys_Image_Style_Transfer_CVPR_2016_paper.pdf (accessed on 25 May 2023).
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial Nets. Adv. Neural Inf. Process. Syst. 2014, 27, 2672–2680. [Google Scholar]
- Kothari, S.; Phan, J.H.; Stokes, T.H.; Osunkoya, A.O.; Young, A.N.; Wang, M.D. Removing batch effects from histopathological images for enhanced cancer diagnosis. IEEE Trans. Med. Imaging 2014, 18, 765–772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lei, G.; Xia, Y.; Zhai, D.H.; Zhang, W.; Chen, D.; Wang, D. StainCNNs: An efficient stain feature learning method. Neurocomputing 2020, 406, 267–273. [Google Scholar] [CrossRef]
- Zanjani, G.; Zinger, S.; Bejnordi, B.E.; van der Laak, J.A.; de With, P.H.N. Stain normalization of histopathology images using generative adversarial networks. In Proceedings of the IEEE 15th International Symposium on Biomedical Imaging, ISBI 2018, Washington, DC, USA, 4–7 April 2018; pp. 573–577. [Google Scholar]
- Zhu, J.-Y.; Park, T.; Isola, P.; Efros, A.A. Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks. arXiv 2017, arXiv:1703.10593. [Google Scholar]
- Reinhard, E. Color transfer between images. IEEE Comput. Graph. Appl. 2001, 21, 34–41. [Google Scholar] [CrossRef]
- Kumar, N.; Verma, R.; Sharma, S.; Bhargava, S.; Vahadane, A.; Sethi, A. A dataset and a technique for generalized nuclear segmentation for computational pathology. IEEE Trans. Med. Imaging 2017, 36, 1550–1560. [Google Scholar] [CrossRef]
- Xing, F.; Yang, L. Robust nucleus/cell detection and segmentation in digital pathology and microscopy images: A comprehensive review. IEEE Rev. Biomed. Eng. 2016, 9, 234–263. [Google Scholar] [CrossRef]
- Madabhushi, A.; Lee, G. Image analysis and machine learning in digital pathology: Challenges and opportunities. Med. Image Anal. 2016, 33, 170–175. [Google Scholar] [CrossRef] [Green Version]
- Niazi, M.K.K.; Tavolara, T.; Arole, V.; Parwani, A.; Lee, C.; Gurcan, M. MP58–06 automated staging of T1 bladder cancer using digital pathologic H&E images: A deep learning approach. J. Urol. 2018, 199, e775. [Google Scholar]
- Niazi, M.K.K.; Lin, Y.; Liu, F.; Ashok, A.; Marcellin, M.W.; Tozbikian, G.; Gurcan, M.N.; Bilgin, A. Pathological image compression for big data image analysis: Application to hotspot detection in breast cancer. Artif. Intell. Med. 2018, 95, 82–87. [Google Scholar] [CrossRef] [PubMed]
- Niazi, M.K.K.; Tavolara, T.E.; Arole, V.; Hartman, D.J.; Pantanowitz, L.; Gurcan, M.N. Identifying tumor in pancreatic neuroendocrine neoplasms from Ki67 images using transfer learning. PLoS ONE 2018, 13, e0195621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coudray, N.; Ocampo, P.S.; Sakellaropoulos, T.; Narula, N.; Snuderl, M.; Fenyö, D.; Moreira, A.L.; Razavian, N.; Tsirigos, A. Classification and mutation prediction from non–small cell lung cancer histopathology images using deep learning. Nat. Med. 2018, 24, 1559. [Google Scholar] [CrossRef] [PubMed]
- Tavolara, T.; Niazi, M.K.K.; Chen, W.; Frakel, W.; Gurcan, M.N. Colorectal tumor identification by tranferring knowledge from pan-cytokeratin to H&E. SPIE Med. Imaging 2019, 10956, 1095614. [Google Scholar]
