Evaluation of Hepatic/Renal and Splenic/Renal Echointensity Ratio Using Ultrasonography in Diabetic Nephropathy
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2014, 37 (Suppl. S1), S81–S90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, W. Epidemiology in diabetes mellitus and cardiovascular disease. Cardiovasc. Endocrinol. 2017, 6, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Safiri, S.; Kolahi, A.A.; Naghavi, M. Global, regional and national burden of bladder cancer and its attributable risk factors in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease study 2019. BMJ Glob. Health 2021, 6, e004128. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. National Diabetes Statistics Report, 2017-Estimates of Diabetes and Its Burden in the United States Background; Centers for Disease Control and Prevention (CDC): Atlanta, GA, USA, 2017. [Google Scholar]
- Lindström, J.; Ilanne-Parikka, P.; Peltonen, M.; Aunola, S.; Eriksson, J.G.; Hemiö, K.; Hämäläinen, H.; Härkönen, P.; Keinänen-Kiukaanniemi, S.; Laakso, M.; et al. Sustained reduction in the incidence of type 2 diabetes by lifestyle intervention: Follow-up of the Finnish Diabetes Prevention Study. Lancet 2006, 368, 1673–1679. [Google Scholar] [CrossRef]
- Valencia, W.M.; Florez, H. How to prevent the microvascular complications of type 2 diabetes beyond glucose control. BMJ (Clin. Res. Ed.) 2017, 356, i6505. [Google Scholar] [CrossRef] [Green Version]
- Burrows, N.R.; Hora, I.; Geiss, L.S.; Gregg, E.W.; Albright, A. Incidence of End-Stage Renal Disease Attributed to Diabetes Among Persons with Diagnosed Diabetes—United States and Puerto Rico, 2000–2014. MMWR. Morb. Mortal. Wkly. Rep. 2017, 66, 1165–1170. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Long, J.; Jiang, W.; Shi, Y.; He, X.; Zhou, Z.; Li, Y.; Yeung, R.O.; Wang, J.; Matsushita, K.; et al. Trends in Chronic Kidney Disease in China. N. Engl. J. Med. 2016, 375, 905–906. [Google Scholar] [CrossRef]
- Xue, R.; Gui, D.; Zheng, L.; Zhai, R.; Wang, F.; Wang, N. Mechanistic Insight and Management of Diabetic Nephropathy: Recent Progress and Future Perspective. J. Diabetes Res. 2017, 2017, 1839809. [Google Scholar] [CrossRef] [Green Version]
- Gheith, O.; Farouk, N.; Nampoory, N.; Halim, M.A.; Al-Otaibi, T. Diabetic kidney disease: World wide difference of prevalence and risk factors. J. Nephropharmacol. 2016, 5, 49–56. [Google Scholar] [CrossRef]
- Long, A.N.; Dagogo-Jack, S. Comorbidities of diabetes and hypertension: Mechanisms and approach to target organ protection. J. Clin. Hypertens. 2011, 13, 244–251. [Google Scholar] [CrossRef] [Green Version]
- Alicic, R.Z.; Rooney, M.T.; Tuttle, K.R. Diabetic Kidney Disease: Challenges, Progress, and Possibilities. Clin. J. Am. Soc. Nephrol. CJASN 2017, 12, 2032–2045. [Google Scholar] [CrossRef] [PubMed]
- Umanath, K.; Lewis, J.B. Update on Diabetic Nephropathy: Core Curriculum 2018. Am. J. Kidney Dis. Off. J. Natl. Kidney Found. 2018, 71, 884–895. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Li, G.; Cui, X.F.; Zhang, D.L.; Yang, Q.H.; Mu, X.Y.; Pan, W.J. Methodological evaluation and comparison of five urinary albumin measurements. J. Clin. Lab. Anal. 2011, 25, 324–329. [Google Scholar] [CrossRef]
