The C55A Single Nucleotide Polymorphism in CTLA-4 Gene, a New Possible Biomarker in Thyroid Autoimmune Pathology Such as Hashimoto’s Thyroiditis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Approval for the Collection and Analysis of Biological Samples from the Subjects
2.2. Subjects
2.3. Laboratory Investigations
2.3.1. Thyroid Markers Analysis
2.3.2. Molecular and Genetic Analyses
DNA Extraction
Genotyping
Sanger Sequencing
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Connelly, K.J.; Park, J.J.; LaFranchi, S.H. History of the thyroid. Horm. Res. Paediatr. 2022, 95, 546–556. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, H. Zur Kenntniss der lymphomatösen Veränderung der Schilddrüse (Struma lymphomatoa). Arch. Klin. Chir. 1912, 97, 219–248. Available online: https://www.biusante.parisdescartes.fr/histoire/medica/resultats/index.php?p=1&do=page&cote=epo0445 (accessed on 24 June 2023).
- Golden, S.H.; Robinson, K.A.; Saldanha, I.; Anton, B.; Ladenson, P.W. Clinical review: Prevalence and incidence of endocrine and metabolic disorders in the United States: A comprehensive review. J. Clin. Endocrinol. Metab. 2009, 94, 1853–1878. [Google Scholar] [CrossRef] [PubMed]
- Delemer, B.; Aubert, J.-P.; Nys, P.; Landron, F.; Bouée, S. An observational study of the initial management of hypothyroidism in France: The ORCHIDÉE study. Eur. J. Endocrinol. 2012, 167, 817–823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacobson, D.L.; Gange, S.J.; Rose, N.R.; Graham, N.M. Epidemiology and estimated population burden of selected autoimmune diseases in the United States. Clin. Immunol. Immunopathol. 1997, 84, 223–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caturegli, P.; De Remigis, A.; Rose, N.R. Hashimoto thyroiditis: Clinical and diagnostic criteria. Autoimmun. Rev. 2014, 13, 391–397. [Google Scholar] [CrossRef]
- McLeod, D.S.A.; Cooper, D.S. The incidence and prevalence of thyroid autoimmunity. Endocrine 2012, 42, 252–265. [Google Scholar] [CrossRef] [PubMed]
- Ban, Y.; Tomer, Y. Susceptibility genes in thyroid autoimmunity. Clin. Dev. Immunol. 2005, 12, 47–58. [Google Scholar] [CrossRef] [Green Version]
- Tomer, Y.; Huber, A. The etiology of autoimmune thyroid disease: A story of genes and environment. J. Autoimmun. 2009, 32, 231–239. [Google Scholar] [CrossRef] [Green Version]
- Tomer, Y. Mechanisms of autoimmune thyroid diseases: From Genetics to Epigenetics. Annu. Rev. Pathol. Mech. Dis. 2014, 9, 147–156. [Google Scholar] [CrossRef] [Green Version]
- Graves, R.J. Newly observed affection of the thyroid gland in females (Clinical lectures). Lond. Med. Surg. J. 1835, 7, 515–523. [Google Scholar]
- Von Basedow, K.A. Exophthalmos durch hypertrophie des zellgewebesin der Augenhole. Wochenschr. Ges. Heilk. 1840, 6, 197–228. [Google Scholar]
