Preclinical Orthostatic Abnormalities May Predict Early Increase in Vascular Stiffness in Different Age Groups: A Pilot Study
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Head-Up Tilt Test (HUTT) Procedure
2.3. Hemodynamic Measurements
2.4. Identifying Preclinical Orthostatic Abnormalities in Different Age Groups
2.5. Statistical Analysis
3. Results
4. Discussion
5. Limitations
6. Conclusions
7. What Is New?
8. Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Magkas, N.; Tsioufis, C.; Thomopoulos, C.; Dilaveris, P.; Georgiopoulos, G.; Doumas, M.; Papadopoulos, D.; Tousoulis, D. Orthostatic hypertension: From pathophysiology to clinical applications and therapeutic considerations. J. Clin. Hypertens. 2019, 21, 426–433. [Google Scholar] [CrossRef] [PubMed]
- Fedorowski, A.; Ricci, F.; Sutton, R. Orthostatic hypotension and cardiovascular risk. Kardiol. Pol. 2019, 77, 1020–1027. [Google Scholar] [CrossRef] [PubMed]
- Damanti, S.; Rossi, P.D.; Cesari, M. Orthostatic hypertension and adverse clinical outcomes in adults and older people. J. Geriatr. Cardiol. 2021, 18, 779–782. [Google Scholar] [CrossRef] [PubMed]
- Cremer, A.; Boutouyrie, P.; Laurent, S.; Gosse, P.; Tzourio, C. Orthostatic hypotension: A marker of blood pressure variability and arterial stiffness: A cross-sectional study on an elderly population: The 3-City study. J. Hypertens. 2020, 38, 1103–1109. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Xu, G.; Pan, M.; Lin, L.; Cai, W. The association between orthostatic blood pressure changes and arterial stiffness. Blood Press. Monit. 2022, 27, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Johansson, M.; Fedorowski, A.; Jordan, J.; Engström, G.; Nilsson, P.M.; Hamrefors, V. Orthostatic blood pressure adaptations, aortic stiffness, and central hemodynamics in the general population: Insights from the Malmö Offspring Study (MOS). Clin. Auton. Res. 2022, 33, 29–40. [Google Scholar] [CrossRef]
- Safar, M.E. Arterial stiffness as a risk factor for clinical hypertension. Nat. Rev. Cardiol. 2018, 15, 97–105. [Google Scholar] [CrossRef]
- Boutouyrie, P.; Chowienczyk, P.; Humphrey, J.D.; Mitchell, G.F. Arterial Stiffness and Cardiovascular Risk in Hypertension. Circ. Res. 2021, 128, 864–886. [Google Scholar] [CrossRef]
- Kim, H.L.; Lim, W.H.; Seo, J.B.; Kim, S.H.; Zo, J.H.; Kim, M.A. Prognostic value of arterial stiffness according to the cardiovascular risk profiles. J. Hum. Hypertens. 2021, 35, 978–984. [Google Scholar] [CrossRef] [PubMed]
- Miyoshi, T.; Ito, H.; Shirai, K.; Horinaka, S.; Higaki, J.; Yamamura, S.; Saiki, A.; Takahashi, M.; Masaki, M.; Okura, T.; et al. Predictive Value of the Cardio-Ankle Vascular Index for Cardiovascular Events in Patients at Cardiovascular Risk. J. Am. Heart Assoc. 2021, 10, e020103. [Google Scholar] [CrossRef]
- Koivistoinen, T.; Lyytikäinen, L.-P.; Aatola, H.; Luukkaala, T.; Juonala, M.; Viikari, J.; Lehtimäki, T.; Raitakari, O.T.; Kähönen, M.; Hutri-Kähönen, N. Pulse Wave Velocity Predicts the Progression of Blood Pressure and Development of Hypertension in Young Adults. Hypertension 2018, 71, 451–456. [Google Scholar] [CrossRef]
- The Reference Values for Arterial Stiffness’ Collaboration. Determinants of pulse wave velocity in healthy people and in the presence of cardiovascular risk factors: ‘establishing normal and reference values’. Eur. Heart J. 2010, 31, 2338–2350. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Jin, C.; Li, S.; Zheng, X.; Zhang, X.; Cui, L.; Gao, X. Aging, Arterial Stiffness, and Blood Pressure Association in Chinese Adults. Hypertension 2019, 73, 893–899. [Google Scholar] [CrossRef] [PubMed]
- Seals, D.R.; Alexander, L.M. Vascular aging. J. Appl. Physiol. 2018, 125, 1841–1842. [Google Scholar] [CrossRef] [PubMed]
- Di Federico, S.; Filippini, T.; Whelton, P.K.; Cecchini, M.; Iamandii, I.; Boriani, G.; Vinceti, M. Alcohol Intake and Blood Pressure Levels: A Dose-Response Meta-Analysis of Nonexperimental Cohort Studies. Hypertension 2023, 80, 1961–1969. [Google Scholar] [CrossRef] [PubMed]
- Lamacchia, O.; Sorrentino, M.R. Diabetes Mellitus, Arterial Stiffness and Cardiovascular Disease: Clinical Implications and the Influence of SGLT2i. Curr. Vasc. Pharmacol. 2021, 19, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Zanoli, L.; Lentini, P.; Briet, M.; Castellino, P.; House, A.A.; London, G.M.; Malatino, L.; McCullough, P.A.; Mikhailidis, D.P.; Boutouyrie, P. Arterial Stiffness in the Heart Disease of CKD. J. Am. Soc. Nephrol. 2019, 30, 918–928. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, I.; Beijers, H.J.; Schouten, F.; Smulders, Y.M.; Twisk, J.W.; Stehouwer, C.D. Clustering of metabolic syndrome traits is associated with maladaptive carotid remodeling and stiffening: A 6-year longitudinal study. Hypertension 2012, 60, 542–549. [Google Scholar] [CrossRef] [PubMed]
- Daiber, A.; Steven, S.; Weber, A.; Shuvaev, V.V.; Muzykantov, V.R.; Laher, I.; Li, H.; Lamas, S.; Münzel, T. Targeting vascular (endothelial) dysfunction. Br. J. Pharmacol. 2017, 174, 1591–1619. [Google Scholar] [CrossRef] [PubMed]
- Zanoli, L. Arterial stiffness is a vascular biomarker of chronic inflammation. Biomark. Med. 2019, 13, 1335–1337. [Google Scholar] [CrossRef] [PubMed]
- Massaro, M.; Scoditti, E.; Carluccio, M.A.; De Caterina, R. Oxidative stress and vascular stiffness in hypertension: A renewed interest for antioxidant therapies? Vasc. Pharmacol. 2019, 116, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Belkaniya, G.S.; Dilenyan, L.R.; Konkov, D.G.; Wsol, A.; Martusevich, A.K.; Puchalska, L.G. An anthropogenic model of cardiovascular system adaptation to the Earth’s gravity as the conceptual basis of pathological anthropology. J. Physiol. Anthr. 2021, 40, 9. [Google Scholar] [CrossRef] [PubMed]