- Brenner, B.M.; Hostetter, T.H.; Humes, H.D. Molecular basis of proteinuria of glomerular origin. N. Engl. J. Med. 1978, 298, 826–833. [Google Scholar] [CrossRef] [PubMed]
- Jim, B.; Santos, J.; Spath, F.; Cijiang He, J. Biomarkers of diabetic nephropathy, the present and the future. Curr. Diabetes Rev. 2012, 8, 317–328. [Google Scholar] [CrossRef] [PubMed]
- Insana, M.F.; Hall, T.J.; Fishback, J.L. Identifying acoustic scattering sources in normal renal parenchyma from the anisotropy in acoustic properties. Ultrasound Med. Biol. 1991, 17, 613–626. [Google Scholar] [CrossRef] [PubMed]
- Rosansky, S.J. Renal function trajectory is more important than chronic kidney disease stage for managing patients with chronic kidney disease. Am. J. Nephrol. 2012, 36, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Meola, M.; Samoni, S.; Petrucci, I. Imaging in Chronic Kidney Disease. Contrib. Nephrol. 2016, 188, 69–80. [Google Scholar] [CrossRef]
- Degrassi, F.; Quaia, E.; Martingano, P.; Cavallaro, M.; Cova, M.A. Imaging of haemodialysis: Renal and extrarenal findings. Insights Imaging 2015, 6, 309–321. [Google Scholar] [CrossRef] [Green Version]
- Rosenfield, A.T.; Siegel, N.J. Renal parenchymal disease: Histopathologic-sonographic correlation. AJR Am. J. Roentgenol. 1981, 137, 793–798. [Google Scholar] [CrossRef]
- Levey, A.S.; Becker, C.; Inker, L.A. Glomerular filtration rate and albuminuria for detection and staging of acute and chronic kidney disease in adults: A systematic review. JAMA 2015, 313, 837–846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quaia, E.; Martingano, P.; Cavallaro, M.; Premm, M.; Angileri, R. Normal radiological anatomy and anatomical variants of the kidney. In Radiological Imaging of the Kidney, 2nd ed.; Quaia, E., Ed.; Springer: Berlin/Heidelberg, Germany, 2014; p. 17. [Google Scholar]
- Brenbridge, A.N.; Chevalier, R.L.; Kaiser, D.L. Increased renal cortical echogenicity in pediatric renal disease: Histopathologic correlations. J. Clin. Ultrasound 1986, 14, 595–600. [Google Scholar] [CrossRef]
- Fiorini, F.; Barozzi, L. The role of ultrasonography in the study of medical nephropathy. J. Ultrasound 2007, 10, 161–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, S.; Bughio, S.; Hassan, M.; Lal, S.; Ali, M. Role of Ultrasound in the Diagnosis of Chronic Kidney Disease and its Correlation with Serum Creatinine Level. Cureus 2019, 11, e4241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hricak, H.; Cruz, C.; Romanski, R.; Uniewski, M.H.; Levin, N.W.; Madrazo, B.L.; Sandler, M.A.; Eyler, W.R. Renal parenchymal disease: Sonographic-histologic correlation. Radiology 1982, 144, 141–147. [Google Scholar] [CrossRef]
- Lamont, A.C.; Graebe, A.C.; Pelmore, J.M.; Thompson, J.R. Ultrasound assessment of renal cortical brightness in infants: Is naked eye evaluation reliable? Investig. Radiol. 1990, 25, 250–253. [Google Scholar] [CrossRef]
- Manley, J.A.; O’Neill, W.C. How echogenic is echogenic? Quantitative acoustics of the renal cortex. Am. J. Kidney Dis. Off. J. Natl. Kidney Found. 2001, 37, 706–711. [Google Scholar] [CrossRef]