- Xu, J.; Janowczyk, A.; Chandran, S.; Madabhushi, A. A high-throughput active contour scheme for segmentation of histopathological imagery. Med. Image Anal. 2011, 15, 851–862. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; Zhang, L.; Chen, S.; Ni, D.; Lei, B.; Wang, T. Accurate segmentation of cervical cytoplasm and nuclei based on multiscale convolutional network and graph partitioning. IEEE Rev. Biomed. Eng. 2015, 62, 2421–2433. [Google Scholar] [CrossRef]
- Xing, F.; Xie, Y.; Yang, L. An automatic learning-based framework for robust nucleus segmentation. IEEE Trans. Med. Imaging 2016, 35, 550–566. [Google Scholar] [CrossRef]
- Tremeau, A.; Borel, N. A region growing and merging algorithm to color segmentation. Pattern Recognit. 1997, 30, 1191–1203. [Google Scholar]
- Mahmood, F.; Borders, D.; Chen, R.J.; Mckay, G.N.; Salimian, K.J.; Baras, A.; Durr, N.J. Deep adversarial training for multi-organ nuclei segmentation in histopathology images. arXiv 2018, arXiv:1810.00236. [Google Scholar] [CrossRef]
- Yousefi, S.; Nie, Y. Transfer learning from nucleus detection to classification in histopathology images. In Proceedings of the 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), Venice, Italy, 8–11 April 2019. [Google Scholar] [CrossRef]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. In Advances in Neural Information Processing Systems 28; Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2015; pp. 91–99. [Google Scholar]
- Li, C.; Wang, X.; Liu, W.; Latecki, L.J. Deep mitosis: Mitosis detection via deep detection, verification and segmentation networks. Med. Image Anal. 2018, 45, 121–133. [Google Scholar] [CrossRef]
- Niazi, M.K.K.; Tavolara, T.E.; Arole, V.; Parwani, A.V.; Lee, C.; Gurcan, M.N. Automated T1 bladder risk stratification based on depth of lamina propria invasion from H&E tissue biopsies: A deep learning approach. SPIE Med. Imaging 2018, 10581, 105810H. [Google Scholar]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436. [Google Scholar] [PubMed]
- Albarqouni, S.; Baur, C.; Achilles, F.; Belagiannis, V.; Demirci, S.; Navab, N. Aggnet: Deep learning from crowds for mitosis detection in breast cancer histology images. IEEE Trans. Med. Imaging 2016, 35, 1313–1321. [Google Scholar] [CrossRef] [PubMed]
- Litjens, G.; Sánchez, C.I.; Timofeeva, N.; Hermsen, M.; Nagtegaal, I.; Kovacs, I.; Hulsbergen - van de Kaa, C.; Bult, P.; van Ginneken, B.; van der Laak, J. Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis. Sci. Rep. 2016, 6, 26286. [Google Scholar] [CrossRef] [Green Version]
- Bejnordi, B.E.; Zuidhof, G.; Balkenhol, M.; Hermsen, M.; Bult, P.; van Ginneken, B.; Karssemeijer, N.; Litjens, G.; van der Laak, J. Context-aware stacked convolutional neural networks for classification of breast carcinomas in whole-slide histopathology images. J. Med. Imaging 2017, 4, 044504. [Google Scholar] [CrossRef]
- Cruz-Roa, A.; Gilmore, H.; Basavanhally, A.; Feldman, M.; Ganesan, S.; Shih, N.; Tomaszewski, J.; Madabhushi, A.; González, F. High-throughput adaptive sampling for whole-slide histopathology image analysis (HASHI) via convolutional neural networks: Application to invasive breast cancer detection. PLoS ONE 2018, 13, e0196828. [Google Scholar] [CrossRef]
