Elevation of White Blood Cell Subtypes in Adult Trauma Patients with Stress-Induced Hyperglycemia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Statement of Ethics
2.2. Inclusion and Grouping Criteria for Patients
- A DM diagnosis was made based on the American Diabetes Association′s guidelines, which involves referencing the patient’s history or detecting glycated hemoglobin (HbA1c) levels equal to or greater than 6.5% upon admission [3].
- “NDN” signifies serum glucose levels less than 200 mg/dL in individuals without a DM diagnosis.
- “Diabetic normoglycemia” or “DN” stands for serum glucose measurements below 200 mg/dL in DM-diagnosed patients.
- Patients with DM and serum glucose levels of 200 mg/dL or higher were identified as having “DH”, while those without DM diagnosis with similar glucose levels were labeled “SIH”.
2.3. Collection of Clinical Data
2.4. Statistical Analyses
3. Results
3.1. Demographics and Patient Characteristics
3.2. Level of Subtypes of WBC and Platelets and the Derived Ratio
3.3. Outcomes of the Patients
3.4. Level of Subtypes of WBC and Platelets in the Propensity Score-Matched Patient Cohorts
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gale, S.C.; Sicoutris, C.; Reilly, P.M.; Schwab, C.W.; Gracias, V.H. Poor glycemic control is associated with increased mortality in critically ill trauma patients. Am. Surg. 2007, 73, 454–460. [Google Scholar] [CrossRef] [PubMed]
- Vogelzang, M.; Nijboer, J.M.; van der Horst, I.C.; Zijlstra, F.; ten Duis, H.J.; Nijsten, M.W. Hyperglycemia has a stronger relation with outcome in trauma patients than in other critically ill patients. J. Trauma. 2006, 60, 873–877. [Google Scholar] [CrossRef] [PubMed]
- Diagnosis and classification of diabetes mellitus. Diabetes Care 2012, 35 (Suppl. S1), S64–S71. [CrossRef] [PubMed]
- Smit, J.W.; Romijn, J.A. Acute insulin resistance in myocardial ischemia: Causes and consequences. Semin. Cardiothorac. Vasc. Anesth. 2006, 10, 215–219. [Google Scholar] [CrossRef]
- Lin, Z.; Liang, X.; Zhang, Y.; Dai, Y.; Zeng, L.; Chen, W.; Kong, S.; He, P.; Duan, C.; Liu, Y. Positive association between stress hyperglycemia ratio and pulmonary infection in patients with ST-segment elevation myocardial infarction undergoing percutaneous coronary intervention. Cardiovasc. Diabetol. 2023, 22, 76. [Google Scholar] [CrossRef]
- Stalikas, N.; Papazoglou, A.S.; Karagiannidis, E.; Panteris, E.; Moysidis, D.; Daios, S.; Anastasiou, V.; Patsiou, V.; Koletsa, T.; Sofidis, G.; et al. Association of stress induced hyperglycemia with angiographic findings and clinical outcomes in patients with ST-elevation myocardial infarction. Cardiovasc. Diabetol. 2022, 21, 140. [Google Scholar] [CrossRef]
- Khajavikhan, J.; Vasigh, A.; Kokhazade, T.; Khani, A. Association between Hyperglycaemia with Neurological Outcomes Following Severe Head Trauma. J. Clin. Diagn. Res. JCDR 2016, 10, Pc11–Pc13. [Google Scholar] [CrossRef]
- Bosarge, P.L.; Shoultz, T.H.; Griffin, R.L.; Kerby, J.D. Stress-induced hyperglycemia is associated with higher mortality in severe traumatic brain injury. J. Trauma. Acute Care Surg. 2015, 79, 289–294. [Google Scholar] [CrossRef]
- Kinoshita, K. Traumatic brain injury: Pathophysiology for neurocritical care. J. Intensive Care 2016, 4, 29. [Google Scholar] [CrossRef]
- Rau, C.S.; Wu, S.C.; Chen, Y.C.; Chien, P.C.; Hsieh, H.Y.; Kuo, P.J.; Hsieh, C.H. Mortality Rate Associated with Admission Hyperglycemia in Traumatic Femoral Fracture Patients Is Greater Than Non-Diabetic Normoglycemic Patients but Not Diabetic Normoglycemic Patients. Int. J. Environ. Res. Public. Health 2017, 15, 28. [Google Scholar] [CrossRef]
- Richards, J.E.; Kauffmann, R.M.; Zuckerman, S.L.; Obremskey, W.T.; May, A.K. Relationship of hyperglycemia and surgical-site infection in orthopaedic surgery. J. Bone Joint Surg. Am. 2012, 94, 1181–1186. [Google Scholar] [CrossRef] [PubMed]
- Richards, J.E.; Kauffmann, R.M.; Obremskey, W.T.; May, A.K. Stress-induced hyperglycemia as a risk factor for surgical-site infection in nondiabetic orthopedic trauma patients admitted to the intensive care unit. J. Orthop. Trauma. 2013, 27, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Mraovic, B.; Suh, D.; Jacovides, C.; Parvizi, J. Perioperative hyperglycemia and postoperative infection after lower limb arthroplasty. J. Diabetes Sci. Technol. 2011, 5, 412–418. [Google Scholar] [CrossRef] [PubMed]
- Leto, R.; Desruelles, D.; Gillet, J.B.; Sabbe, M.B. Admission hyperglycaemia is associated with higher mortality in patients with hip fracture. Eur. J. Emerg. Med. 2015, 22, 99–102. [Google Scholar] [CrossRef]
- Klonoff, D.C. Technology to treat hyperglycemia in trauma. J. Diabetes Sci. Technol. 2007, 1, 151–152. [Google Scholar] [CrossRef]
- Di Luzio, R.; Dusi, R.; Mazzotti, A.; Petroni, M.L.; Marchesini, G.; Bianchi, G. Stress Hyperglycemia and Complications Following Traumatic Injuries in Individuals With/Without Diabetes: The Case of Orthopedic Surgery. Diabetes Metab. Syndr. Obes. 2020, 13, 9–17. [Google Scholar] [CrossRef]
- Heldreth, A.C.; Demissie, S.; Pandya, S.; Baker, M.; Gallagher, A.; Copty, M.; Azab, B.; Moko, L.; Atanassov, K.; Gave, A.; et al. Stress-Induced (Not Diabetic) Hyperglycemia Is Associated with Mortality in Geriatric Trauma Patients. J. Surg. Res. 2023, 289, 247–252. [Google Scholar] [CrossRef]
- Kerby, J.D.; Griffin, R.L.; MacLennan, P.; Rue, L.W., 3rd. Stress-induced hyperglycemia, not diabetic hyperglycemia, is associated with higher mortality in trauma. Ann. Surg. 2012, 256, 446–452. [Google Scholar] [CrossRef]
- Rau, C.S.; Wu, S.C.; Chen, Y.C.; Chien, P.C.; Hsieh, H.Y.; Kuo, P.J.; Hsieh, C.H. Stress-Induced Hyperglycemia in Diabetes: A Cross-Sectional Analysis to Explore the Definition Based on the Trauma Registry Data. Int. J. Environ. Res. Public. Health 2017, 14, 1527. [Google Scholar] [CrossRef]
- Rau, C.S.; Wu, S.C.; Chen, Y.C.; Chien, P.C.; Hsieh, H.Y.; Kuo, P.J.; Hsieh, C.H. Stress-Induced Hyperglycemia, but Not Diabetic Hyperglycemia, Is Associated with Higher Mortality in Patients with Isolated Moderate and Severe Traumatic Brain Injury: Analysis of a Propensity Score-Matched Population. Int. J. Environ. Res. Public. Health 2017, 14, 1340. [Google Scholar] [CrossRef]
- Rau, C.S.; Wu, S.C.; Chen, Y.C.; Chien, P.C.; Hsieh, H.Y.; Kuo, P.J.; Hsieh, C.H. Higher Mortality in Trauma Patients Is Associated with Stress-Induced Hyperglycemia, but Not Diabetic Hyperglycemia: A Cross-Sectional Analysis Based on a Propensity-Score Matching Approach. Int. J. Environ. Res. Public. Health 2017, 14, 1161. [Google Scholar] [CrossRef] [PubMed]
- Su, W.T.; Wu, S.C.; Chou, S.E.; Huang, C.Y.; Hsu, S.Y.; Liu, H.T.; Hsieh, C.H. Higher Mortality Rate in Moderate-to-Severe Thoracoabdominal Injury Patients with Admission Hyperglycemia Than Nondiabetic Normoglycemic Patients. Int. J. Environ. Res. Public. Health 2019, 16, 3562. [Google Scholar] [CrossRef] [PubMed]
- Tsai, Y.C.; Wu, S.C.; Hsieh, T.M.; Liu, H.T.; Huang, C.Y.; Chou, S.E.; Su, W.T.; Hsu, S.Y.; Hsieh, C.H. Association of Stress-Induced Hyperglycemia and Diabetic Hyperglycemia with Mortality in Patients with Traumatic Brain Injury: Analysis of a Propensity Score-Matched Population. Int. J. Environ. Res. Public. Health 2020, 17, 4266. [Google Scholar] [CrossRef]
- Tsai, Y.W.; Wu, S.C.; Huang, C.Y.; Hsu, S.Y.; Liu, H.T.; Hsieh, C.H. Impact of stress-induced hyperglycemia on the outcome of children with trauma: A cross-sectional analysis based on propensity score-matched population. Sci. Rep. 2019, 9, 16311. [Google Scholar] [CrossRef] [PubMed]
- Galanakos, S.P.; Bot, A.G.; Zoubos, A.B.; Soucacos, P.N. Psychological and social consequences after reconstruction of upper extremity trauma: Methods of detection and management. J. Reconstr. Microsurg. 2014, 30, 193–206. [Google Scholar] [CrossRef] [PubMed]
- James, M.K.; Francois, M.P.; Yoeli, G.; Doughlin, G.K.; Lee, S.W. Incidental findings in blunt trauma patients: Prevalence, follow-up documentation, and risk factors. Emerg. Radiol. 2017, 24, 347–353. [Google Scholar] [CrossRef]
- Hazeldine, J.; Hampson, P.; Lord, J.M. The impact of trauma on neutrophil function. Injury 2014, 45, 1824–1833. [Google Scholar] [CrossRef]
- Kuethe, J.W.; Mintz-Cole, R.; Johnson, B.L., 3rd; Midura, E.F.; Caldwell, C.C.; Schneider, B.S. Assessing the immune status of critically ill trauma patients by flow cytometry. Nurs. Res. 2014, 63, 426–434. [Google Scholar] [CrossRef]
- Janicova, A.; Becker, N.; Xu, B.; Simic, M.; Noack, L.; Wagner, N.; Müller, A.J.; Bertrand, J.; Marzi, I.; Relja, B. Severe Traumatic Injury Induces Phenotypic and Functional Changes of Neutrophils and Monocytes. J. Clin. Med. 2021, 10, 4139. [Google Scholar] [CrossRef]
- Ritzel, R.M.; Doran, S.J.; Barrett, J.P.; Henry, R.J.; Ma, E.L.; Faden, A.I.; Loane, D.J. Chronic Alterations in Systemic Immune Function after Traumatic Brain Injury. J. Neurotrauma 2018, 35, 1419–1436. [Google Scholar] [CrossRef]
- Baëhl, S.; Garneau, H.; Lorrain, D.; Viens, I.; Svotelis, A.; Lord, J.M.; Cabana, F.; Larbi, A.; Dupuis, G.; Fülöp, T. Alterations in Monocyte Phenotypes and Functions after a Hip Fracture in Elderly Individuals: A 6-Month Longitudinal Study. Gerontology 2016, 62, 477–490. [Google Scholar] [CrossRef] [PubMed]
- Tauber, H.; Innerhofer, N.; von Langen, D.; Ströhle, M.; Fries, D.; Mittermayr, M.; Hell, T.; Oswald, E.; Innerhofer, P. Dynamics of Platelet Counts in Major Trauma: The Impact of Haemostatic Resuscitation and Effects of Platelet Transfusion-A Sub-Study of the Randomized Controlled RETIC Trial. J. Clin. Med. 2020, 9, 2420. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Du, X.; Chen, J.; Jin, Y.; Peng, L.; Wang, H.H.X.; Luo, M.; Chen, L.; Zhao, Y. Neutrophil-to-lymphocyte ratio as an independent risk factor for mortality in hospitalized patients with COVID-19. J. Infect. 2020, 81, e6–e12. [Google Scholar] [CrossRef]
- Belice, T.; Demir, I.; Yüksel, A. Role of neutrophil-lymphocyte-ratio in the mortality of males diagnosed with COVID-19. Iran. J. Microbiol. 2020, 12, 194–197. [Google Scholar] [CrossRef] [PubMed]
- Ke, R.T.; Rau, C.S.; Hsieh, T.M.; Chou, S.E.; Su, W.T.; Hsu, S.Y.; Hsieh, C.H.; Liu, H.T. Association of Platelets and White Blood Cells Subtypes with Trauma Patients′ Mortality Outcome in the Intensive Care Unit. Healthcare 2021, 9, 942. [Google Scholar] [CrossRef]
- Klemt, C.; Tirumala, V.; Smith, E.J.; Xiong, L.; Kwon, Y.M. Complete blood platelet and lymphocyte ratios increase diagnostic accuracy of periprosthetic joint infection following total hip arthroplasty. Arch. Orthop. Trauma. Surg. 2023, 143, 1441–1449. [Google Scholar] [CrossRef]
- Moldovan, F.; Ivanescu, A.D.; Fodor, P.; Moldovan, L.; Bataga, T. Correlation between Inflammatory Systemic Biomarkers and Surgical Trauma in Elderly Patients with Hip Fractures. J. Clin. Med. 2023, 12, 5147. [Google Scholar] [CrossRef]
- Rau, C.S.; Wu, S.C.; Tsai, C.H.; Chou, S.E.; Su, W.T.; Hsu, S.Y.; Hsieh, C.H. Association of White Blood Cell Subtypes and Derived Ratios with a Mortality Outcome in Adult Patients with Polytrauma. Healthcare 2022, 10, 1384. [Google Scholar] [CrossRef]
- Song, B.W.; Kim, A.R.; Moon, D.H.; Kim, Y.K.; Kim, G.T.; Ahn, E.Y.; So, M.W.; Lee, S.G. Associations of Neutrophil-to-Lymphocyte Ratio, Platelet-to-Lymphocyte Ratio and Monocyte-to-Lymphocyte Ratio with Osteoporosis and Incident Vertebral Fracture in Postmenopausal Women with Rheumatoid Arthritis: A Single-Center Retrospective Cohort Study. Medicina 2022, 58, 852. [Google Scholar] [CrossRef]
- Tekin, S.B.; Bozgeyik, B.; Mert, A. Relationship between admission neutrophil/lymphocyte, thrombocyte/lymphocyte, and monocyte/lymphocyte ratios and 1-year mortality in geriatric hip fractures: Triple comparison. Ulus. Travma Acil Cerrahi Derg. 2022, 28, 1634–1640. [Google Scholar] [CrossRef]
- Vunvulea, V.; Melinte, R.M.; Brinzaniuc, K.; Suciu, B.A.; Ivănescu, A.D.; Hălmaciu, I.; Incze-Bartha, Z.; Pastorello, Y.; Trâmbițaș, C.; Mărginean, L.; et al. Blood Count-Derived Inflammatory Markers Correlate with Lengthier Hospital Stay and Are Predictors of Pneumothorax Risk in Thoracic Trauma Patients. Diagnostics 2023, 13, 954. [Google Scholar] [CrossRef] [PubMed]
- Djordjevic, D.; Rondovic, G.; Surbatovic, M.; Stanojevic, I.; Udovicic, I.; Andjelic, T.; Zeba, S.; Milosavljevic, S.; Stankovic, N.; Abazovic, D.; et al. Neutrophil-to-Lymphocyte Ratio, Monocyte-to-Lymphocyte Ratio, Platelet-to-Lymphocyte Ratio, and Mean Platelet Volume-to-Platelet Count Ratio as Biomarkers in Critically Ill and Injured Patients: Which Ratio to Choose to Predict Outcome and Nature of Bacteremia? Mediators Inflamm. 2018, 2018, 3758068. [Google Scholar] [CrossRef] [PubMed]
- Glod, J.; Kobiler, D.; Noel, M.; Koneru, R.; Lehrer, S.; Medina, D.; Maric, D.; Fine, H.A. Monocytes form a vascular barrier and participate in vessel repair after brain injury. Blood 2006, 107, 940–946. [Google Scholar] [CrossRef] [PubMed]
- Desalegn, G.; Pabst, O. Inflammation triggers immediate rather than progressive changes in monocyte differentiation in the small intestine. Nat. Commun. 2019, 10, 3229. [Google Scholar] [CrossRef]
- Heftrig, D.; Sturm, R.; Oppermann, E.; Kontradowitz, K.; Jurida, K.; Schimunek, L.; Woschek, M.; Marzi, I.; Relja, B. Impaired Surface Expression of HLA-DR, TLR2, TLR4, and TLR9 in Ex Vivo-In Vitro Stimulated Monocytes from Severely Injured Trauma Patients. Mediators Inflamm. 2017, 2017, 2608349. [Google Scholar] [CrossRef]
- West, S.D.; Mold, C. Monocyte deactivation correlates with injury severity score, but not with heme oxygenase-1 levels in trauma patients. J. Surg. Res. 2012, 172, 5–10. [Google Scholar] [CrossRef]
- Galbraith, N.; Walker, S.; Carter, J.; Polk, H.C., Jr. Past, Present, and Future of Augmentation of Monocyte Function in the Surgical Patient. Surg. Infect. 2016, 17, 563–569. [Google Scholar] [CrossRef]
- Seshadri, A.; Brat, G.A.; Yorkgitis, B.K.; Keegan, J.; Dolan, J.; Salim, A.; Askari, R.; Lederer, J.A. Phenotyping the Immune Response to Trauma: A Multiparametric Systems Immunology Approach. Crit. Care Med. 2017, 45, 1523–1530. [Google Scholar] [CrossRef]
- Arango Duque, G.; Descoteaux, A. Macrophage cytokines: Involvement in immunity and infectious diseases. Front. Immunol. 2014, 5, 491. [Google Scholar] [CrossRef]
- Menger, M.D.; Vollmar, B. Surgical trauma: Hyperinflammation versus immunosuppression? Langenbecks Arch. Surg. 2004, 389, 475–484. [Google Scholar] [CrossRef]
- Hemmat, N.; Derakhshani, A.; Bannazadeh Baghi, H.; Silvestris, N.; Baradaran, B.; De Summa, S. Neutrophils, Crucial, or Harmful Immune Cells Involved in Coronavirus Infection: A Bioinformatics Study. Front. Genet. 2020, 11, 641. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Li, S.; Sun, Q.; Zhu, J.; Chen, B.; Xiong, M.; Cao, G. Immune-Inflammatory Parameters in COVID-19 Cases: A Systematic Review and Meta-Analysis. Front. Med. 2020, 7, 301. [Google Scholar] [CrossRef]
- Weaver, K.D.; Branch, C.A.; Hernandez, L.; Miller, C.H.; Quattrocchi, K.B. Effect of leukocyte-endothelial adhesion antagonism on neutrophil migration and neurologic outcome after cortical trauma. J. Trauma. 2000, 48, 1081–1090. [Google Scholar] [CrossRef] [PubMed]
- McIlroy, D.J.; Jarnicki, A.G.; Au, G.G.; Lott, N.; Smith, D.W.; Hansbro, P.M.; Balogh, Z.J. Mitochondrial DNA neutrophil extracellular traps are formed after trauma and subsequent surgery. J. Crit. Care 2014, 29, 1133.e1–1133.e5. [Google Scholar] [CrossRef] [PubMed]
- Solomkin, J.S.; Cotta, L.A.; Ogle, J.D.; Brodt, J.K.; Ogle, C.K.; Satoh, P.S.; Hurst, J.M.; Alexander, J.W. Complement-induced expression of cryptic receptors on the neutrophil surface: A mechanism for regulation of acute inflammation in trauma. Surgery 1984, 96, 336–344. [Google Scholar] [PubMed]
- Hazeldine, J.; Naumann, D.N.; Toman, E.; Davies, D.; Bishop, J.R.B.; Su, Z.; Hampson, P.; Dinsdale, R.J.; Crombie, N.; Duggal, N.A.; et al. Prehospital immune responses and development of multiple organ dysfunction syndrome following traumatic injury: A prospective cohort study. PLoS Med. 2017, 14, e1002338. [Google Scholar] [CrossRef]
- Manson, J.; Hoffman, R.; Chen, S.; Ramadan, M.H.; Billiar, T.R. Innate-Like Lymphocytes Are Immediate Participants in the Hyper-Acute Immune Response to Trauma and Hemorrhagic Shock. Front. Immunol. 2019, 10, 1501. [Google Scholar] [CrossRef]
- Walsh, D.S.; Siritongtaworn, P.; Pattanapanyasat, K.; Thavichaigarn, P.; Kongcharoen, P.; Jiarakul, N.; Tongtawe, P.; Yongvanitchit, K.; Komoltri, C.; Dheeradhada, C.; et al. Lymphocyte activation after non-thermal trauma. Br. J. Surg. 2000, 87, 223–230. [Google Scholar] [CrossRef]
- Riché, F.; Gayat, E.; Barthélémy, R.; Le Dorze, M.; Matéo, J.; Payen, D. Reversal of neutrophil-to-lymphocyte count ratio in early versus late death from septic shock. Crit. Care 2015, 19, 439. [Google Scholar] [CrossRef]
- Hua, R.; Chen, F.X.; Zhang, Y.M.; Zhou, Z.H.; Wang, S.J.; Liang, J. [Association of traumatic severity with change in lymphocyte subsets in the early stage after trauma]. Zhonghua Wei Zhong Bing. Ji Jiu Yi Xue 2013, 25, 489–492. [Google Scholar] [CrossRef]
- Cheadle, W.G.; Pemberton, R.M.; Robinson, D.; Livingston, D.H.; Rodriguez, J.L.; Polk, H.C., Jr. Lymphocyte subset responses to trauma and sepsis. J. Trauma. 1993, 35, 844–849. [Google Scholar] [CrossRef] [PubMed]
- Manson, J.; Cole, E.; De′Ath, H.D.; Vulliamy, P.; Meier, U.; Pennington, D.; Brohi, K. Early changes within the lymphocyte population are associated with the development of multiple organ dysfunction syndrome in trauma patients. Crit. Care 2016, 20, 176. [Google Scholar] [CrossRef] [PubMed]
- Gouel-Chéron, A.; Venet, F.; Allaouchiche, B.; Monneret, G. CD4+ T-lymphocyte alterations in trauma patients. Crit. Care 2012, 16, 432. [Google Scholar] [CrossRef]
- Daley, M.J.; Trust, M.D.; Peterson, E.J.; Luftman, K.; Miller, A.H.; Ali, S.; Clark, A.; Aydelotte, J.D.; Coopwood, T.B.; