Ensemble Federated Learning Approach for Diagnostics of Multi-Order Lung Cancer
Abstract
:1. Introduction
1.1. Problem Statement and Research Motivation
1.2. Objective and Contributions
2. Related Work
2.1. Initial Models
2.2. Advanced Models
3. Methodology
3.1. Dataset and Alignment Process
3.2. Multisource Indexing and Distributed Computation
Algorithm 1 Multisource Indexing and DNT |
Input: datasets on server alignment extracted and calibrated via IP address. Output: Process mapping and feature thresholding. |
Steps:
|
3.3. Distributed Network Thresholding (DNT) and Feature-Set Mapping
3.4. Federated Neural Networking Computational Model
3.5. Experimental Setup and Configurations
3.6. Implementation Details
4. Results and Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, L. Deep learning techniques to diagnose lung cancer. Cancers 2022, 14, 5569. [Google Scholar] [CrossRef]
- Riquelme, D.; Akhloufi, M.A. Deep learning for lung cancer nodules detection and classification in CT scans. Ai 2020, 1, 28–67. [Google Scholar] [CrossRef]
- Shamas, S.; Panda, S.N.; Sharma, I. Review on lung nodule segmentation-based lung cancer classification using machine learning approaches. In Artificial Intelligence on Medical Data: Proceedings of International Symposium, ISCMM 2021, Sikkim, India, 11–12 November 2021; Springer Nature: Singapore, 2022; pp. 277–286. [Google Scholar]
- Joshua, E.S.N.; Chakkravarthy, M.; Bhattacharyya, D. An Extensive Review on Lung Cancer Detection Using Machine Learning Techniques: A Systematic Study. Rev. D’Intelligence Artif. 2020, 34. [Google Scholar] [CrossRef]
- Raoof, S.S.; Jabbar, M.A.; Fathima, S.A. Lung Cancer prediction using machine learning: A comprehensive approach. In Proceedings of the 2020 2nd International Conference on Innovative Mechanisms for Industry Applications (ICIMIA), Bangalore, India, 5–7 March 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 108–115. [Google Scholar]
- Kadir, T.; Gleeson, F. Lung cancer prediction using machine learning and advanced imaging techniques. Transl. Lung Cancer Res. 2018, 7, 304. [Google Scholar] [CrossRef]
- Cong, L.; Feng, W.; Yao, Z.; Zhou, X.; Xiao, W. Deep learning model as a new trend in computer-aided diagnosis of tumor pathology for lung cancer. J. Cancer 2020, 11, 3615. [Google Scholar] [CrossRef]
- Sathiyamoorthi, V.; Ilavarasi, A.K.; Murugeswari, K.; Ahmed, S.T.; Devi, B.A.; Kalipindi, M. A deep convolutional neural network based computer aided diagnosis system for the prediction of Alzheimer’s disease in MRI images. Measurement 2021, 171, 108838. [Google Scholar] [CrossRef]
- Venkatesan, V.K.; Ramakrishna, M.T.; Izonin, I.; Tkachenko, R.; Havryliuk, M. Efficient Data Preprocessing with Ensemble Machine Learning Technique for the Early Detection of Chronic Kidney Disease. Appl. Sci. 2023, 13, 2885. [Google Scholar] [CrossRef]
- Ramakrishna, M.T.; Venkatesan, V.K.; Izonin, I.; Havryliuk, M.; Bhat, C.R. Homogeneous Adaboost Ensemble Machine Learning Algorithms with Reduced Entropy on Balanced Data. Entropy 2023, 25, 245. [Google Scholar] [CrossRef]
- Adnan, M.; Kalra, S.; Cresswell, J.C.; Taylor, G.W.; Tizhoosh, H.R. Federated learning and differential privacy for medical image analysis. Sci. Rep. 2022, 12, 1953. [Google Scholar] [CrossRef]
- Chowdhury, A.; Kassem, H.; Padoy, N.; Umeton, R.; Karargyris, A. A review of medical federated learning: Applications in oncology and cancer research. In Proceedings of the International MICCAI Brainlesion Workshop, Virtual Event, 27 September 2021; Springer International Publishing: Cham, Switzerland, 2021; pp. 3–24. [Google Scholar]
- Antunes, R.S.; André da Costa, C.; Küderle, A.; Yari, I.A.; Eskofier, B. Federated learning for healthcare: Systematic review and architecture proposal. ACM Trans. Intell. Syst. Technol. 2022, 13, 1–23. [Google Scholar] [CrossRef]