- Omer, M.A.A.; Eljack, A.H.; Gar-alnabi, M.E.; Mahmoud, M.Z.; Elseid, M.; Edam, G.A. Ultrasonographic Characteristics of Diabetes Impacts in Kidneys’ Morphology. Open J. Radiol. 2014, 4, 301–308. [Google Scholar] [CrossRef]
- Soldo, D.; Brkljacic, B.; Bozikov, V.; Drinkovic, I.; Hauser, M. Diabetic nephropathy. Comparison of conventional and duplex Doppler ultrasonographic findings. Acta Radiol. 1997, 38, 296–302. [Google Scholar] [CrossRef]
- Zhang, B.; Ding, F.; Chen, T.; Xia, L.H.; Qian, J.; Lv, G.Y. Ultrasound hepatic/renal ratio and hepatic attenuation rate for quantifying liver fat content. World J. Gastroenterol. 2014, 20, 17985–17992. [Google Scholar] [CrossRef]
- Quaia, E.; Correas, J.M.; Mehta, M.; Murchison, J.T.; Gennari, A.G.; van Beek, E.J.R. Gray Scale Ultrasound, Color Doppler Ultrasound, and Contrast-Enhanced Ultrasound in Renal Parenchymal Diseases. Ultrasound Q. 2018, 34, 250–267. [Google Scholar] [CrossRef] [PubMed]
- Xia, M.F.; Yan, H.M.; He, W.Y.; Li, X.M.; Li, C.L.; Yao, X.Z.; Li, R.K.; Zeng, M.S.; Gao, X. Standardized ultrasound hepatic/renal ratio and hepatic attenuation rate to quantify liver fat content: An improvement method. Obesity 2012, 20, 444–452. [Google Scholar] [CrossRef] [PubMed]
- Isaka, M.; Sugimoto, K.; Yasunobe, Y.; Akasaka, H.; Fujimoto, T.; Kurinami, H.; Takeya, Y.; Yamamoto, K.; Rakugi, H. The Usefulness of an Alternative Diagnostic Method for Sarcopenia Using Thickness and Echo Intensity of Lower Leg Muscles in Older Males. J. Am. Med. Dir. Assoc. 2019, 20, 1185.e1–1185.e8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, J.; Liu, X.; Jiang, S.; Kan, S.; An, Y.; Zheng, C.; Li, X.; Liu, Z.; Xie, G. Body Mass Index and Risk of Diabetic Nephropathy: A Mendelian Randomization Study. J. Clin. Endocrinol. Metab. 2022, 107, 1599–1608. [Google Scholar] [CrossRef] [PubMed]
- Hukportie, D.N.; Li, F.R.; Zhou, R.; Zheng, J.Z.; Wu, X.X.; Wu, X.B. Anthropometric Measures and Incident Diabetic Nephropathy in Participants With Type 2 Diabetes Mellitus. Front. Endocrinol. 2021, 12, 706845. [Google Scholar] [CrossRef]
- Hukportie, D.N.; Li, F.R.; Zhou, R.; Zou, M.C.; Wu, X.X.; Wu, X.B. Association of Predicted Lean Body Mass and Fat Mass With Incident Diabetic Nephropathy in Participants With Type 2 Diabetes Mellitus: A Post Hoc Analysis of ACCORD Trial. Front. Endocrinol. 2021, 12, 719666. [Google Scholar] [CrossRef]
- Bartziokas, K.; Kyriakopoulos, C.; Dounousi, E.; Kostikas, K. Microalbuminuria on admission for acute exacerbation of COPD as a predictor of all-cause mortality and future exacerbations. Postgrad. Med. J. 2023, 99, 189–197. [Google Scholar] [CrossRef]
- Govardi, E.; Yulianda, D.; Habib, F.; Pakpahan, C. Microalbuminuria and mortality in individuals with coronary heart disease: A meta-analysis of a prospective study. Indian Heart J. 2023, in press. [Google Scholar] [CrossRef]