- Belkaniia, G.S.; Dartsmeliia, V.A.; Demin, A.N.; Kurochkin, I.N.; Galustian, M.V. Anthropophysiologic basis of the formation of arterial hypertension in primates. Fiziol. Zhurnal SSSR Im. IM Sechenova 1988, 74, 1664–1676. [Google Scholar]
- Dorogovtsev, V.N.; Grechko, A.V. The role of orthostatic circulatory changes in the development of vascular disorders. Clin. Med. (Russ. J.) 2018, 95, 977–986. [Google Scholar] [CrossRef]
- Dorogovtsev, V.N.; Simonenko, V.B. Preclinical predictors of arterial hypertension. Clin. Med. (Russ. J.) 2021, 99, 91–97. [Google Scholar] [CrossRef]
- Dorogovtsev, V.N.; Yankevich, D.S.; Petrova, M.V.; Torshin, V.I.; Severin, A.E.; Borisov, I.V.; Podolskaya, J.A.; Grechko, A.V. Detection of Preclinical Orthostatic Disorders in Young African and European Adults Using the Head-Up Tilt Test with a Standardized Hydrostatic Column Height: A Pilot Study. Biomedicines 2022, 10, 2156. [Google Scholar] [CrossRef] [PubMed]
- Thomas, R.J.; Liu, K.; Jacobs, D.R.; Bild, D.E.; Kiefe, C.I.; Hulley, S.B. Positional change in blood pressure and 8-year risk of hypertension: The CARDIA Study. Mayo Clin. Proc. 2003, 78, 951–958. [Google Scholar] [CrossRef] [PubMed]
- Rose, K.M.; Holme, I.; Light, K.C.; Sharrett, A.R.; Tyroler, H.A.; Heiss, G. Association between the blood pressure response to a change in posture and the 6-year incidence of hypertension: Prospective findings from the ARIC study. J. Hum. Hypertens. 2002, 16, 771–777. [Google Scholar] [CrossRef] [PubMed]
- Dorogovtsev, V.N.; Yankevich, D.S.; Goswami, N. Effects of an Innovative Head-Up Tilt Protocol on Blood Pressure and Arterial Stiffness Changes. JCM 2021, 10, 1198. [Google Scholar] [CrossRef] [PubMed]
- Lortz, J.; Halfmann, L.; Burghardt, A.; Steinmetz, M.; Radecke, T.; Jánosi, R.A.; Rassaf, T.; Rammos, C. Rapid and automated risk stratification by determination of the aortic stiffness in healthy subjects and subjects with cardiovascular disease. PLoS ONE 2019, 14, e0216538. [Google Scholar] [CrossRef]
- Freeman, R.; Wieling, W.; Axelrod, F.B.; Benditt, D.G.; Benarroch, E.; Biaggioni, I.; Cheshire, W.P.; Chelimsky, T.; Cortelli, P.; Gibbons, C.H.; et al. Consensus statement on the definition of orthostatic hypotension, neurally mediated syncope and the postural tachycardia syndrome. Clin. Auton. Res. 2011, 21, 69–72. [Google Scholar] [CrossRef] [PubMed]