- Hamilton, P.W.; Wang, Y.; Boyd, C.; James, J.A.; Loughrey, M.B.; Hougton, J.P.; Boyle, D.P.; Kelly, P.; Maxwell, P.; McCleary, D. Automated tumor analysis for molecular profiling in lung cancer. Oncotarget 2015, 6, 27938. [Google Scholar] [CrossRef] [Green Version]
- Pell, R.; Oien, K.; Robinson, M.; Pitman, H.; Rajpoot, N.; Rittscher, J.; Snead, D.; Verrill, C.; UK National Cancer Research Institute (NCRI) Cellular-Molecular Pathology (CM-Path) Quality Assurance Working Group. The use of digital pathology and image analysis in clinical trials. J. Pathol. Clin. Res. 2019, 5, 81–90. [Google Scholar] [CrossRef] [Green Version]
- Caicedo, J.C.; Cooper, S.; Heigwer, F.; Warchal, S.; Qiu, P.; Molnar, C.; Vasilevich, A.S.; Barry, J.D.; Bansal, H.S.; Kraus, O. Data-analysis strategies for image-based cell profiling. Nat. Methods 2017, 14, 849–863. [Google Scholar] [PubMed] [Green Version]
- Johnson, S.; Brandwein, M.; Doyle, S. Registration parameter optimization for 3D tissue modeling from resected tumors cut into serial H&E slides. SPIE Med. Imaging 2018, 10581, 105810T. [Google Scholar]
- Yigitsoy, M.; Schmidt, G. Hierarchical patch-based co-registration of differently stained histopathology slides. SPIE Med. Imaging 2017, 10140, 1014009. [Google Scholar]
- Sirinukunwattana, K.; Snead, D.; Epstein, D.; Aftab, Z.; Mujeeb, I.; Tsang, Y.W.; Cree, I.; Rajpoot, N. Novel digital signatures of tissue phenotypes for predicting distant metastasis in colorectal cancer. Sci. Rep. 2018, 8, 13692. [Google Scholar] [PubMed] [Green Version]
- Mobadersany, P.; Yousefi, S.; Amgad, M.; Gutman, D.A.; Barnholtz-Sloan, J.S.; Vega, J.; Brat, D.J.; Cooper, L.A.D. Predicting cancer outcomes from histology and genomics using convolutional networks. Proc. Natl. Acad. Sci. USA 2018, 115, E2970–E2979. [Google Scholar] [PubMed] [Green Version]
- Yu, K.H.; Berry, G.J.; Rubin, D.L.; Ré, C.; Altman, R.B.; Snyder, M. Association of Omics Features with Histopathology Patterns in Lung Adenocarcinoma. Cell Syst. 2017, 5, 620–627.e3. [Google Scholar] [CrossRef] [Green Version]
- Zhong, T.; Wu, M.; Ma, S. Examination of Independent Prognostic Power of Gene Expressions and Histopathological Imaging Features in Cancer. Cancers 2019, 11, 361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savage, R.S.; Yuan, Y. Predicting chemoinsensitivity in breast cancer with ’omics/digital pathology data fusion. R Soc. Open Sci. 2016, 3, 140501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barry, J.D.; Fagny, M.; Paulson, J.N.; Aerts, H.; Platig, J.; Quackenbush, J. Histopathological image QTL discovery of thyroid autoimmune disease variants. BioRxiv 2017, 11, 126730. [Google Scholar] [CrossRef] [Green Version]
- Pagès, F.; Mlecnik, B.; Marliot, F.; Bindea, G.; Ou, F.S.; Bifulco, C.; Lugli, A.; Zlobec, I.; Rau, T.T.; Berger, M.D. International validation of the consensus immunoscore for the classification of colon cancer: A prognostic and accuracy study. Lancet 2018, 391, 2128–2139. [Google Scholar] [CrossRef]
- Azuale, F.; Kim, S.Y.; Hernandez, D.P.; Dittmar, G. Connecting Histopathology Imaging and Proteomics in Kidney Cancer through Machine Learning. J. Clin. Med. 2019, 8, 1535. [Google Scholar] [CrossRef] [Green Version]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Bychkov, D.; Linder, N.; Turkki, R.; Nordling, S.; Kovanen, P.E.; Verrill, C.; Walliander, M.; Lundin, M.; Haglund, C.; Lundin, J. Deep learning based tissue analysis predicts outcome in colorectal cancer. Sci. Rep. 2018, 8, 3395. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.C.; Halter, M.; Kacker, R.N.; Elliott, J.T.; Plant, A.L. A novel measure and significance testing in data analysis of cell image segmentation. BMC Bioinform. 2017, 18, 168. [Google Scholar] [CrossRef] [Green Version]
- Khosravi, P.; Kazemi, E.; Imielinski, M.; Elemento, O.; Hajirasouliha, I. Deep convolutional neural networks enable discrimination of heterogeneous digital pathology images. EBioMedicine 2018, 27, 317–328. [Google Scholar]
- Ni, M.; Zhou, X.; Liu, J.; Yu, H.; Gao, Y.; Zhang, X.; Li, Z. Prediction of the clinicopathological subtypes of breast cancers using Fisher discriminant analysis model based on radiomic features of diffusion-weighted MR. BMC Cancer 2020, 20, 1073. [Google Scholar] [CrossRef] [PubMed]
- Trahearn, N.; Tsang, Y.W.; Cree, I.A.; Snead, D.; Epstein, D.; Rajpoot, N. Simultaneous automatic scoring and co-registration of hormone receptors in tumor areas in whole slide images of breast cancer tissue slides. Cytometry A 2017, 91, 585–594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akbar, S.; Peikari, M.; Salama, S.; Panah, A.Y.; Nofech-Mozes, S.; Martel, A.L. Automated and manual quantification of tumour cellularity in digital slides for tumour burden assessment. Sci. Rep. 2019, 9, 14099. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koelzer, V.H.; Sirinukunwattana, K.; Rittscher, J.; Mertz, K.D. Precision immunoprofiling by image analysis and artificial intelligence. Virchows Arch. 2019, 474, 511–522. [Google Scholar] [PubMed] [Green Version]
- Howat, W.J.; Blows, F.M.; Provenzano, E.; Brook, M.N.; Morris, L.; Gazinska, P.; Johnson, N.; McDuffus, L.A.; Miller, J.; Sawyer, E.J. Performance of automated scoring of ER, PR, HER2, CK5/6 and EGFR in breast cancer tissue microarrays in the Breast Cancer Association Consortium. J. Pathol. Clin. Res. 2014, 1, 18–32. [Google Scholar] [CrossRef] [Green Version]
- Qaiser, T.; Mukherjee, A.; Reddy Pb, C.; Munugoti, S.D.; Tallam, V.; Pitkäaho, T.; Lehtimäki, T.; Naughton, T.; Berseth, M.; Pedraza, A. HER2 challenge contest: A detailed assessment of automated HER2 scoring algorithms in whole slide images of breast cancer tissues. Histopathology 2018, 72, 227–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goode, A.; Gilbert, B.; Harkes, J.; Jukic, D.; Satyanarayanan, M. OpenSlide: A vendor-neutral software foundation for digital pathology. J. Pathol. Inform. 2013, 4, 27. [Google Scholar] [CrossRef]