- Härtig, F.; Ross, M.; Dammeier, N.M.; Fedtke, N.; Heiling, B.; Axer, H.; Décard, B.F.; Auffenberg, E.; Koch, M.; Rattay, T.W.; et al. Nerve Ultrasound Predicts Treatment Response in Chronic Inflammatory Demyelinating Polyradiculoneuropathy—A Prospective Follow-Up. Neurother. J. Am. Soc. Exp. NeuroTher. 2018, 15, 439–451. [Google Scholar] [CrossRef] [Green Version]
- Cakir, L.; Aktas, G.; Enginyurt, O.; Cakir, S.A. Mean platelet volume increases in type 2 diabetes mellitus independent of HbA1c level. Acta Med. Mediterr. 2014, 30, 425–428. [Google Scholar]
- Kocak, M.Z.; Aktas, G.; Erkus, E.; Duman, T.T.; Atak, B.M.; Savli, H. Mean Platelet Volume to Lymphocyte Ratio as a Novel Marker for Diabetic Nephropathy. J. Coll. Physicians Surg. Pak. 2018, 28, 844–847. [Google Scholar] [CrossRef] [PubMed]
- Bilgin, S.; Kurtkulagi, O.; Atak Tel, B.M.; Duman, T.T.; Kahveci, G.; Khalid, A.; Aktas, G. Does C-reactive protein to serum Albumin Ratio correlate with diabEtic nephropathy in patients with Type 2 dIabetes MEllitus? The CARE TIME study. Prim. Care Diabetes 2021, 15, 1071–1074. [Google Scholar] [CrossRef] [PubMed]
- Kin Tekce, B.; Tekce, H.; Aktas, G.; Sit, M. Evaluation of the urinary kidney injury molecule-1 levels in patients with diabetic nephropathy. Clinical and investigative medicine. Med. Clin. Et Exp. 2014, 37, E377–E383. [Google Scholar] [CrossRef] [Green Version]
- Atak, B.M.; Duman, T.T.; Aktas, G.; Kocak, M.Z.; Savli, H. Platelet distribution width is associated with type 2 diabetes mellitus and diabetic nephropathy and neuropathy. Natl. J. Health Sci. 2018, 3, 95–98. [Google Scholar] [CrossRef]
- Kocak, M.Z.; Aktas, G.; Duman, T.T.; Atak, B.M.; Savli, H. Is Uric Acid elevation a random finding or a causative agent of diabetic nephropathy? Rev. Assoc. Med. Bras. 2019, 65, 1155–1160. [Google Scholar] [CrossRef] [Green Version]
- Kocak, M.Z.; Aktas, G.; Duman, T.T.; Atak, B.M.; Kurtkulagi, O.; Tekce, H.; Bilgin, S.; Alaca, B. Monocyte lymphocyte ratio As a predictor of Diabetic Kidney Injury in type 2 Diabetes mellitus; The MADKID Study. J. Diabetes Metab. Disord. 2020, 19, 997–1002. [Google Scholar] [CrossRef]
- Kocak, M.Z.; Aktas, G.; Atak, B.M.; Duman, T.T.; Yis, O.M.; Erkus, E.; Savli, H. Is Neuregulin-4 a predictive marker of microvascular complications in type 2 diabetes mellitus? Eur. J. Clin. Investig. 2020, 50, e13206. [Google Scholar] [CrossRef]
- Aktas, G.; Yilmaz, S.; Kantarci, D.B.; Duman, T.T.; Bilgin, S.; Balci, S.B.; Atak Tel, B.M. Is serum uric acid-to-HDL cholesterol ratio elevation associated with diabetic kidney injury? Postgrad. Med. 2023, 135, 519–523. [Google Scholar] [CrossRef]
- Sudhir, R.; Mohan, V. Postprandial hyperglycemia in patients with type 2 diabetes mellitus. Treat. Endocrinol. 2002, 1, 105–116. [Google Scholar] [CrossRef]
- Stratton, I.M.; Adler, A.I.; Neil, H.A.; Matthews, D.R.; Manley, S.E.; Cull, C.A.; Hadden, D.; Turner, R.C.; Holman, R.R. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): Prospective observational study. BMJ (Clin. Res. Ed.) 2000, 321, 405–412. [Google Scholar] [CrossRef] [Green Version]
Diabetic Nephropathic Subjects (n = 24) | Diabetic Non-Nephropathic Subjects (n = 35) | p | ||
---|---|---|---|---|
Gender | Women | 10 (42%) | 20 (57%) | 0.24 |
Men | 14 (58%) | 15 (43%) | 0.24 | |