- Jordan, J.; Biaggioni, I.; Kotsis, V.; Nilsson, P.; Grassi, G.; Fedorowski, A.; Kario, K. Consensus statement on the definition of orthostatic hypertension endorsed by the American Autonomic Society and the Japanese Society of Hypertension. Clin. Auton. Res. 2022, 33, 69–73. [Google Scholar] [CrossRef] [PubMed]
- Patel, K.; Rössler, A.; Lackner, H.K.; Trozic, I.; Laing, C.; Lorr, D.; Green, D.A.; Hinghofer-Szalkay, H.; Goswami, N. Effect of postural changes on cardiovascular parameters across gender. Medicine 2016, 95, e4149. [Google Scholar] [CrossRef] [PubMed]
- Trozic, I.; Platzer, D.; Fazekas, F.; Bondarenko, A.I.; Brix, B.; Rössler, A.; Goswami, N. Postural hemodynamic parameters in older persons have a seasonal dependency: A pilot study. Z. Gerontol. Geriatr. 2020, 53, 145–155. [Google Scholar] [CrossRef] [PubMed]
- Jang, S.Y.; Ju, E.Y.; Huh, E.H.; Kim, J.H.; Kim, D.K. Determinants of brachial-ankle pulse wave velocity and carotid-femoral pulse wave velocity in healthy Koreans. J. Korean Med. Sci. 2014, 29, 798–804. [Google Scholar] [CrossRef] [PubMed]
- Pucci, G.; Spronck, B.; Avolio, A.P.; Tap, L.; Vaudo, G.; Anastasio, F.; Meiracker, A.V.D.; Mattace-Raso, F. Age-Specific Acute Changes in Carotid–Femoral Pulse Wave Velocity With Head-up Tilt. Am. J. Hypertens. 2020, 33, 1112–1118. [Google Scholar] [CrossRef] [PubMed]
- Neto, J.E.; Ferreira, A.; Futuro, G.; dos Santos, L.C.; Filho, N.H.; Gomes, F.; Mill, J.G. Influences on the Functional Behavior of Great Arteries during Orthostasis. Arq. Bras. Cardiol. 2019, 113, 1072–1080. [Google Scholar] [CrossRef]
- Cohen, J.; Pignanelli, C.; Burr, J. The Effect of Body Position on Measures of Arterial Stiffness in Humans. J. Vasc. Res. 2020, 57, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Ohkuma, T.; Ninomiya, T.; Tomiyama, H.; Kario, K.; Hoshide, S.; Kita, Y.; Inoguchi, T.; Maeda, Y.; Kohara, K.; Tabara, Y.; et al. Brachial-Ankle Pulse Wave Velocity and the Risk Prediction of Cardiovascular Disease: An Individual Participant Data Meta-Analysis. Hypertension 2017, 69, 1045–1052. [Google Scholar] [CrossRef]
- Yamashina, A.; Tomiyama, H.; Arai, T.; Hirose, K.-I.; Koji, Y.; Hirayama, Y.; Yamamoto, Y.; Hori, S. Brachial-ankle pulse wave velocity as a marker of atherosclerotic vascular damage and cardiovascular risk. Hypertens. Res. 2003, 26, 615–622. [Google Scholar] [CrossRef]
- Munakata, M. Brachial-ankle pulse wave velocity in the measurement of arterial stiffness: Recent evidence and clinical applications. Curr. Hypertens. Rev. 2014, 10, 49–57. [Google Scholar] [CrossRef]
- Faulkner, J.L. Obesity-associated cardiovascular risk in women: Hypertension and heart failure. Clin. Sci. 2021, 135, 1523–1544. [Google Scholar] [CrossRef]
- Litwin, M.; Kułaga, Z. Obesity, metabolic syndrome, and primary hypertension. Pediatr. Nephrol. 2021, 36, 825–837. [Google Scholar] [CrossRef]