- Weetman, A.P. An update on the pathogenesis of Hashimoto’s thyroiditis. J. Endocrinol. Investig. 2021, 44, 883–890. [Google Scholar] [CrossRef]
- Pastuszak-Lewandoska, D.; Sewerynek, E.; Domańska, D.; Gładyś, A.; Skrzypczak, R.; Brzeziańska, E. CTLA-4 gene polymorphisms and their influence on predisposition to autoimmune thyroid diseases (Graves’ disease and Hashimoto’s thyroiditis). Arch. Med. Sci. 2012, 8, 415–421. [Google Scholar] [CrossRef] [PubMed]
- Pastuszak-Lewandoska, D.; Domańska, D.; Rudzińska, M.; Bossowski, A.; Kucharska, A.; Sewerynek, E.; Czarnecka, K.; Migdalska-Sęk, M.; Czarnocka, B. CTLA-4 polymorphisms (+49 A/G and −318 C/T) are important genetic determinants of AITD susceptibility and predisposition to high levels of thyroid autoantibodies in Polish children—Preliminary study. Acta Biochim. Pol. 2013, 60, 641–646. [Google Scholar] [CrossRef] [Green Version]
- Ji, R.; Feng, Y.; Zhan, W.W. Updated analysis of studies on the cytotoxic T-lymphocyte-associated antigen-4 gene A49G polymorphism and Hashimoto’s thyroiditis risk. Genet. Mol. Res. 2013, 12, 1421–1430. [Google Scholar] [CrossRef] [PubMed]
- Vargas-Uricoechea, H. Molecular mechanisms in autoimmune thyroid disease. Cells 2023, 12, 918. [Google Scholar] [CrossRef] [PubMed]
- Zaletel, K.; Gaberšček, S. Hashimoto’s thyroiditis: From genes to the disease. Curr. Genom. 2011, 12, 576–588. [Google Scholar] [CrossRef] [Green Version]
- Heiberg Brix, T.; Hegedüs, L. Twin studies as a model for exploring the aetiology of autoimmune thyroid disease. Clin. Endocrinol. 2012, 76, 457–464. [Google Scholar] [CrossRef]
- Jaume, J.C.; Guo, J.; Pauls, D.L.; Zakarija, M.; McKenzie, J.M.; Egeland, J.A.; Burek, C.L.; Rose, N.R.; Hoffman, W.H.; Rapoport, B.; et al. Evidence for genetic transmission of thyroid peroxidase autoantibody epitopic “fingerprints”. J. Clin. Endocrinol. Metab. 1999, 84, 1424–1431. [Google Scholar] [CrossRef] [Green Version]
- Durante, C.; Hegedus, L.; Czarniecka, A.; Paschke, R.; Russ, G.; Schmitt, F.; Soares, P.; Solymosi, T.; Papini, E. 2023 European Thyroid Association clinical practice guidelines for thyroid nodule management. Eur. Thyroid J. 2023, 6, ETJ-23-0067. [Google Scholar] [CrossRef] [PubMed]
- Poppe, K.; Bisschop, P.; Fugazzola, L.; Minziori, G.; Unuane, D.; Weghofer, A. 2021 European Thyroid Association guideline on thyroid disorders prior to and during assisted reproduction. Eur. Thyroid J. 2021, 9, 281–295. [Google Scholar] [CrossRef]
- Thyroid Hormone Standardization Program. Available online: https://www.cdc.gov/labstandards/csp/hs_thost.html#print (accessed on 24 June 2023).
- Garber, J.R.; Cobin, R.H.; Gharib, H.; Hennessey, J.V.; Klein, I.; Mechanick, J.I.; Pessah-Pollack, R.; Singer, P.A.; Woeber, K.A. ATA/AACE Guidelines for hypothyroidism in adults. Endocr. Pract. 2012, 18, 989. [Google Scholar]
- Dariavach, P.; Mattéi, M.G.; Golstein, P.; Lefranc, M.P. Human Ig superfamily CTLA-4 gene: Chromosomal localization and identity of protein sequence between murine and human CTLA-4 cytoplasmic domains. Eur. J. Immunol. 1988, 18, 1901–1905. [Google Scholar] [CrossRef] [PubMed]
- Yeşilkaya, E.; Koç, A.; Bideci, A.; Camurdan, O.; Boyraz, M.; Erkal, O.; Ergun, M.A.; Cinaz, P. CTLA4 gene polymorphisms in children and adolescents with autoimmune thyroid diseases. Genet. Test. 2008, 12, 461–464. [Google Scholar] [CrossRef] [PubMed]
- Rowshanravan, B.; Halliday, N.; Sansom, D.M. CTLA-4: A moving target in immunotherapy. Blood 2018, 131, 58–67. [Google Scholar] [CrossRef]
- Oyewole-Said, D.; Konduri, V.; Vazquez-Perez, J.; Weldon, S.A.; Levitt, J.M.; Decker, W.K. Beyond T-cells: Functional characterization of CTLA-4 expression in immune and non-immune cell types. Front. Immunol. 2020, 11, 608024. [Google Scholar] [CrossRef]
- Wang, X.B.; Zheng, C.Y.; Giscombe, R.; Lefvert, A.K. Regulation of surface and intracellular expression of CTLA-4 on human peripheral T cells. Scand. J. Immunol. 2001, 54, 453–458. [Google Scholar] [CrossRef]
- Hou, H.F.; Jin, X.; Sun, T.; Li, C.; Jiang, B.F.; Li, Q.W. Cytotoxic T Lymphocyte-Associated Antigen 4 gene polymorphisms and autoimmune thyroid diseases: An Updated Systematic Review and Cumulative Meta-Analysis. Int. J. Endocrinol. 2015, 2015, 747816. [Google Scholar] [CrossRef] [Green Version]
- Bogusławska, J.; Godlewska, M.; Gajda, E.; Piekiełko-Witkowska, A. Cellular and molecular basis of thyroid autoimmunity. Eur. Thyroid J. 2022, 11, e210024. [Google Scholar] [CrossRef]
- Phillips, J.R.; Johansson, R.S.; Johnson, K.O. Representation of braille characters in human nerve fibres. Exp. Brain Res. 1990, 81, 589–592. [Google Scholar] [CrossRef] [PubMed]
- Hadj-Kacem, H.; Rebuffat, S.; Mnif-Féki, M.; Belguith-Maalej, S.; Ayadi, H.; Péraldi-Roux, S. Autoimmune thyroid diseases: Genetic susceptibility of thyroid-specific genes and thyroid autoantigens contributions. Int. J. Immunogenet. 2009, 36, 85–96. [Google Scholar] [CrossRef]
- Di Bari, F.; Granese, R.; Le Donne, M.; Vita, R.; Benvenga, S. Autoimmune abnormalities of postpartum thyroid diseases. Front. Endocrinol. 2017, 8, 166. [Google Scholar] [CrossRef] [PubMed]
- Tomer, Y. Genetic susceptibility to autoimmune thyroid disease: Past, present, and future. Thyroid 2010, 20, 715–725. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.H.; Fu, D.G. Autoimmune thyroid disease: Mechanism, genetics and current knowledge. Eur. Rev. Med. Pharmacol. Sci. 2014, 18, 3611–3618. [Google Scholar]
- Ramesh, B.G.; Bhargav, P.R.; Rajesh, B.G.; Vimala Devi, N.; Vijayaraghavan, R.; Aparna Varma, B. Genomics and phenomics of Hashimoto’s thyroiditis in children and adolescents: A prospective study from Southern India. Ann. Transl. Med. 2015, 3, 280. [Google Scholar] [CrossRef]
- Narooie-Nejad, M.; Taji, O.; Kordi Tamandani, D.M.; Kaykhaei, M.A. Association of CTLA-4 gene polymorphisms −318C/T and +49A/G and Hashimoto’s thyroidits in Zahedan, Iran. Biomed. Rep. 2017, 6, 108–112. [Google Scholar] [CrossRef] [Green Version]
- Yoo, W.S.; Chung, H.K. Recent advances in autoimmune thyroid diseases. Endocrinol. Metab. 2016, 31, 379–385. [Google Scholar] [CrossRef] [Green Version]
- Mao, F.; Niu, X.-B.; Gu, S.; Ji, L.; Wei, B.-J.; Wang, H.-B. CTLA-4 +49A/G polymorphism increases the susceptibility to bladder cancer in Chinese Han participants: A Case-Control Study. Dis. Markers 2020, 2020, 8143158. [Google Scholar] [CrossRef] [PubMed]
- Ni, J.; Qiu, L.-J.; Zhang, M.; Wen, P.-F.; Ye, X.-R.; Liang, Y.; Pan, H.-F.; Ye, D.-Q. CTLA-4 CT60 (rs3087243) polymorphism and autoimmune thyroid diseases susceptibility: A comprehensive meta-analysis. Endocr. Res. 2014, 39, 180–188. [Google Scholar] [CrossRef]
- Yassin, A.H.; Al-Kazaz, A.-K.A.; Rahmah, A.M.; Ibrahim, T.Y. Association of CTLA-4 Single Nucleotide Polymorphisms with Autoimmune Hypothyroidism in Iraqi Patients. Iraqi J. Sci. 2022, 63, 2891–2899. [Google Scholar] [CrossRef]
- Chistiakov, D.A.; Turakulov, R.I. CTLA-4 and its role in autoimmune thyroid disease. J. Mol. Endocrinol. 2003, 31, 21–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kavvoura, F.K.; Akamizu, T.; Awata, T.; Ban, Y.; Chistiakov, D.A.; Frydecka, I.; Ghaderi, A.; Gough, S.C.; Hiromatsu, Y.; Ploski, R.; et al. Cytotoxic T-lymphocyte Associated Antigen 4 gene polymorphisms and autoimmune thyroid disease: A meta-analysis. J. Clin. Endocrinol. Metab. 2007, 92, 3162–3170. [Google Scholar] [CrossRef] [Green Version]
- Cui, Z.; Wang, Z.; Liu, X.; Cai, Y.; Xu, X.; Yang, T. Establishment of clinical diagnosis model of Graves’ disease and Hashimoto’s thyroiditis. J. Transl. Med. 2019, 17, 11. [Google Scholar] [CrossRef]
- Fathima, N.; Sultana, Q.; Anees, S.; Ullah, K.; Ryu, V.; Khan, A.A.; Ishaq, M. Autoimmune thyroid patients with CTLA-4 (+49A/G) GG/AG genotypes have high seropositivity to thyroid peroxidase than thyroglobulin. Meta Gene 2022, 31, 101010. [Google Scholar] [CrossRef]
- Kucharska, A.; Wiśniewska, A.; Rymkiewicz-Kluczyńska, B. The frequency of CTLA-4 gene polymorphism at position 49 exon 1 in children with Hashimoto’s thyroiditis. Endokrynol. Diabetol. Chor. Przemiany Mater. Wieku Rozw. 2006, 12, 163–166. [Google Scholar]
- Terauchi, M.; Yanagawa, T.; Ishikawa, N.; Ito, K.; Fukazawa, T.; Maruyama, H.; Saruta, T. Interactions of HLA-DRB4 and CTLA-4 genes influence thyroid function in Hashimoto’s thyroiditis in Japanese population. J. Endocrinol. Investig. 2003, 26, 1208–1212. [Google Scholar] [CrossRef]
- Biondi, B.; Kahaly, G.J.; Robertson, R.P. Thyroid dysfunction and Diabetes Mellitus: Two closely associated disorders. Endocr. Rev. 2019, 40, 789–824. [Google Scholar] [CrossRef] [Green Version]
- Vaidya, B.; Imrie, H.; Perros, P.; Dickinson, J.; McCarthy, M.I.; Kendall-Taylor, P.; Pearce, S.H. Cytotoxic T lymphocyte antigen-4 (CTLA-4) gene polymorphism confers susceptibility to thyroid associated orbitopathy. Lancet 1999, 354, 743–744. [Google Scholar] [CrossRef] [PubMed]
- Shahida, B.; Tsoumani, K.; Planck, T.; Modhukur, V.; Asp, P.; Sundlöv, A.; Tennvall, J.; Åsman, P.; Lindgren, O.; Lantz, M. Increased risk of Graves’ ophthalmopathy in patients with increasing TRAb after radioiodine treatment and the impact of CTLA4 on TRAb titres. Endocrine 2022, 75, 856–864. [Google Scholar] [CrossRef]
- Bednarczuk, T.; Hiromatsu, Y.; Fukutani, T.; Jazdzewski, K.; Miskiewicz, P.; Osikowska, M.; Nauman, J. Association of Cytotoxic T-Lymphocyte-Associated Antigen-4 (CTLA-4) gene polymorphism and non-genetic factors with Graves’ ophthalmopathy in European and Japanese populations. Eur. J. Endocrinol. 2003, 148, 13–18. [Google Scholar] [CrossRef]
- Dultz, G.; Matheis, N.; Dittmar, M.; Bender, K.; Kahaly, G. CTLA-4 CT60 polymorphism in thyroid and polyglandular autoimmunity. Horm. Metab. Res. 2009, 41, 426–429. [Google Scholar] [CrossRef] [PubMed]
- Frommer, L.; Kahaly, G.J. Type 1 Diabetes and Autoimmune Thyroid Disease-the genetic link. Front. Endocrinol. 2021, 12, 618213. [Google Scholar] [CrossRef]
- Rudd, C.E.; Taylor, A.; Schneider, H. CD28 and CTLA-4 coreceptor expression and signal transduction. Immunol. Rev. 2009, 229, 12–26. [Google Scholar] [CrossRef] [Green Version]
- Benhatchi, K.; Jochmanová, I.; Habalová, V.; Wagnerová, H.; Lazúrová, I. CTLA4 exon1 A49G polymorphism in Slovak patients with rheumatoid arthritis and Hashimoto thyroiditis-results and the review of the literature. Clin. Rheumatol. 2011, 30, 1319–1324. [Google Scholar] [CrossRef] [PubMed]
- Rochmah, N.; Faizi, M.; Nova, S.; Setyoningrum, R.A.; Basuki, S.; Endaryanto, A. CTLA-4 CT-60 A/G and CTLA-4 1822 C/T gene polymorphisms in Indonesians with type 1 Diabetes Mellitus. Appl. Clin. Genet. 2022, 15, 19–25. [Google Scholar] [CrossRef] [PubMed]
- ClinVar Miner 2022 NM_005214.5(CTLA4):c.397C>A (p.Leu133Ile). Available online: https://clinvarminer.genetics.utah.edu/submissions-by-variant/NM_005214.5(CTLA4):c.397C%3EA%20(p.Leu133Ile) (accessed on 28 April 2023).
Subject Number | Sex | Age | TSH Values (IU/mL) | FT4 Values (IU/mL) | ATPO Values (IU/mL) | ATG Values (IU/mL) |
---|---|---|---|---|---|---|
1 | M | 44 | 0.73 | 1.50 | 15.10 | <1 |
2 | F | 53 | 0.67 | 1.51 | 755.00 | <1 |
3 | F | 69 | 2.95 | 0.87 | 7.52 | 560.57 |
4 | F | 44 | 3.25 | 1.10 | 16.30 | 17.00 |
5 | F | 51 | 5.16 | 0.72 | 1342.30 | 967.20 |
6 | M | 46 | 1.43 | 0.85 | 577.80 | <1 |
7 | F | 58 | 0.59 | 0.84 | 201.50 | <1 |
8 | F | 57 | 1.04 | 1.29 | 34.10 | 224.90 |
9 | F | 56 | 1.31 | 0.76 | 305.50 | 3.11 |
10 | F | 54 | 7.10 | 1.24 | 463.40 | 360.50 |
11 | F | 29 | 21.00 | 0.10 | 200.00 | 126.53 |
12 | F | 32 | 1.02 | 0.10 | 15.40 | 56.00 |
13 | F | 44 | 1.02 | 0.10 | 29.00 | 47.00 |
14 | F | 35 | 1.56 | 14.97 | 10.10 | 11.00 |
15 | F | 57 | 4.76 | 0.72 | 307.40 | 1.00 |
16 | M | 42 | 2.10 | 12.10 | 8.14 | 14.60 |
17 | F | 41 | 3.10 | 8.90 | 8.14 | 14.00 |
18 | M | 43 | 19.20 | 0.67 | 4056 | 316.20 |
19 | F | 35 | 4.50 | 0.10 | 883.00 | 0.60 |
20 | F | 20 | 3.60 | 0.20 | 1081.00 | 10.00 |
21 | M | 53 | 10.07 | 0.66 | 1014.00 | 31.50 |
22 | F | 50 | 178.00 | 1.04 | 1192.00 | 0.60 |
23 | M | 52 | 8.54 | 0.53 | 1081.00 | 9.70 |
24 | F | 43 | 0.72 | 0.70 | 140.70 | 2.00 |
25 | F | 45 | 5.82 | 0.64 | 128.90 | 0.60 |
26 | F | 57 | 38.98 | 0.53 | 5.00 | 0.80 |
27 | M | 57 | 2.12 | 0.82 | 342.00 | 1.60 |
28 | F | 49 | 1.23 | 0.80 | 3.60 | 2.20 |
29 | F | 68 | 5.14 | 0.91 | 83.20 | 2.30 |
30 | F | 42 | 5.66 | 0.95 | 179.00 | 389.20 |
31 | F | 43 | 0.04 | 0.59 | 8.10 | 569.20 |
32 | F | 42 | 0.01 | 1.18 | 119.10 | 3.20 |
33 | F | 61 | 1.35 | 0.64 | 0.80 | 18.20 |
34 | F | 53 | 0.36 | 1.19 | 740.10 | 10.60 |
35 | F | 45 | 3.42 | 0.91 | 411.20 | 67.00 |
36 | M | 63 | 8.17 | 0.52 | 213.90 | 166.40 |
37 | M | 27 | 5.02 | 0.23 | 1041.00 | 450.00 |
38 | F | 44 | 7.50 | 0.52 | 16.30 | 14.00 |
39 | F | 61 | 7.50 | 0.52 | 16.30 | 14.00 |
40 | F | 29 | 0.09 | 0.47 | 19.10 | 27.10 |
Subject Number | Sex | Age | TSH Values (IU/mL) | FT4 Values (IU/mL) | ATPO Values (IU/mL) | ATG Values (IU/mL) |
---|---|---|---|---|---|---|
1 | F | 60 | 3.51 | 0.69 | 7.90 | 3.08 |
2 | F | 69 | 4.80 | 0.70 | 6.80 | 1.92 |
3 | F | 45 | 0.95 | 0.97 | 5.70 | 2.34 |
4 | F | 53 | 1.72 | 0.98 | 1.80 | 2.69 |
5 | F | 35 | 1.06 | 0.66 | 3.66 | 3.50 |
6 | M | 52 | 2.66 | 0.69 | 5.86 | 2.21 |
7 | F | 41 | 1.07 | 0.78 | 2.16 | 3.20 |
8 | M | 63 | 0.83 | 0.96 | 5.46 | 1.66 |
9 | F | 44 | 5.02 | 0.91 | 3.98 | 1.83 |
10 | F | 43 | 3.20 | 0.88 | 2.10 | 1.92 |
11 | M | 57 | 4.16 | 0.85 | 6.90 | 1.79 |
12 | F | 54 | 3.22 | 0.96 | 4.11 | 2.68 |
13 | F | 58 | 2.10 | 0.99 | 2.34 | 1.99 |
14 | F | 29 | 3.11 | 0.71 | 4.35 | 2.11 |
15 | F | 61 | 4.80 | 0.76 | 3.49 | 2.95 |
16 | M | 53 | 1.20 | 0.68 | 4.99 | 3.20 |
17 | F | 45 | 2.17 | 0.83 | 5.10 | 1.72 |
18 | F | 53 | 2.98 | 0.89 | 3.80 | 0.82 |
19 | F | 32 | 0.48 | 1.10 | 1.40 | 2.30 |
20 | M | 46 | 0.87 | 0.81 | 2.00 | 3.16 |
21 | F | 60 | 1.40 | 0.62 | 3.00 | 3.40 |
22 | F | 68 | 1.80 | 0.68 | 4.60 | 0.95 |
23 | F | 29 | 2.30 | 0.90 | 3.70 | 1.78 |
24 | F | 65 | 3.20 | 0.91 | 2.50 | 2.90 |
25 | F | 44 | 4.70 | 0.71 | 3.60 | 2.67 |
26 | F | 42 | 1.60 | 0.74 | 2.60 | 2.45 |
27 | M | 44 | 1.20 | 0.82 | 2.56 | 3.10 |
28 | F | 44 | 3.60 | 0.99 | 2.39 | 3.01 |
29 | F | 51 | 4.10 | 0.91 | 1.40 | 1.56 |
30 | M | 43 | 5.10 | 0.63 | 2.40 | 2.02 |
31 | F | 61 | 2.60 | 0.70 | 3.40 | 2.72 |
32 | F | 50 | 1.90 | 0.65 | 7.10 | 1.69 |
33 | F | 42 | 2.50 | 0.90 | 8.90 | 1.29 |
34 | M | 27 | 2.60 | 0.76 | 2.67 | 1.73 |
35 | F | 30 | 5.12 | 0.81 | 5.61 | 2.29 |
36 | F | 20 | 4.18 | 0.90 | 6.62 | 2.49 |
37 | F | 58 | 3.06 | 0.94 | <1 | <1 |
38 | F | 55 | 2.10 | 0.90 | <1 | <1 |
39 | M | 58 | 3.15 | 0.93 | 4.56 | 2.19 |
40 | F | 49 | 2.01 | 0.80 | 3.67 | 1.75 |
Hashimoto Group, n = 40, Position 22 (%) | Control Group, n = 40 (%) | OR | 95% CI | p-Values | |
---|---|---|---|---|---|
Genotype * | |||||
AA | 23 (57.3) | 19 (47.5) | 1.48 | 0.61–3.65 | 0.37 |
AG | 11(27.5) | 18 (45) | 0.5 | 0.18–1.34 | 0.16 |
GG | 6 (15) | 3 (7.5) | 1.6 | 0.35–8.95 | 0.51 |
Allele frequency | |||||
A | 57 | 56 | 1 | 0.53–2.11 | 0.86 |
G | 23 | 24 | 1 | 0.47–1.87 | 0.86 |
Hashimoto Group, n = 40, Position 55 (%) | Control Group, n = 40 (%) | OR | 95% CI | p-Values | |
---|---|---|---|---|---|
Genotype * | |||||
CC | 15 (37.5) | 39 (97.5) | 27.11 | 4.12–623.67 | <0.05 |
AC | 11 (27.5) | 1 (2.5) | - | - | <0.05 |
AA | 14 (35) | 0 (0) | - | - | - |
Allele frequency | |||||
A | 39 (48.75) | 1 (1.25) | 75.47 | 13.37–1555.76 | <0.05 |
C | 41 (51.25) | 79 (98.75) | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiorean, A.-D.; Vica, M.L.; Bâlici, Ș.; Nicula, G.Z.; Răcătăianu, N.; Bordea, M.A.; Simon, L.-M.; Matei, H.V. The C55A Single Nucleotide Polymorphism in CTLA-4 Gene, a New Possible Biomarker in Thyroid Autoimmune Pathology Such as Hashimoto’s Thyroiditis. Diagnostics 2023, 13, 2517. https://doi.org/10.3390/diagnostics13152517
Chiorean A-D, Vica ML, Bâlici Ș, Nicula GZ, Răcătăianu N, Bordea MA, Simon L-M, Matei HV. The C55A Single Nucleotide Polymorphism in CTLA-4 Gene, a New Possible Biomarker in Thyroid Autoimmune Pathology Such as Hashimoto’s Thyroiditis. Diagnostics. 2023; 13(15):2517. https://doi.org/10.3390/diagnostics13152517
Chicago/Turabian StyleChiorean, Alin-Dan, Mihaela Laura Vica, Ștefana Bâlici, Gheorghe Zsolt Nicula, Nicoleta Răcătăianu, Mădălina Adriana Bordea, Laura-Mihaela Simon, and Horea Vladi Matei. 2023. "The C55A Single Nucleotide Polymorphism in CTLA-4 Gene, a New Possible Biomarker in Thyroid Autoimmune Pathology Such as Hashimoto’s Thyroiditis" Diagnostics 13, no. 15: 2517. https://doi.org/10.3390/diagnostics13152517
APA StyleChiorean, A. -D., Vica, M. L., Bâlici, Ș., Nicula, G. Z., Răcătăianu, N., Bordea, M. A., Simon, L. -M., & Matei, H. V. (2023). The C55A Single Nucleotide Polymorphism in CTLA-4 Gene, a New Possible Biomarker in Thyroid Autoimmune Pathology Such as Hashimoto’s Thyroiditis. Diagnostics, 13(15), 2517. https://doi.org/10.3390/diagnostics13152517