- Linkert, M.; Rueden, C.T.; Allan, C.; Burel, J.M.; Moore, W.; Patterson, A.; Loranger, B.; Moore, J.; Neves, C.; Macdonald, D. Metadata matters: Access to image data in the real world. J. Cell Biol. 2010, 189, 777–782. [Google Scholar] [CrossRef] [Green Version]
- Barisoni, L.; Hodgin, J.B. Digital pathology in nephrology clinical trials, research, and pathology practice. Curr. Opin. Nephrol. Hypertens. 2017, 26, 450–459. [Google Scholar] [CrossRef]
- Nelissen, B.G.; van Herwaarden, J.A.; Moll, F.L.; van Diest, P.J.; Pasterkamp, G. SlideToolkit: An assistive toolset for the histological quantification of whole slide images. PLoS ONE 2014, 9, e110289. [Google Scholar] [CrossRef]
- Tuominen, V.J.; Ruotoistenmäki, S.; Viitanen, A.; Jumppanen, M.; Isola, J. ImmunoRatio: A publicly available web application for quantitative image analysis of estrogen receptor (ER), progesterone receptor (PR), and Ki-67. Breast Cancer Res. 2010, 12, R56. [Google Scholar] [CrossRef]
- Deroulers, C.; Ameisen, D.; Badoual, M.; Gerin, C.; Granier, A.; Lartaud, M. Analyzing huge pathology images with open source software. Diagn. Pathol. 2013, 8, 92. [Google Scholar] [CrossRef] [Green Version]
- Schindelin, J.; Rueden, C.T.; Hiner, M.C.; Eliceiri, K.W. The ImageJ ecosystem: An open platform for biomedical image analysis. Mol. Reprod. Dev. 2015, 82, 518–529. [Google Scholar] [CrossRef] [Green Version]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar]
- de Chaumont, F.; Dallongeville, S.; Chenouard, N.; Hervé, N.; Pop, S.; Provoost, T.; Meas-Yedid, V.; Pankajakshan, P.; Lecomte, T.; Le Montagner, Y. Icy: An open bioimage informatics platform for extended reproducible research. Nat. Methods 2012, 9, 690–696. [Google Scholar] [CrossRef]
- Lamprecht, M.; Sabatini, D.; Carpenter, A. CellProfilerTM: Free, versatile software for automated biological image analysis. Biotechniques 2007, 42, 71–75. [Google Scholar] [CrossRef] [Green Version]
- Marée, R.; Rollus, L.; Stévens, B.; Hoyoux, R.; Louppe, G.; Vandaele, R.; Begon, J.M.; Kainz, P.; Geurts, P.; Wehenkel, L. Collaborative analysis of multi-gigapixel imaging data using Cytomine. Bioinformatics 2016, 32, 1395–1401. [Google Scholar]
- Polley, M.Y.; Leung, S.C.; McShane, L.M.; Gao, D.; Hugh, J.C.; Mastropasqua, M.G.; Viale, G.; Zabaglo, L.A.; Penault-Llorca, F.; Bartlett, J.M. An international Ki67 reproducibility study. J. Natl. Cancer Inst. 2013, 105, 1897–1906. [Google Scholar]
- Bauer, T.W.; Schoenfield, L.; Slaw, R.J.; Yerian, L.; Sun, Z.; Henricks, W.H. Validation of whole slide imaging for primary diagnosis in surgical pathology. Arch. Pathol. Lab. Med. 2013, 137, 518–524. [Google Scholar] [CrossRef] [Green Version]
- Browning, L.; Fryer, E.; Roskell, D.; White, K.; Colling, R.; Rittscher, J.; Verill, C. Role of digital pathology in diagnostic histopathology in the response to COVID-19: Results from a survey of experience in a UK tertiary referral hospital. J. Clin. Pathol. 2020, 74, 129–132. [Google Scholar] [CrossRef]
- Wolff, A.C.; Hammond, M.E.H.; Allison, K.H.; Harvey, B.E.; Mangu, P.B.; Bartlett JM, S.; Bilous, M.; Ellis, I.O.; Fitzgibbons, P.; Hanna, W. Human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists Clinical practice guideline focused update. J. Clin. Oncol. 2018, 36, 2105–2122. [Google Scholar] [CrossRef] [Green Version]