- Asuntha, A.; Srinivasan, A. Deep learning for lung Cancer detection and classification. Multimed. Tools Appl. 2020, 79, 7731–7762. [Google Scholar] [CrossRef]
- Ibrahim, D.M.; Elshennawy, N.M.; Sarhan, A.M. Deep-chest: Multi-classification deep learning model for diagnosing COVID-19, pneumonia, and lung cancer chest diseases. Comput. Biol. Med. 2021, 132, 104348. [Google Scholar] [CrossRef]
- Raghunath, K.M.K.; Kumar, V.V.; Venkatesan, M.; Singh, K.K.; Mahesh, T.R.; Singh, A. XGBoost Regression Classifier (XRC) Model for Cyber Attack Detection and Classification Using Inception V4. J. Web Eng. 2022, 21, 1295–1322. [Google Scholar] [CrossRef]
- Saha, S.; Nassisi, M.; Wang, M.; Lindenberg, S.; Kanagasingam, Y.; Sadda, S.; Hu, Z.J. Automated detection and classification of early AMD biomarkers using deep learning. Sci. Rep. 2019, 9, 10990. [Google Scholar] [CrossRef]
- Kuruvilla, J.; Gunavathi, K. Lung cancer classification using neural networks for CT images. Comput. Methods Programs Biomed. 2014, 113, 202–209. [Google Scholar] [CrossRef]
- Ahmed, S.T.; Singh, D.K.; Basha, S.M.; Abouel Nasr, E.; Kamrani, A.K.; Aboudaif, M.K. Neural network based mental depression identification and sentiments classification technique from speech signals: A COVID-19 Focused Pandemic Study. Front. Public Health 2021, 9, 781827. [Google Scholar] [CrossRef]
- Kuruvilla, J.; Gunavathi, K. Lung cancer classification using fuzzy logic for CT images. Int. J. Med. Eng. Inform. 2015, 7, 233–249. [Google Scholar] [CrossRef]
- Hochhegger, B.; Alves, G.R.T.; Irion, K.L.; Fritscher, C.C.; Fritscher, L.G.; Concatto, N.H.; Marchiori, E. PET/CT imaging in lung cancer: Indications and findings. J. Bras. De Pneumol. 2015, 41, 264–274. [Google Scholar] [CrossRef]
- Devarajan, D.; Alex, D.S.; Mahesh, T.R.; Kumar, V.V.; Aluvalu, R.; Maheswari, V.U.; Shitharth, S. Cervical cancer diagnosis using intelligent living behavior of artificial jellyfish optimized with artificial neural network. IEEE Access 2022, 10, 126957–126968. [Google Scholar] [CrossRef]
- Dandıl, E. A computer-aided pipeline for automatic lung cancer classification on computed tomography scans. J. Healthc. Eng. 2018, 2018, 9409267. [Google Scholar] [CrossRef]
- Nageswaran, S.; Arunkumar, G.; Bisht, A.K.; Mewada, S.; Kumar, J.N.V.R.; Jawarneh, M.; Asenso, E. Lung cancer classification and prediction using machine learning and image processing. BioMed Res. Int. 2022, 2022, 1755460. [Google Scholar] [CrossRef] [PubMed]
- Nanglia, P.; Kumar, S.; Mahajan, A.N.; Singh, P.; Rathee, D. A hybrid algorithm for lung cancer classification using SVM and Neural Networks. ICT Express 2021, 7, 335–341. [Google Scholar] [CrossRef]
- Kumar, B.N.; Mahesh, T.R.; Geetha, G.; Guluwadi, S. Redefining Retinal Lesion Segmentation: A Quantum Leap With DL-UNet Enhanced Auto Encoder-Decoder for Fundus Image Analysis. IEEE Access 2023, 11, 70853–70864. [Google Scholar] [CrossRef]
- Fontana, R.S.; Sanderson, D.R.; Woolner, L.B.; Taylor, W.F.; Eugene Miller, W.; Muhm, J.R.; Bernatz, P.E.; Payne, W.S.; Pairolero, P.C.; Bergstralh, E.J. Screening for lung cancer. A critique of the Mayo Lung Project. Cancer 1991, 67, 1155–1164. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Fan, K.; Yang, M. Federated learning: A deep learning model based on resnet18 dual path for lung nodule detection. Multimed. Tools Appl. 2023, 82, 17437–17450. [Google Scholar] [CrossRef]
- Subramanian, M.; Rajasekar, V.; Sathishkumar, V.E.; Shanmugavadivel, K.; Nandhini, P.S. Effectiveness of Decentralized Federated Learning Algorithms in Healthcare: A Case Study on Cancer Classification. Electronics 2022, 11, 4117. [Google Scholar] [CrossRef]
- Dataset from Cancer Image Archives (CIA). Available online: https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=80970785 (accessed on 25 March 2023).
- Hassan, M.M.; Hassan, M.M.; Yasmin, F.; Khan, M.A.R.; Zaman, S.; Islam, K.K.; Bairagi, A.K. A comparative assessment of machine learning algorithms with the Least Absolute Shrinkage and Selection Operator for breast cancer detection and prediction. Decis. Anal. J. 2023, 7, 100245. [Google Scholar] [CrossRef]
- Mukundan, A.; Feng, S.W.; Weng, Y.H.; Tsao, Y.M.; Artemkina, S.B.; Fedorov, V.E.; Lin, Y.-S.; Huang, Y.-C.; Wang, H.-C. Optical and material characteristics of MoS2/Cu2O sensor for detection of lung cancer cell types in hydroplegia. Int. J. Mol. Sci. 2022, 23, 4745. [Google Scholar] [CrossRef]
- Tian, C.; Meng, X.; Zhang, Z.; Zhu, H.; An, H.; Li, W.; Yuan, S. Hyperspectral imaging: A new method for diagnosing benign and malignant lung cancer. In Proceedings of the Third International Conference on Optics and Image Processing (ICOIP 2023), Kuala Lumpur, Malaysia, 8–11 October 2023; SPIE: Bellingham, WA, USA, 2023; Volume 12747, pp. 474–480. [Google Scholar]
Phase | Server Configuration | Dataset Type | Classifier | |||
---|---|---|---|---|---|---|
Normal | Benign | Malignant | Total | |||
Training | Centralized Servers (Cloud/Server Model) | Normal | 20 | 06 | 12 | 38 |
Benign | 02 | 18 | 06 | 26 | ||
Malignant | 06 | 04 | 22 | 32 | ||
Total | 28 | 28 | 40 | 96 | ||
Testing | Centralized Servers (Cloud/Server Model) | Normal | 12 | 02 | 00 | 14 |
Benign | 18 | 11 | 04 | 33 | ||
Malignant | 00 | 12 | 06 | 18 | ||
Total | 30 | 25 | 10 | 65 |
Phase | Server Configuration | Dataset Type | Classifier | |||
---|---|---|---|---|---|---|
Normal | Benign | Malignant | Total | |||
Training | Decentralized Servers (FL Model) | Normal | 20 | 04 | 14 | 38 |
Benign | 06 | 13 | 07 | 26 | ||
Malignant | 09 | 07 | 26 | 42 | ||
Total | 35 | 24 | 47 | 106 | ||
Testing | Decentralized Servers (FL Model) | Normal | 16 | 03 | 00 | 19 |
Benign | 12 | 18 | 04 | 34 | ||
Malignant | 06 | 13 | 18 | 37 | ||
Total | 19 | 34 | 22 | 90 |
Number of Participating Servers (Nodes) | Accuracy (%) | Sensitivity (%) | Specificity (%) |
---|---|---|---|
5 | 92.67 | 88.63 | 71.62 |
10 | 92.33 | 81.11 | 88.64 |
20 | 88.61 | 82.18 | 86.38 |
40 | 87.23 | 87.63 | 86.37 |
80 | 91.03 | 88.28 | 88.84 |
160 | 91.23 | 88.61 | 89.12 |
Technique(s) | Centralized | Decentralized | ||||
---|---|---|---|---|---|---|
Accuracy (%) | Sensitivity (%) | Specificity (%) | Accuracy (%) | Sensitivity (%) | Specificity (%) | |
SVM | 86.31 | 91.62 | 71.66 | 51.58 | 42.3 | 31.66 |
KNN | 91.61 | 89.67 | 88.62 | 66.72 | 71.62 | 66.11 |
DNN | 96.32 | 92.11 | 90.72 | 73.11 | 70.32 | 81.68 |
FL + NN | 94.31 | 91.66 | 88.62 | 89.63 | 81.26 | 80.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Subashchandrabose, U.; John, R.; Anbazhagu, U.V.; Venkatesan, V.K.; Thyluru Ramakrishna, M. Ensemble Federated Learning Approach for Diagnostics of Multi-Order Lung Cancer. Diagnostics 2023, 13, 3053. https://doi.org/10.3390/diagnostics13193053
Subashchandrabose U, John R, Anbazhagu UV, Venkatesan VK, Thyluru Ramakrishna M. Ensemble Federated Learning Approach for Diagnostics of Multi-Order Lung Cancer. Diagnostics. 2023; 13(19):3053. https://doi.org/10.3390/diagnostics13193053
Chicago/Turabian StyleSubashchandrabose, Umamaheswaran, Rajan John, Usha Veerasamy Anbazhagu, Vinoth Kumar Venkatesan, and Mahesh Thyluru Ramakrishna. 2023. "Ensemble Federated Learning Approach for Diagnostics of Multi-Order Lung Cancer" Diagnostics 13, no. 19: 3053. https://doi.org/10.3390/diagnostics13193053
APA StyleSubashchandrabose, U., John, R., Anbazhagu, U. V., Venkatesan, V. K., & Thyluru Ramakrishna, M. (2023). Ensemble Federated Learning Approach for Diagnostics of Multi-Order Lung Cancer. Diagnostics, 13(19), 3053. https://doi.org/10.3390/diagnostics13193053