Detection of Alzheimer’s Disease Based on Cloud-Based Deep Learning Paradigm
Abstract
:1. Introduction
1.1. Motivation
1.2. Contribution
2. Materials and Methods
Dataset
Alzheimer Stages | AD | LMCI | NC | EMCI |
---|---|---|---|---|
Subject number | 75 | 75 | 75 | 75 |
Male/female | 21/54 | 43/32 | 32/43 | 51/24 |
Age (mean ± STD) | 7 5.95 ± 0.91 | 77.44 ± 1.33801 | 75.68 ± 0.469617 | 76.08 ± 0.89684 |
Algorithm 1: Proposed Model |
Step 1: Input the Dicom image from MRI scans |
Step 2: Pre- Process the images and converting them to jpeg format and removing noice |
Step 3: Reformat the images and resize them from 256 × 256 to 224 × 224 |
Step 4: Images are classified into EMCI, NC, LMCI and AD. |
Step 5: GoogleNet Model method uses transfer learning technique for training 268 pre trained images and classify input images as AD and Normal case |
Step 6: A web based application is designed to assist docters to check AD from remote place using local application and Microsoft Azure plaform |
3. Results and Discussion
- (i)
- It leverages the pre-trained weights obtained from training millions of images in a database.
- (ii)
- It reduces the time required for training a learning model.
- (iii)
- It helps minimize errors in generalization.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bullmore, E.; Sporns, O. Complex brain networks: Graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 2009, 10, 186–198. [Google Scholar] [CrossRef] [PubMed]
- Prince, M.; Wimo, A.; Guerchet, M.; Ali, G.; Wu, Y.; Prina, M. World Alzheimer Report 2015; Alzheimer’s Disease International: London, UK, 2015; pp. 1–92. [Google Scholar]
- Morris, J.C. The clinical dementia rating (cdr): Current version and scoring rules. Neurology 1993, 43, 2412–2414. [Google Scholar] [CrossRef] [PubMed]
- Reisberg, B.; Ferris, S.H.; de Leon, M.J.; Crook, T. The global deterioration scale for assessment of primary degenerative dementia. Am. J. Psychiatry 1982, 139, 1136–1139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ebrahimighahnavieh, M.A.; Luo, S.; Chiong, R. Deep learning to detect alzheimer’s disease from neuroimaging: A systematic literature review. Comput. Methods Programs Biomed. 2019, 187, 105242. [Google Scholar] [CrossRef]
- Veitch, D.P.; Weiner, M.W.; Aisen, P.S.; Beckett, L.A.; Cairns, N.J.; Green, R.C.; Harvey, D.; Jack, C.R.; Jagust, W.; Morris, J.C.; et al. Understanding disease progression andimproving Alzheimer’s disease clinical trials: Recent highlights from the Alzheimer’s disease neuroimaging initiative. Alzheimer’s Dement. 2019, 15, 106–152. [Google Scholar] [CrossRef] [PubMed]
- Hill, N.L.; Mogle, J. Alzheimer’s disease risk factors as mediators of subjective memory impairment and objective memory decline: Protocol for a construct-level replication analysis. BMC Geriatr. 2018, 18, 260. [Google Scholar] [CrossRef] [Green Version]
- Nolte, D.D.; Turek, J.J.; Jeong, K. Method and Apparatus for Motility Contrast Imaging. US-8886295-B2, 16 October 2018. [Google Scholar]