- Pagès, F.; Kirilovsky, A.; Mlecnik, B.; Asslaber, M.; Tosolini, M.; Bindea, G.; Lagorce, C.; Wind, P.; Marliot, F.; Bruneval, P. In situ cytotoxic and memory T cells predict outcome in patients with early-stage colorectal cancer. J. Clin. Oncol. 2009, 27, 5944–5951. [Google Scholar] [CrossRef]
- Vodovnik, A.; Aghdam, M.R.F. Complete routine remote digital pathology services. J. Pathol. Inform. 2018, 9, 36. [Google Scholar] [CrossRef]
- Guo, H.; Birsa, J.; Farahani, N.; Hartman, D.; Piccoli, A.; O’Leary, M.; McHugh, J.; Nyman, M.; Stratman, C.; Kvarnstrom, V.; et al. Digital pathology and anatomic pathology laboratory information system integration to support digital pathology sign-out. J. Pathol. Inform. 2016, 7, 23. [Google Scholar] [CrossRef]
- Aeffner, F.; Faelan, C.; Moore, S.; Moody, A.; Black, J.; Charleston, J.; Frank, D.; Dworzak, J.; Piper, J.K.; Ranjitkar, M.R.; et al. Validation of a Muscle-Specific Tissue Image Analysis Tool for Quantitative Assessment of Dystrophin Staining in Frozen Muscle Biopsies. Arch. Pathol. Lab. Med. 2019, 143, 197–205. [Google Scholar] [CrossRef] [Green Version]
- Stålhammar, G.; Robertson, S.; Wedlund, L.; Lippert, M.; Rantalainen, M.; Bergh, J.; Hartman, J. Digital image analysis of Ki67 in hot spots is superior to both manual Ki67 and mitotic counts in breast cancer. Histopathology 2018, 72, 974–989. [Google Scholar] [CrossRef]
- Khalsa, S.S.S.; Hollon, T.C.; Adapa, A.; Urias, E.; Srinivasan, S.; Jairath, N.; Szczepanski, J.; Ouillette, P.; Camelo-Piragua, S.; Orringer, D.A. Automated histologic diagnosis of CNS tumors with machine learning. CNS Oncol. 2020, 9, CNS56. [Google Scholar] [CrossRef]
- Irshad, H.; Veillard, A.; Roux, L.; Racoceanu, D. Methods for nuclei detection, segmentation, and classification in digital histopathology: A review–current status and future potential. IEEE Rev. Biomed. Eng. 2014, 7, 97–114. [Google Scholar] [CrossRef]
- Steiner, D.F.; Chen, P.H.C.; Mermel, C.H. Closing the translation gap: AI applications in digital pathology. BBA—Rev. Cancer 2021, 1875, 188452. [Google Scholar] [CrossRef]
- Rodriguez, J.P.M.; Rodriguez, R.; Silva, V.W.K.; Kitamura, F.C.; Corradi, G.C.A.; Bertoletti de Marchi, A.C.; Rieder, R. Artificial intelligence as a tool for diagnosis in digital pathology whole slide images: A systematic review. J. Pathol. Inform. 2022, 13, 100138. [Google Scholar] [CrossRef]
- Berbis, M.A.; McClintock, D.S.; Bychkov, A.; Van der Laak, J.; Pantanowitz, L.; Lennerz, J.K.; Cheng, J.Y.; Delahunt, B.; Egevad, L.; Eloy, C.; et al. Computational pathology in 2030, a Delphi study forecasting the role of AI in pathology within the next decade. BioMedicine 2023, 88, 104427. [Google Scholar] [CrossRef]
- Jarrahi, M.H.; Davoudi, V.; Haeri, M. The key to an effective AI-powered digital pathology: Establishing a symbiotic workflow between pathologists and machine. J. Pathol. Inform. 2022, 13, 100156. [Google Scholar] [CrossRef]
Subject (Keywords) | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | Total |
---|---|---|---|---|---|---|---|
general topics/techniques | |||||||
computer-assisted diagnosis/ computer-assisted interpretation | 2 | 3 | 3 | 2 | 10 | ||
image analysis software/ digital image analysis/ computerized image analysis | 8 | 15 | 16 | 21 | 30 | 9 | 99 |
Whole-Slide Imaging/WSI | 43 | 57 | 82 | 96 | 129 | 22 | 429 |
applications in clinical diagnosis | |||||||
color variation/ color normalization/ stain normalization/ spectral normalization | 3 | 1 | 6 | 9 | 11 | 6 | 36 |
segmentation | 16 | 9 | 38 | 39 | 67 | 12 | 181 |
counting | 4 | 5 | 7 | 8 | 12 | 2 | 38 |
region of interest | 2 | 3 | 1 | 2 | 6 | 1 | 15 |
profiling | 2 | 5 | 5 | 12 | 14 | 3 | 41 |
feature extraction | 1 | 5 | 1 | 7 | 11 | 1 | 26 |
genomic/proteomic/phenotype | 5 | 8 | 9 | 7 | 14 | 5 | 48 |
biomarker | 15 | 12 | 5 | 29 | 47 | 7 | 115 |
standardization | 5 | 2 | 7 | 7 | 8 | 2 | 31 |
quantitative image analysis | 1 | 2 | 4 | 4 | 4 | 15 | |
morphometry | 2 | 1 | 2 | 3 | 1 | 9 | |
other applications | |||||||
information system | 2 | 3 | 3 | 3 | 5 | 2 | 18 |
education | 9 | 11 | 13 | 21 | 29 | 3 | 86 |
training | 21 | 19 | 49 | 62 | 99 | 22 | 272 |
quality control | 2 | 5 | 5 | 4 | 8 | 3 | 27 |
IT methods—machine learning | 32 | 66 | 151 | 265 | 439 | 110 | 1063 |
artificial intelligence | 1 | 13 | 35 | 72 | 132 | 34 | 287 |
machine learning | 12 | 18 | 40 | 75 | 106 | 27 | 278 |
deep learning | 14 | 28 | 59 | 98 | 165 | 43 | 407 |
convolutional neural network | 5 | 7 | 17 | 20 | 36 | 6 | 91 |
IT methods—statistical approaches | 10 | 14 | 13 | 23 | 25 | 7 | 92 |
component analysis | 1 | 1 | 1 | 3 | |||
clustering | 1 | 4 | 5 | 8 | 6 | 2 | 26 |
mixed model | 1 | 1 | |||||
similarity measures | 8 | 9 | 8 | 14 | 18 | 5 | 62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moscalu, M.; Moscalu, R.; Dascălu, C.G.; Țarcă, V.; Cojocaru, E.; Costin, I.M.; Țarcă, E.; Șerban, I.L. Histopathological Images Analysis and Predictive Modeling Implemented in Digital Pathology—Current Affairs and Perspectives. Diagnostics 2023, 13, 2379. https://doi.org/10.3390/diagnostics13142379
Moscalu M, Moscalu R, Dascălu CG, Țarcă V, Cojocaru E, Costin IM, Țarcă E, Șerban IL. Histopathological Images Analysis and Predictive Modeling Implemented in Digital Pathology—Current Affairs and Perspectives. Diagnostics. 2023; 13(14):2379. https://doi.org/10.3390/diagnostics13142379
Chicago/Turabian StyleMoscalu, Mihaela, Roxana Moscalu, Cristina Gena Dascălu, Viorel Țarcă, Elena Cojocaru, Ioana Mădălina Costin, Elena Țarcă, and Ionela Lăcrămioara Șerban. 2023. "Histopathological Images Analysis and Predictive Modeling Implemented in Digital Pathology—Current Affairs and Perspectives" Diagnostics 13, no. 14: 2379. https://doi.org/10.3390/diagnostics13142379
APA StyleMoscalu, M., Moscalu, R., Dascălu, C. G., Țarcă, V., Cojocaru, E., Costin, I. M., Țarcă, E., & Șerban, I. L. (2023). Histopathological Images Analysis and Predictive Modeling Implemented in Digital Pathology—Current Affairs and Perspectives. Diagnostics, 13(14), 2379. https://doi.org/10.3390/diagnostics13142379