Application of Artificial Intelligence (AI) in a Cephalometric Analysis: A Narrative Review
Abstract
:1. Introduction
2. Methodology
3. Results
3.1. Developing Automatic Localisation of Cephalometric Landmarks
3.2. Commercial Software/Applications
3.3. Successful Detection Rates (SDR)
3.4. Size of the Dataset and Patients’ Characteristics
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wong, S.H.; Al-Hasani, H.; Alam, Z.; Alam, A. Artificial intelligence in radiology: How will we be affected? Eur Radiol. 2019, 29, 141–143. [Google Scholar] [CrossRef] [Green Version]
- Obermeyer, Z.; Emanuel, E.J. Predicting the Future—Big Data, Machine Learning, and Clinical Medicine. N. Engl. J. Med. 2016, 375, 1216–1219. [Google Scholar] [CrossRef] [Green Version]
- Subramanian, A.K.; Chen, Y.; Almalki, A.; Sivamurthy, G.; Kafle, D. Cephalometric Analysis in Orthodontics Using Artificial Intelligence-A Comprehensive Review. Biomed Res. Int. 2022, 2022, 1880113. [Google Scholar] [CrossRef] [PubMed]
- Jiang, F.; Jiang, Y.; Zhi, H.; Dong, Y.; Li, H.; Ma, S.; Wang, Y.; Dong, Q.; Shen, H.; Wang, Y. Artificial intelligence in healthcare: Past, present and future. Stroke Vasc. Neurol. 2017, 2, 230–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amann, J.; Blasimme, A.; Vayena, E.; Frey, D.; Madai, V.I. Explainability for artificial intelligence in healthcare: A multidisciplinary perspective. BMC Med. Inform. Decis. Mak. 2020, 20, 310. [Google Scholar] [CrossRef] [PubMed]
- Thrall, J.H.; Li, X.; Li, Q.; Cruz, C.; Do, S.; Dreyer, K.; Brink, J. Artificial Intelligence and Machine Learning in Radiology: Opportunities, Challenges, Pitfalls, and Criteria for Success. J. Am. Coll. Radiol. 2018, 15, 504–508. [Google Scholar] [CrossRef] [PubMed]
- Khanagar, S.B.; Al-Ehaideb, A.; Vishwanathaiah, S.; Maganur, P.C.; Patil, S.; Naik, S.; Baeshen, H.A.; Sarode, S.S. Scope and performance of artificial intelligence technology in orthodontic diagnosis, treatment planning, and clinical decision-making—A systematic review. J. Dent. Sci. 2021, 16, 482–492. [Google Scholar] [CrossRef]
- Hung, K.; Montalvao, C.; Tanaka, R.; Kawai, T.; Bornstein, M.M. The use and performance of artificial intelligence applications in dental and maxillofacial radiology: A systematic review. Dentomaxillofac. Radiol. 2020, 49, 20190107. [Google Scholar] [CrossRef] [PubMed]
- Devereux, L.; Moles, D.; Cunningham, S.J.; McKnight, M. How important are lateral cephalometric radiographs in orthodontic treatment planning? Am. J. Orthod. Dentofacial. Orthop. 2011, 139, e175–e181. [Google Scholar] [CrossRef]
- Talaat, S.; Kaboudan, A.; Talaat, W.; Kusnoto, B.; Sanchez, F.; Elnagar, M.H.; Ghoneima, A.; Bourauel, C. Improving the accuracy of publicly available search engines in recognizing and classifying dental visual assets using convolutional neural networks. Int. J. Comput. Dent. 2020, 23, 211–218. [Google Scholar] [PubMed]
- Leonardi, R.; Giordano, D.; Maiorana, F. An evaluation of cellular neural networks for the automatic identification of cephalometric landmarks on digital images. J. Biomed Biotechnol. 2009, 2009, 717102. [Google Scholar] [CrossRef] [PubMed]
- Tanikawa, C.; Yamamoto, T.; Yagi, M.; Takada, K. Automatic recognition of anatomic features on cephalograms of preadolescent children. Angle Orthod. 2010, 80, 812–820. [Google Scholar] [CrossRef] [PubMed]
- Lindner, C.; Wang, C.W.; Huang, C.T.; Li, C.H.; Chang, S.W.; Cootes, T.F. Fully Automatic System for Accurate Localisation and Analysis of Cephalometric Landmarks in Lateral Cephalograms. Sci. Rep. 2016, 6, 33581. [Google Scholar] [CrossRef] [PubMed]
- Park, J.-H.; Hwang, H.-W.; Moon, J.-H.; Yu, Y.; Kim, H.; Her, S.-B.; Srinivasan, G.; Aljanabi, M.N.A.; Donatelli, R.E.; Lee, S.-J. Automated identification of cephalometric landmarks: Part 1-Comparisons between the latest deep-learning methods YOLOV3 and SSD. Angle Orthod. 2019, 89, 903–909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hwang, H.-W.; Park, J.-H.; Moon, J.-H.; Yu, Y.; Kim, H.; Her, S.-B.; Srinivasan, G.; Aljanabi, M.N.A.; Donatelli, R.E.; Lee, S.-J. Automated identification of cephalometric landmarks: Part 2-Might it be better than human? Angle Orthod. 2020, 90, 69–76. [Google Scholar] [CrossRef] [Green Version]
- Moon, J.H.; Hwang, H.W.; Yu, Y.; Kim, M.G.; Donatelli, R.E.; Lee, S.J. How much deep learning is enough for automatic identification to be reliable? Angle Orthod. 2020, 90, 823–830. [Google Scholar] [CrossRef]
- Lee, J.H.; Yu, H.J.; Kim, M.J.; Kim, J.W.; Choi, J. Automated cephalometric landmark detection with confidence regions using Bayesian convolutional neural networks. BMC Oral Health 2020, 20, 270. [Google Scholar] [CrossRef]
- Kunz, F.; Stellzig-Eisenhauer, A.; Zeman, F.; Boldt, J. Artificial intelligence in orthodontics: Evaluation of a fully automated cephalometric analysis using a customized convolutional neural network. J. Orofac. Orthop. 2020, 81, 52–68. [Google Scholar] [CrossRef]
- Kim, H.; Shim, E.; Park, J.; Kim, Y.J.; Lee, U.; Kim, Y. Web-based fully automated cephalometric analysis by deep learning. Comput. Methods Programs Biomed. 2020, 194, 105513. [Google Scholar] [CrossRef]
- Kim, Y.H.; Lee, C.; Ha, E.G.; Choi, Y.J.; Han, S.S. A fully deep learning model for the automatic identification of cephalometric landmarks. Imaging Sci. Dent. 2021, 51, 299–306. [Google Scholar] [CrossRef]
- Tanikawa, C.; Lee, C.; Lim, J.; Oka, A.; Yamashiro, T. Clinical applicability of automated cephalometric landmark identification: Part I-Patient-related identification errors. Orthod. Craniofac. Res. 2021, 24 (Suppl. S2), 43–52. [Google Scholar] [CrossRef] [PubMed]
- Tanikawa, C.; Oka, A.; Lim, J.; Lee, C.; Yamashiro, T. Clinical applicability of automated cephalometric landmark identification: Part II—Number of images needed to re-learn various quality of images. Orthod. Craniofac Res. 2021, 24 (Suppl. S2), 53–58. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.; Zeng, W.; He, T.; Zhou, S.; Zhang, Y.; Guo, J.; Tang, W. Automatic localization of cephalometric landmarks based on convolutional neural network. Am. J. Orthod. Dentofacial. Orthop. 2022, 161, e250–e259. [Google Scholar] [CrossRef] [PubMed]
- Uğurlu, M. Performance of a Convolutional Neural Network- Based Artificial Intelligence Algorithm for Automatic Cephalometric Landmark Detection. Turk. J. Orthod. 2022, 35, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Popova, T.; Stocker, T.; Khazaei, Y.; Malenova, Y.; Wichelhaus, A.; Sabbagh, H. Influence of growth structures and fixed appliances on automated cephalometric landmark recognition with a customized convolutional neural network. BMC Oral Health 2023, 23, 274. [Google Scholar] [CrossRef] [PubMed]
- Jeon, S.; Lee, K.C. Comparison of cephalometric measurements between conventional and automatic cephalometric analysis using convolutional neural network. Prog. Orthod. 2021, 22, 14. [Google Scholar] [CrossRef] [PubMed]
- Bulatova, G.; Kusnoto, B.; Grace, V.; Tsay, T.P.; Avenetti, D.M.; Sanchez, F.J.C. Assessment of automatic cephalometric landmark identification using artificial intelligence. Orthod. Craniofac Res. 2021, 24 (Suppl. 2), 37–42. [Google Scholar] [CrossRef]
- Ristau, B.; Coreil, M.; Chapple, A.; Armbruster, P.; Ballard, R. Comparison of AudaxCeph®’s fully automated cephalometric tracing technology to a semi-automated approach by human examiners. Int. Orthod. 2022, 20, 100691. [Google Scholar] [CrossRef]
- Kılınç, D.D.; Kırcelli, B.H.; Sadry, S.; Karaman, A. Evaluation and comparison of smartphone application tracing, web based artificial intelligence tracing and conventional hand tracing methods. J. Stomatol. Oral Maxillofac Surg. 2022, 123, e906–e915. [Google Scholar] [CrossRef]
- Çoban, G.; Öztürk, T.; Hashimli, N.; Yağci, A. Comparison between cephalometric measurements using digital manual and web-based artificial intelligence cephalometric tracing software. Dent. Press J. Orthod. 2022, 27, e222112. [Google Scholar] [CrossRef]
- Mahto, R.K.; Kafle, D.; Giri, A.; Luintel, S.; Karki, A. Evaluation of fully automated cephalometric measurements obtained from web-based artificial intelligence driven platform. BMC Oral Health 2022, 22, 132. [Google Scholar] [CrossRef]
- Tsolakis, I.A.; Tsolakis, A.I.; Elshebiny, T.; Matthaios, S.; Palomo, J.M. Comparing a Fully Automated Cephalometric Tracing Method to a Manual Tracing Method for Orthodontic Diagnosis. J. Clin. Med. 2022, 11, 6854. [Google Scholar] [CrossRef] [PubMed]
- Jiang, F.; Guo, Y.; Yang, C.; Zhou, Y.; Lin, Y.; Cheng, F.; Quan, S.; Feng, Q.; Li, J. Artificial intelligence system for automated landmark localization and analysis of cephalometry. Dentomaxillofac. Radiol. 2023, 52, 20220081. [Google Scholar] [CrossRef] [PubMed]
- Kök, H.; Acilar, A.M.; İzgi, M.S. Usage and comparison of artificial intelligence algorithms for determination of growth and development by cervical vertebrae stages in orthodontics. Prog. Orthod. 2019, 20, 41. [Google Scholar] [CrossRef] [PubMed]
- Amasya, H.; Yildirim, D.; Aydogan, T.; Kemaloglu, N.; Orhan, K. Cervical vertebral maturation assessment on lateral cephalometric radiographs using artificial intelligence: Comparison of machine learning classifier models. Dentomaxillofac. Radiol. 2020, 49, 20190441. [Google Scholar] [CrossRef]
- Real, A.D.; Real, O.D.; Sardina, S.; Oyonarte, R. Use of automated artificial intelligence to predict the need for orthodontic extractions. Korean J. Orthod. 2022, 52, 102–111. [Google Scholar] [CrossRef] [PubMed]
No | Study | No. of Cephalograms | Patients’ Age (in Years) | Type of Algorithm | No. of Examiners | No. of Landmarks/Mean SDR | No. of Measurements/Mean Error | Time for Analysis (in Seconds) |
---|---|---|---|---|---|---|---|---|
1 | Leonardi et al., 2009 [11] | 41 | 10–17 | Authors’ algorithm/CNN, Borland C++ | 5 | 10/ n.s. | n.s. | 257 for 10 landmarks |
2 | Tanikawa et al., 2010 [12] | 859 (400: permanent dentition; 459: mixed dentition) | 5–60; mean age: 23.6 (permanent dentition); 8.9 (mixed dentition) | Authors’ algorithm/PPED system | 2 | 18/ n.s. | n.s. | n.s. |
3 | Lindner et al., 2016 [13] | 400 | 7–76 | Authors’ algorithm/FALA system, RFRV-CLM | 2 | 19/ 84.7% in the range of 2 mm | 8/ 78.4 ± 2.61% | <3 |
4 | Park et al., 2019 [14] | 1311 (1028: training set; 283: testing set) | n.s. | Authors’ algorithm/YOLOv3 and SSD | 1 | 80/ YOLOv3: 80.4% in the range of 2 mm | n.s. | 0,05 for YOLOv3; 2.89 for SSD |
5 | Hwang et al., 2020 [15] | 1311 (1028: training set; 283: testing set) | n.s. | Authors’ algorithm/YOLOv3 and manual analysis | 2 | 80/ mean detection error: 1.46 ± 2.97 mm | n.s. | n.s. |
6 | Moon et al., 2020 [16] | 2400 (2200: training set; 200 test set) | n.s. | Authors’ algorithm/YOLO v3 | 2 | 80/ n.s. | n.s. | n.s. |
7 | Lee et al., 2020 [17] | 400 | n.s. | Authors’ algorithm/Bayesian CNN | 2 | 19/ 82.11% in the range of 2 mm | n.s. | 512/38 for 19 landmarks (1 GPU/4 GPU) |
8 | Kunz et al., 2020 [18] | 1792 (96.6%: training set; 3.4% validation set) | n.s. | Authors’ algorithm/CNN, Keras and Google Tensorflow | 12 | 18/ n.s. | 12/ <0.37° (angular measurements); <0.20 mm (metric measurements); <0.25% (proportional measurements) | n.s. |
9 | Kim at al., 2020 [19] | 2075 | n.s. | Authors’ algorithm/DL, SHG, Tensorflow, Python | 2 | 23/ 84.7% in the range of 2 mm | n.s. | 0.4 for 23 landmarks |
10 | Kim et al., 2021 [20] | 950 (800: training set; 100: validation set; 50: testing set | n.s. | Authors’ algorithm/CNN | 2 | 13/ 64.3% in the range of 2 mm | n.s. | n.s. |
11 | Tanikawa et al., [21] | 1785 | 5.4–56.5; mean age: 12.2 | Authors’ algorithm/CNN-PC & CNN-PE, Adam | 2 | 26/ success rates from 85% to 91% | n.s. | n.s. |
12 | Tanikawa et al., 2021 [22] | 2385 | 5.8–77.9 | Authors’ algorithm/ CNN-PC&PE, Adam | 2 | 26/ success rates from 85% to 90% | n.s. | n.s. |
13 | Yao et al., 2022 [23] | 512 (312: training set; 100: validation set; 100: testing set) | 9–40 | Authors’ algorithm/CNN, PyTorch | 2 | 37/ 45.95% in the range of 1 mm; 97.3% in the range of 2 mm | n.s. | 3 for 37 landmarks |
14 | Uğurlu, 2022 [24] | 1620 (1360: training set; 140: validation set; 180: testing set) | 9–20 | Authors’ algorithm/CNN/PyTorch, Python | 1 | 21/ 76.2% in the range of 2 mm | n.s. | n.s |
15 | Popova et al., 2023 [25] | 890 (387: training set; 43: validation set; 460: testing set) | All ages | Authors’ algorithm/CNN/(Keras and TensorFlow, Python | 3 | 16/ 84.73% in the range of 2 mm | n.s. | n.s. |
16 | Jeon et al., 2021 [26] | 35 | Mean age: 23.8 | Commercial analysis/CephX | 1 | 16 | 26/ 0.1–0.3° (angular measurements); 0.1–0.3% (linear measurements) | n.s. |
17 | Bulatova et al., 2021 [27] | 110 | n.s. | Commercial analysis/Ceppro | 2 | 16/ ±0.13 mm in the range of 2 mm for 75% of landmarks; mean difference 2.0 ± 3.0 in X plane and 2.1 ± 3.0 in Y plane | n.s. | n.s. |
18 | Ristau et al., 2022 [28] | 60 | Patients with a full complement of teeth | Commercial analysis/AudaxCeph | 2 | 13/max. mean error: <2.6 mm in X plane; <2.3 mm in Y plane | n.s. | n.s. |
19 | Kılınç et al., 2022 [29] | 110 | 10–24, mean age: 15.83 ± 2.85 | Commercial analysis/ WebCeph and CephNinja | 1 | n.s. | 11/ ICC from 0.170 to 0.884 | n.s. |
20 | Çoban et al., 2022 [30] | 105 | >15, mean age: 17.25 ± 2.85 | Commercianalyser/ WebCeph | 1 | n.s. | 22/ ICC from 0.418 to 0.959 | n.s. |
21 | Mahto et al., 2022 [31] | 30 | Mean age: 20.17 ± 6.72 | Commercianalyser/WebCeph | 1 | n.s. | 12/ ICCC from 0.795 to 0.966 | n.s. |
22 | Tsolakis et al., 2022 [32] | 100 | Mean age: 15.9 ± 4.8 | Commercial analyser/CS imaging V8 | 1 | 16 | 18/ ICC from 0.70 to 0.92 | n.s. |
23 | Jiang et al., 2023 [33] | 9870 (8611: training set; 1000: validation set; 259: testing set) | 6–50 | Commercial analyser/CNN/CephNet | 5/100 | 28/ 66.15% in the range of 1 mm; 91.73% in the range of 2 mm | 11/ 89.33% | n.s. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiełczykowski, M.; Kamiński, K.; Perkowski, K.; Zadurska, M.; Czochrowska, E. Application of Artificial Intelligence (AI) in a Cephalometric Analysis: A Narrative Review. Diagnostics 2023, 13, 2640. https://doi.org/10.3390/diagnostics13162640
Kiełczykowski M, Kamiński K, Perkowski K, Zadurska M, Czochrowska E. Application of Artificial Intelligence (AI) in a Cephalometric Analysis: A Narrative Review. Diagnostics. 2023; 13(16):2640. https://doi.org/10.3390/diagnostics13162640
Chicago/Turabian StyleKiełczykowski, Michał, Konrad Kamiński, Konrad Perkowski, Małgorzata Zadurska, and Ewa Czochrowska. 2023. "Application of Artificial Intelligence (AI) in a Cephalometric Analysis: A Narrative Review" Diagnostics 13, no. 16: 2640. https://doi.org/10.3390/diagnostics13162640
APA StyleKiełczykowski, M., Kamiński, K., Perkowski, K., Zadurska, M., & Czochrowska, E. (2023). Application of Artificial Intelligence (AI) in a Cephalometric Analysis: A Narrative Review. Diagnostics, 13(16), 2640. https://doi.org/10.3390/diagnostics13162640