- Makaretz, S.J.; Quimby, M.; Collins, J.; Makris, N.; McGinnis, S.; Schultz, A.; Vasdev, N.; Johnson, K.A.; Dickerson, B.C. Flortaucipir tau PET imaging in semantic variant primary progressive aphasia. J. Neurol. Neurosurg. Psychiatry 2017, 89, 1024–1031. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Tian, J.; Hu, R.; Yang, B.; Liu, S.; Zheng, W. Improved Feature Point Pair Purification Algorithm Based on SIFT During Endoscope Image Stitching. Front. Neurorobotics 2020, 16, 840594. [Google Scholar] [CrossRef]
- Lu, S.; Yang, B.; Xiao, Y.; Liu, S.; Liu, M.; Yin, L.; Zheng, W. Iterative reconstruction of low-dose CT based on differential sparse. Biomed. Signal Process. Control. 2023, 79, 104204. [Google Scholar] [CrossRef]
- Sagnou, M.; Mavroidi, B.; Shegani, A.; Paravatou-Petsotas, M.; Raptopoulou, C.; Psycharis, V.; Pirmettis, I.; Papadopoulos, M.S.; Pelecanou, M. Remarkable brain penetration of cyclopentadienyl M(CO)C 3 (M = 99mTc, Re) derivatives of benzothiazole and benzimidazole paves the way for their application as diagnostic, with single-photon-emission computed tomography (spect), and therapeutic agents for Alzheimer’s disease. J. Med. Chem. 2019, 62, 2638–2650. [Google Scholar]
- Begcevic, I.; Brinc, D.; Brown, M.; Martinez-Morillo, E.; Goldhardt, O.; Grimmer, T.; Batruch, I.; Diamandis, E.P. Brain-related proteins as potential CSF biomarkers of Alzheimer’s disease: A targeted mass spectrometry approach. J. ProteomJ. Proteom. 2018, 182, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Ducksbury, R.; Whit, T.; Walker, Z. SPECT/PET findings in Lewy body dementia. In PET and SPECT in Neurology; Springer: Berlin/Heidelberg, Germany, 2014; pp. 373–415. [Google Scholar]
- Judith, A.M.; Priya, S.B.; Mahendran, R.K.; Gadekallu, T.R.; Ambati, L.S. Two-phase classification: ANN and A-SVM classifiers on motor imagery. Asian J. Control. 2022, 1–12. [Google Scholar] [CrossRef]
- Mosconi, L.; Walters, M.; Sterling, J.; Quinn, C.; McHugh, P.; Andrews, R.E.; Matthews, D.C.; Ganzer, C.; Osorio, R.S.; Isaacson, R.S.; et al. Lifestyle and vascular risk effects on MRI-based biomarkers of Alzheimer’s disease: A cross-sectional study of iddleaged adults from the broader New York city area. BMJ Open 2018, 8, e019362. [Google Scholar] [CrossRef] [PubMed]
- Mussap, M.; Noto, A.; Cibecchini, F.; Fanos, V. The importance of biomarkers in eonatology. Semin. Fetal Neonatal Med. 2013, 18, 56–64. [Google Scholar] [CrossRef]
- Cedazo-Minguez, A.; Winblad, B. Biomarkers for Alzheimer’s disease and other forms of dementia: Clinical needs, limitations and future aspects. Exp. Gerontol. 2010, 45, 5–14. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Zhang, W.; Suk, H.I.; Wang, L.; Li, J.; Shen, D.; Ji, S. Deep learning based imaging data completion for improved brain disease diagnosis. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Boston, MA, USA, 14–18 September 2014; Volume 17, pp. 305–312. [Google Scholar]
- Suk, H.-I.; Lee, S.-W.; Shen, D.; The Alzheimer’s Disease Neuroimaging Initiative. Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis. NeuroImage 2014, 101, 569–582. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Tran, L.; Thung, K.-H.; Ji, S.; Shen, D.; Li, J. A robust deep model for improved classification of AD/MCI patients. IEEE J. Biomed. Health Inform. 2015, 19, 1610–1616. [Google Scholar] [CrossRef] [Green Version]