- Cutter, G.R.; Burke, G.L.; Dyer, A.R.; Friedman, G.D.; Hilner, J.E.; Hughes, G.H.; Hulley, S.B.; Jacobs, D.R.; Liu, K.; Manolio, T.A.; et al. Cardiovascular risk factors in young adults. The CARDIA baseline monograph. Control Clin. Trials 1991, 12 (Suppl. S1), 1S–77S. [Google Scholar] [CrossRef]
- Smith, J.J.; Porth, C.M.; Erickson, M. Hemodynamic response to the upright posture. J. Clin. Pharmacol. 1994, 34, 375–386. [Google Scholar] [CrossRef]
- Brignole, M. Guidelines on management (diagnosis and treatment) of syncope. Eur. Heart J. 2001, 22, 1256–1306. [Google Scholar] [CrossRef] [PubMed]
- Yates, B.J.; Bolton, P.S.; Macefield, V.G. Vestibulo-sympathetic responses. Compr. Physiol. 2014, 4, 851–887. [Google Scholar] [CrossRef]
- Sunagawa, K.; Sato, T.; Kawada, T. Integrative sympathetic baroreflex regulation of arterial pressure. Ann. N. Y. Acad. Sci. 2001, 940, 314–323. [Google Scholar] [CrossRef] [PubMed]
- Kamiya, A.; Kawada, T.; Sugimachi, M. Systems physiology of the baroreflex during orthostatic stress: From animals to humans. Front. Physiol. 2014, 5, 256. [Google Scholar] [CrossRef]
- László, Z.; Rössler, A.; Hinghofer-Szalkay, H.G. Cardiovascular and hormonal changes with different angles of head-up tilt in men. Physiol. Res. 2001, 50, 71–82. [Google Scholar]
- Jarvis, S.S.; Shibata, S.; Okada, Y.; Levine, B.D.; Fu, Q. Neural-humoral responses during head-up tilt in healthy young white and black women. Front. Physiol. 2014, 5, 86. [Google Scholar] [CrossRef] [PubMed]
- Martyushev-Poklad, A.; Yankevich, D.; Petrova, M. Improving the Effectiveness of Healthcare: Diagnosis-Centered Care Vs. Person-Centered Health Promotion, a Long Forgotten New Model. Front. Public. Health 2022, 10, 819096. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Group 1 n = 40 | Group 2 n = 40 | Group 3 n = 40 | Inter-Group Differences |
---|---|---|---|---|
Age Range, Years | 20–30 | 31–45 | Over 45 | |
Age, years | 22 [20; 24] | 37 [33; 38] | 55 [49; 59] | p1–2 = 0.0002 p1–3 = 0.0007 p2–3 = 0.001 KW test: H = 105.9, p < 0.0001 |
Sex, male/female | 18/22 | 17/23 | 19/21 | |
Height, cm | 171.5 [157; 179] | 173.5 [164; 182] | 165 [158; 177] | p1–2 = 0.06 p1–3 = 0.017 p2–3 = 0.027 KW test: H = 9.67, p = 0.008 |
Weight, kg | 65 [55; 79] | 77.5 [63; 87.5] | 75 [68; 85.5] | p1–2 = 0.076 p1–3 = 0.045 p2–3 = 0.07 KW test: H = 7.31, p = 0.026 |
Body mass index, kg/m2 | 22.5 [20.2; 24.1] | 24 [22.5; 28.1] | 26.1 [23.6; 30.6] | p1–2 = 0.026 p1–3 = 0.001 p2–3 = 0.23 KW test: H = 19.6, p = 0.0001 |
Health Status | Group 1 n = 40 | Group 2 n = 40 | Group 3 n = 40 |
---|---|---|---|
Healthy | 37/92.5% | 27/67.5% | 22/55% |
Arterial hypertension | 6/15% | 12/30% | |
Atherosclerosis | 4/10% | 6/15% | |
History of transient ischemic attack | 1/2.5% | ||
Myopia | 2/5% | ||
Chronic pancreatitis | 1/2.5% | ||