Age (years) | 61.7 ± 10 | 58.5 ± 12 | 0.29 |
Diabetic Nephropathic Subjects (n = 24) | Diabetic Non-Nephropathic Subjects (n = 35) | p | |
---|---|---|---|
Mean (±Std) | Mean (±Std) | ||
BMI (kg/m2) | 32.4 ± 1 | 29.1 ± 0.7 | 0.02 |
Albumin (g/dL) | 4.6 ± 0.4 | 4.7 ± 0.4 | 0.58 |
Right renal width (mm) | 45 ± 5.5 | 44 ± 5.4 | 0.58 |
Left renal length (mm) | 112 ± 10.7 | 110 ± 9.9 | 0.42 |
Left renal width (mm) | 51 ± 6.7 | 49 ± 6.2 | 0.17 |
Left renal cortical thickness (mm) | 14.5 ± 0.4 | 16.2 ± 0.4 | 0.006 |
Spleen length (mm) | 103 ± 15.6 | 99 ± 13.3 | 0.27 |
Splenic/renal echointensity ratio % | 0.60 ± 0.2 | 1.02 ± 0.2 | <0.001 |
Median (min–max) | |||
Microalbumin in Urine (mcg/mL) | 122.5 (33–2000) | 5 (4–18) | <0.001 |
Glucose (mg/dL) | 158 (89–432) | 137 (73–313) | 0.046 |
HbA1C (%) | 8.5 (7.1–12.6) | 7.2 (5.2–12.2) | <0.001 |
AST (U/L) | 18 (10–46) | 18 (10–41) | 0.91 |
ALT (U/L) | 21 (11–58) | 19 (10–49) | 0.62 |
Urea (mg/dL) | 35 (12–92) | 35(23–58) | 0.88 |
Creatinine (mg/dL) | 0.92 (0.58–9) | 0.80 (0.51–1.31) | 0.01 |
eGFR (mL/min/1.73 m2) | 81 (119–187) | 90 (55–111) | 0.13 |
Liver length (mm) | 135 (24–56) | 141(113–175) | 0.85 |
Liver echogenicity (grade) | 2 (0–3) | 1 (0–2) | 0.29 |
Right renal length (mm) | 102 (88–130) | 108.5 (96–133) | 0.04 |
Right renal cortical thickness (mm) | 15 (11–18) | 14 (8–18) | 0.06 |
Right renal echogenicity (grade) | 0 (0–1) | 0 (0–2) | 0.17 |
Left renal echogenicity (grade) | 0 (0–1) | 0 (0–1) | 0.06 |
Liver echointensity | 92 (32–111) | 67 (34–103) | 0.40 |
Right renal echointensity % | 59.6 (44.6–80.8) | 32.7 (28.7–52) | <0.001 |
Left renal echointensity % | 58 (41.4–83.5) | 33.9 (29.1–58.7) | <0.001 |
Spleen echointensity | 35 (31–39) | 35 (31–57) | 0.62 |
Hepatic/renal echointensity ratio % | 1.43 (0.44–2.2) | 1.9 (1.05–3.3) | 0.025 |
Sensitivity % | Specificity % | AUC | p | 95% CI (U-L) | |
---|---|---|---|---|---|
Right renal echointensity > 44.15 | 100 | 97 | 0.99 | <0.001 | 0.98–1 |
Left renal echointensity > 39.18 | 100 | 91 | 0.98 | <0.001 | 0.95–1 |
Hepatic/renal echointensity ratio < 1.9 | 87 | 51 | 0.67 | 0.03 | 0.53–0.81 |
Splenic/renal echointensity ratio < 1.2 | 100 | 97 | 0.98 | <0.001 | 0.94–1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalfaoglu, M.E. Evaluation of Hepatic/Renal and Splenic/Renal Echointensity Ratio Using Ultrasonography in Diabetic Nephropathy. Diagnostics 2023, 13, 2401. https://doi.org/10.3390/diagnostics13142401
Kalfaoglu ME. Evaluation of Hepatic/Renal and Splenic/Renal Echointensity Ratio Using Ultrasonography in Diabetic Nephropathy. Diagnostics. 2023; 13(14):2401. https://doi.org/10.3390/diagnostics13142401
Chicago/Turabian StyleKalfaoglu, Melike Elif. 2023. "Evaluation of Hepatic/Renal and Splenic/Renal Echointensity Ratio Using Ultrasonography in Diabetic Nephropathy" Diagnostics 13, no. 14: 2401. https://doi.org/10.3390/diagnostics13142401
APA StyleKalfaoglu, M. E. (2023). Evaluation of Hepatic/Renal and Splenic/Renal Echointensity Ratio Using Ultrasonography in Diabetic Nephropathy. Diagnostics, 13(14), 2401. https://doi.org/10.3390/diagnostics13142401