- Suk, H.-I.; Initiative, T.A.D.N.; Lee, S.-W.; Shen, D.; Alzheimer’s Disease Neuroimaging Initiative. Latent feature representation with stacked auto-encoder for AD/MCI diagnosis. Brain Struct. Funct. 2015, 220, 841–859. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Liu, S.; Cai, W.; Che, H.; Pujol, S.; Kikinis, R.; Feng, D.; Fulham, M.J. Multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer’s Disease. IEEE Trans. Biomed. Eng. 2015, 62, 1132–1140. [Google Scholar] [CrossRef]
- Suk, H.-I.; Shen, D. Deep learning-based feature representation for AD/MCI classification. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Nagoya, Japan, 22–26 September 2013; Volume 16, pp. 583–590. [Google Scholar]
- Cheng, D.; Liu, M. CNNs based multi-modality classification for AD diagnosis. In Proceedings of the 2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), Shanghai, China, 14–16 October 2017; pp. 1–5. [Google Scholar]
- Vu, T.D.; Yang, H.J.; Nguyen, V.Q.; Oh, A.R.; Kim, M.S. Multimodal learning using convolution neural network and Sparse Autoencoder. In Proceedings of the 2017 IEEE International Conference on Big Data and Smart Computing (BigComp), Jeju, Korea, 13–16 February 2017; pp. 309–312. [Google Scholar]
- Liu, S.; Liu, S.; Cai, W.; Pujol, S.; Kikinis, R.; Feng, D. Early diagnosis of Alzheimer’s disease with deep learning. In Proceedings of the 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI), Beijing, China, 29 April–2 May 2014; pp. 1015–1018. [Google Scholar]
- Choi, H.; Jin, K.H. Predicting cognitive decline with deep learning of brain metabolism and amyloid imaging. Behav. Brain Res. 2018, 344, 103–109. [Google Scholar] [CrossRef] [Green Version]
- Lu, D.; Popuri, K.; Ding, G.W.; Balachandar, R.; Beg, M.F.; Weiner, M.; Aisen, P.; Petersen, R.; Jack, C.; Jagust, W.; et al. Multimodal and multiscale deep neural networks for the early diagnosis of Alzheimer’s disease using structuralMR and FDG-PET images. Sci. Rep. 2018, 8, 5697. [Google Scholar] [CrossRef] [Green Version]
- Lord, S.R.; Close, J.C. New horizons in falls prevention. Age Ageing 2018, 47, 492–498. [Google Scholar] [CrossRef]
- Higami, Y.; Yamakawa, M.; Shigenobu, K.; Kamide, K.; Makimoto, K. High frequency of getting out of bed in patients with alzheimer’s disease monitored by non-wearable actigraphy. Geriatr. Gerontol. Int. 2019, 19, 130–134. [Google Scholar] [CrossRef]
- Gietzelt, M.; Feldwieser, F.; Gövercin, M.; Steinhagen-Thiessen, E.; Marschollek, M. A prospective field study for sensor-based identification of fall risk in older people with dementia. Inform. Health Soc. Care 2014, 39, 249–261. [Google Scholar] [CrossRef]
- Van Schooten, K.S.; Pijnappels, M.; Rispens, S.M.; Elders, P.J.; Lips, P.; Daffertshofer, A.; Van Dieën, J.H. Daily-life gait quality as predictor of falls in older people: A 1-year prospective cohort study. PLoS ONE 2016, 11, e0158623. [Google Scholar] [CrossRef] [Green Version]
- David, R.; Mulin, E.; Friedman, L.; Le Duff, F.; Cygankiewicz, E.; Deschaux, O.; Garcia, R.; Yesavage, J.A.; Robert, P.H.; Zeitzer, J.M. Decreased daytime motor activity associated with apathy in alzheimer disease: An actigraphic study. Am. J. Geriatr. Psychiatry Off. J. Am. Assoc. Geriatr. Psychiatry 2012, 20, 806–814. [Google Scholar] [CrossRef] [Green Version]
- Kuhlmei, A.; Walther, B.; Becker, T.; Muller, U.; Nikolaus, T. Actigraphic daytime activity is reduced in patients with cognitive impairment and apathy. Eur. Psychiatry J. Assoc. Eur. Psychiatr. 2013, 28, 94–97. [Google Scholar] [CrossRef] [PubMed]
- Zeitzer, J.M.; David, R.; Friedman, L.; Mulin, E.; Garcia, R.; Wang, J.; Yesavage, J.A.; Robert, P.H.; Shannon, W. Phenotyping apathy in individuals with alzheimer disease using functional principal component analysis. Am. J. Geriatr. Psychiatry Off. J. Am. Assoc. Geriatr. Psychiatry 2013, 21, 391–397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goerss, D.; Hein, A.; Bader, S.; Halek, M.; Kernebeck, S.; Kutschke, A.; Heine, C.; Krueger, F.; Kirste, T.; Teipel, S. Automated sensor-based detection of challenging behaviors in advanced stages of dementia in nursing homes. Alzheimer’s Dement. 2020, 16, 672–680. [Google Scholar] [CrossRef] [PubMed]
- Ardle, R.M.; Del Din, S.; Galna, B.; Thomas, A.; Rochester, L. Differentiating dementia disease subtypes with gait analysis: Feasibility of wearable sensors? Gait Posture 2019, 76, 372–376. [Google Scholar] [CrossRef]
- Kirste, T.; Hoffmeyer, A.; Koldrack, P.; Bauer, A.; Schubert, S.; Schröder, S.; Teipel, S. Detecting the effect of alzheimer’s disease on everyday motion behavior. J. Alzheimer’s Dis. 2014, 38, 121–132. [Google Scholar] [CrossRef] [PubMed]
- Lian, Z.; Zeng, Q.; Wang, W.; Gadekallu, T.R.; Su, C. Blockchain-Based Two-Stage Federated Learning With Non-IID Data in IoMT System. IEEE Trans. Comput. Soc. Syst. 2022, 10, 1701–1710. [Google Scholar] [CrossRef]
- Weissova, K.; Bartos, A.; Sladek, M.; Novakova, M.; Sumova, A. Moderate changes in the circadian system of alzheimer’s disease patients detected in their home environment. PLoS ONE 2016, 11, e0146200. [Google Scholar] [CrossRef] [PubMed]
- Musiek, E.S.; Bhimasani, M.; Zangrilli, M.A.; Morris, J.C.; Holtzman, D.M.; Ju, Y.-E.S. Circadian rest-activity pattern changes in aging and preclinical alzheimer disease. JAMA Neurol. 2018, 75, 582–590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, P.; Yu, L.; Lim, A.S.P.; Buchman, A.S.; Scheer, F.A.J.L.; Shea, S.A.; Schneider, J.A.; Bennett, D.A.; Hu, K. Fractal regulation and incident alzheimer’s disease in elderly individuals. Alzheimer’s Dement. J. Alzheimer’s Assoc. 2018, 14, 1114–1125. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Zafra, Á.; Gonzalez, E.O.; Noguera, M.; Benghazi, K.; Jiménez, J.M.H. Energy expenditure analysis: A comparative research of based on mobile accelerometers. In Proceedings of Ambient Assisted Living and Daily Activities: 6th International Work-Conference, IWAAL 2014, Belfast, UK, 2–5 December 2014; Springer: Cham, Switzerland, 2014; pp. 38–45. [Google Scholar]
- Ruiz-Zafra, A.; Orantes-González, E.; Noguera, M.; Benghazi, K.; Heredia-Jimenez, J. Acomparative study on the suitability of smartphones and imu for mobile, unsupervised energy expenditure calculi. Sensors 2015, 15, 18270–18286. [Google Scholar] [CrossRef]
- Nieto-Reyes, A.; Duque, R.; Montaña, J.L.; Lage, C. Classification of alzheimer’s patients through ubiquitous computing. Sensors 2017, 17, 1679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duque, R.; Reyes, A.; Martinez, C.; Montaña, J. Detecting human movement patterns through data provided by accelerometers. A case study regarding alzheimer’s disease. In Proceedings of the Ubiquitous Computing and Ambient Intelligence—10th International Conference, UCAmI 2016, San Bartolomé de Tirajana, Gran Canaria, Spain, 29 November–2 December 2016; Proceedings, Part I. pp. 56–66. [Google Scholar] [CrossRef]
- Saab, S., Jr.; Fu, Y.; Ray, A.; Hauser, M. A dynamically stabilized recurrent neural network. Neural Process. Lett. 2022, 54, 1195–1209. [Google Scholar] [CrossRef]
- Bringas, S.; Salomón, S.; Duque, R.; Montaña, J.L.; Lage, C. A Convolutional Neural Network-Based Method for Human Movement Patterns Classification in Alzheimer’s Disease. Proceedings 2019, 31, 72. [Google Scholar]
- Hosseini-Asl, E.; Keynton, R.; El-Baz, A. Alzheimer’s disease diagnostics by adaptation of 3d convolutional network. In Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016; p. 502. [Google Scholar]
- Sahumbaiev, I.; Popov, A.; Ramirez, J.; Gorriz, J.M.; Ortiz, A. 3D—CNN HadNet classification of MRI for Alzheimer’s disease diagnosis. In Proceedings of the 2018 IEEE Nuclear Science Symposium and Medical Imaging Conference Proceedings (NSS/MIC), Sydney, Australia, 10–17 November 2018; pp. 3–6. [Google Scholar]
- Korolev, S.; Safiullin, A.; Belyaev, M.; Dodonova, Y. Residual and plain convolutional neural networks for 3d brain MRI classification. Sergey Korolev Amir Safiullin Mikhail BelyaevSkolkovo Institute of Science and Technology Institute for Information Transmission Problems. In Proceedings of the 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), Melbourne, Australia, 18–21 April 2017; pp. 835–838. [Google Scholar]
- Ruiz, J.; Mahmud, M.; Modasshir, M.; Shamim Kaiser, M.; The Alzheimer’s Disease Neuroimaging Initiative. 3D DenseNet Ensemble in the 4-Way Classification of Alzheimer’s Disease; Mahmud, M., Vassanelli, S., Kaiser, M.S., Zhong, N., Eds.; Springer: Cham, Switzerland, 2020. [Google Scholar]
References | Modality | Data Processing/Training | Classifier | AD: NC acc. | SEN | SPE | cMCI:nMCI aa. | SEN | SPE | AD | cMCI | ncMCI | NC | Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Li et al. (2014) [19] | MRI, PET | 3D CNN | Logistic regression | 92.97 | 76.21 | 198 | 167 | 236 | 229 | 830 | ||||
Suk et al. (2014) [20] | MRI, PET | DBM | SVM | 97.35 | 94.6 | 95.2 | 75.92 86.75 (MCI:NC) | 48.04 95.37 | 95.23 65.87 | 93 | 76 | 128 | 101 | 398 |
Li et al. (2015) [21] | MRI, PET, CSF | RBM + drop out | SVM | 91.4 | 57.4 76.21 (MCI:NC) | 51 | 43 | 56 | 52 | 202 | ||||
Suk et al. (2015) [22] | MRI, PET, CSF | SAE + sparse learning | SVM | 98.8 | 83.3 90.7 (MCI:NC) | 51 | 43 | 56 | 52 | 202 | ||||
Liu et al. (2015) [23] | MRI, PET | SAE with zero masking | Softmax | 91.4 | 92.32 | 90.42 | 92.1 | |||||||
Suk and Shen (2013) [24] | MRI, PET, CSF | SAE | SVM | 95.9 | 75.8 | 51 | 43 | 56 | 52 | 202 | ||||
Cheng and Liu (2017) [25] | MRI, PET | 3D CNN+ 2D CNN | Softmax | 89.64 | 87.10 | 92.00 | 199 | 229 | 428 | |||||
Vu et al. (2017) [26] | MRI, PET | SAE+ 3d CNN | Softmax | 91.14 | 145 | 172 | 317 | |||||||
Liu et al. (2014) [27] | MRI, PET | SAE+ NN | Softmax | 87.76 | 88.57 | 87.22 | 76.92 | 74.29 | 78.13 | 65 | 67 | 102 | 77 | 311 |
Choi and Jin (2018) [28] | MRI, PET | 3D CNN | Softmax | 96 | 93.5 | 97.8 | 84.2 | 81.0 | 87.0 | 139 | 79 | 92 | 182 | 494 |
Lu et al. (2018) [29] | PET | DNN + NN | Softmax | 84.6 | 80.2 | 91.8 | 82.93 | 79.69 | 83.84 | 238 | 217 | 409 | 360 | 1224 |
Model: “Sequential” | ||
---|---|---|
Layer (Type) | Output Shape | Param |
GoogleNet (functional) | (1,64,24,24) | 20,024,184 |
Flatten (Flatten) | (1,4608) | 0 |
dense (Dense) | (1,192,12,12) | 4,710,612 |
dense_1 (Dense) | (1,480,6,6) | 524,800 |
dense_2 (Dense) | (1,832,3,3) | 131,528 |
dense_3 (Dense) | (1,1024,1,1) | 32,996 |
dense_4 (Dense) | (1,10) | 8 |
Trainable params: 25,424,128 | ||
Non-trainable params: 0 |
Approach | Dataset | Modality | Classification Type | Accuracy |
---|---|---|---|---|
Hosseini-Asl et al. [50] | 210 subjects (70 AD, 70CAD-dementia NC, 70 MCI) ADNI | MRI/CT | Binary/Multi | AD vs. EMC vs. HC: 89.1% AD + MCI/NC: 90.3% AD/NC: 97.6% MCI/NC: 90.8% |
Sahumbaiev et al. [51] | 530 subjects (185 AD, 185, MCI, 160 HC) ADNI | MRI/CT | Multi | AD/MCI/NC: 88.31% |
Korolev et al. [52] | 50 AD, 43 LMCI, 77 EMCI, 61 NC- ADNI | MRI/CT | Binary | AD vs. NC: 80% AD vs. EMCI: 63% AD vs. LMCI: 59% LMCI vs. NC: 61% LMCI vs. EMCI: 52% EMCI vs. NC: 56% |
Juan Ruiz et al. [53] | 600 brain MRI images- ADNI | MRI/CT | Multi | AD, EMCI, LMCI, NC: 66.67% |
Proposed fine-tuned GoogleNet model | 300 subjects (75 AD, 75 EMCI, 75 LMCI, 75 NC) | MRI/CT | Multi | AD/EMCI/LMCI/NC: 98% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pruthviraja, D.; Nagaraju, S.C.; Mudligiriyappa, N.; Raisinghani, M.S.; Khan, S.B.; Alkhaldi, N.A.; Malibari, A.A. Detection of Alzheimer’s Disease Based on Cloud-Based Deep Learning Paradigm. Diagnostics 2023, 13, 2687. https://doi.org/10.3390/diagnostics13162687
Pruthviraja D, Nagaraju SC, Mudligiriyappa N, Raisinghani MS, Khan SB, Alkhaldi NA, Malibari AA. Detection of Alzheimer’s Disease Based on Cloud-Based Deep Learning Paradigm. Diagnostics. 2023; 13(16):2687. https://doi.org/10.3390/diagnostics13162687
Chicago/Turabian StylePruthviraja, Dayananda, Sowmyarani C. Nagaraju, Niranjanamurthy Mudligiriyappa, Mahesh S. Raisinghani, Surbhi Bhatia Khan, Nora A. Alkhaldi, and Areej A. Malibari. 2023. "Detection of Alzheimer’s Disease Based on Cloud-Based Deep Learning Paradigm" Diagnostics 13, no. 16: 2687. https://doi.org/10.3390/diagnostics13162687