Psoriasis | 2/5% | ||
Bronchial asthma | 2/5% | ||
Chronic bronchitis | 1/2.5% | ||
Venous thrombosis | 2/5% | ||
Gastritis | 2/5% | ||
Diabetes mellitus | 1/2.5% | 5/12.5% | |
Uterine myoma | 1/2.5% |
Parameters Age Range, Years | Group 1 | Group 2 | Group 3 | Inter-Group Differences | KW | ||
---|---|---|---|---|---|---|---|
n = 40 20–30 | n = 40 31–45 | n = 40 >45 | p1–2 | p1–3 | p2–3 | ||
I Supine | |||||||
HR b/min | 62 [57; 67.5] | 68 [62.5; 77.5] | 64.5 [58; 72] | 0.004 | 0.39 | 0.29 | 1 |
SBP mmHg | 120.3 [109.7; 126] | 125.1 [119; 130.6] | 125.6 [115; 136.6] | 0.05 | 0.1 | 0.058 | 2 |
DBP mmHg | 72.7 [66.2; 75.7] | 81.5 [73.6; 86.8] | 82.5 [73; 89.8] | <0.001 | 0.001 | 0.054 | 3 |
baPWV m/s | 8.9 [8.3; 9.5] | 10.1 [9.7; 11] | 11.3 [10.7; 11.9] | 0.001 | <0.001 | <0.001 | 4 |
cfPWV m/s | 5.2 [4.7; 5.7] | 6.3 [6; 6.9] | 7.3 [6.6; 7.7] | 0.006 | <0.001 | 0.002 | 5 |
II HUTT | |||||||
HR b/min | 74 [68.5; 78] | 73 [69.5; 85] | 67.5 [62.5; 75] | 0.059 | 0.063 | 0.015 | 6 |
SBP mmHg | 123.1 [108.5; 128.5] | 126.3 [113.2; 134.5] | 120.2 [112.8; 131.1] | 0.25 | 0.061 | 0.059 | 7 |
DBP mmHg | 79.9 [74; 82.5] | 85.9 [79.4; 90.7] | 84.3 [77.5; 90.8] | 0.003 | 0.051 | 0.09 | 8 |
baPWV m/s | 12.9 [11.9; 14.2] | 13.8 [13; 14.5] | 14.3 [13.3; 15.4] | 0.16 | 0.001 | 0.26 | 9 |
III Return to supine | |||||||
HR b/min | 62 [56; 66] | 66 [59; 73.5] | 63 [57.5; 68.5] | 0.024 | 0.77 | 0.39 | 10 |
SBP mmHg | 119.2 [109.7; 127.2] | 126.2 [121; 134.5] | 126.2 [118; 134.5] | 0.037 | 0.08 | 0.09 | 11 |
DBP mmHg | 74 [70.1; 78.5] | 81 [73; 85.7] | 79.7 [73; 85.2] | 0.002 | 0.02 | 0.082 | 12 |
baPWV m/s | 8.8 [8.4; 9.5] | 10.3 [9.4; 10.8] | 10.5 [9.7; 11] | 0.001 | 0.001 | 0.097 | 13 |
Intra-group differences in orthostatic changes | |||||||
HR | pI–II = 0.001 pI–III = 0.14 | pI–II = 0.001 pI–III = 0.05 | pI–II = 0.001 pI–III = 0.051 | ||||
SBP | pI–II = 0.03 pI–III= 0.06 | pI–II = 0.93 pI–III = 0.91 | pI–II = 0.27 pI–III = 0.51 | ||||
DBP | pI–II = 0.001 pI–III =0.055 | pI–II = 0.001 pI–III = 0.63 | pI–II = 0.004 pI–III = 0.15 | ||||
baPWV | pI–II = 0.001 pI–III = 0.97 | pI–II = 0.001 pI–III = 0.6 | pI–II = 0.001 pI–III = 0.001 |
Group 1 Preclinical OH | Group 2 ONT | Group 3 Preclinical OHT | Inter-Group Differences | KW | |||
---|---|---|---|---|---|---|---|
n = 20 (19.6%) ΔSBP < −5 mmHg | n = 64 (62.8%) ΔSBP ±5 mmHg | n = 18 (17.6%) ΔSBP > +5 mmHg | p1–2 | p1–3 | p2–3 | ||
I. Supine | |||||||
HR b/min | 66 [59; 76] | 64 [57; 70] | 67 [61; 72] | 0.34 | 0.25 | 0.91 | 1 |
SBP mmHg | 126.3 [121; 130.0] | 119.9 [111.5; 126.2] | 119.3 [110.3; 125] | 0.018 | 0.018 | 0.87 | 2 |
DBP mmHg | 85.5 [71.3; 90.6] | 73.5 [76.7; 798] | 76.6 [71.3; 82] | 0.001 | 0.02 | 0.17 | 3 |
baPWV m/s | 11.0 [10; 11.8] | 9.5 [8.7; 10.4] | 10.4 [10; 10.8] | 0.001 | 0.12 | 0.002 | 4 |
cfPWV m/s | 7.2 [6.3; 7.6] | 5.9 [5.1; 6.6] | 6.5 [6.1; 6.8] | 0.001 | 0.15 | 0.005 | 5 |
II. HUTT | |||||||
HR b/min | 70 [66; 79] | 73 [68; 77] | 72 [66; 82] | 0.41 | 0.77 | 0.69 | 6 |
SBP mmHg | 115.6 [112; 121.4] | 119 [109; 128.3] | 127.5 [123; 137] | 0.31 | 0.001 | 0.004 | 7 |
DBP mmHg | 82.1 [76.3; 86.3] | 80 [75; 85.7] | 86 [80.3; 91] | 0.34 | 0.014 | 0.012 | 8 |
baPWV m/s | 14.1 [13.3; 15.3] | 13.2 [12.1; 14.4] | 14.1 [13.1; 14.2] | 0.008 | 0.06 | 0.039 | 9 |
III. Return to supine | |||||||
HR b/min | 59 [58; 74] | 63 [56; 69] | 64 [61; 67] | 0.53 | 0.32 | 0.67 | 10 |
SBP mmHg | 126.5 [121; 134] | 121.1 [109.4; 128.3] | 126.7 [123; 138] | 0.058 | 0.69 | 0.045 | 11 |
DBP mmHg | 81 [75.5; 85.7] | 76 [70; 80.8] | 81 [72.5; 85.5] | 0.012 | 0.78 | 0.035 | 12 |
baPWV m/s | 10.6 [10.1; 11.7] | 9.3 [8.5; 10] | 10.3 [9.1; 10.6] | 0.006 | 0.23 | 0.021 | 13 |
Intra-group differences in orthostatic changes | |||||||
HR | pI–II = 0.01 pI–III = 0.81 | pI–II <
0.001 pI–III < 0.006 | pI–II < 0.001 pI–III = 0.064 | ||||
SBP | pI–II = 0.001 pI–III = 0.9 | pI–II = 0.48 pI–III = 0.048 | pI–II =
0.001 pI–III < 0.001 | ||||
DBP | pI–II =0.001 pI–III = 0.5 | pI–II = 0.001 pI–III = 0.17 | pI–II = 0.001 pI–III = 0.21 | ||||
baPWV | pI–II = 0.001 pI–III = 0.84 | pI–II = 0.001 pI–III = 0.39 | pI–II = 0.001 pI–III = 0.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dorogovtsev, V.N.; Yankevich, D.S.; Gaydashev, A.E.; Martyushev-Poklad, A.V.; Podolskaya, J.A.; Borisov, I.V.; Grechko, A.V. Preclinical Orthostatic Abnormalities May Predict Early Increase in Vascular Stiffness in Different Age Groups: A Pilot Study. Diagnostics 2023, 13, 3243. https://doi.org/10.3390/diagnostics13203243
Dorogovtsev VN, Yankevich DS, Gaydashev AE, Martyushev-Poklad AV, Podolskaya JA, Borisov IV, Grechko AV. Preclinical Orthostatic Abnormalities May Predict Early Increase in Vascular Stiffness in Different Age Groups: A Pilot Study. Diagnostics. 2023; 13(20):3243. https://doi.org/10.3390/diagnostics13203243
Chicago/Turabian StyleDorogovtsev, Victor N., Dmitry S. Yankevich, Andrey E. Gaydashev, Andrey V. Martyushev-Poklad, Julia A. Podolskaya, Ilya V. Borisov, and Andrey V. Grechko. 2023. "Preclinical Orthostatic Abnormalities May Predict Early Increase in Vascular Stiffness in Different Age Groups: A Pilot Study" Diagnostics 13, no. 20: 3243. https://doi.org/10.3390/diagnostics13203243
APA StyleDorogovtsev, V. N., Yankevich, D. S., Gaydashev, A. E., Martyushev-Poklad, A. V., Podolskaya, J. A., Borisov, I. V., & Grechko, A. V. (2023). Preclinical Orthostatic Abnormalities May Predict Early Increase in Vascular Stiffness in Different Age Groups: A Pilot Study. Diagnostics, 13(20), 3243. https://doi.org/10.3390/diagnostics13203243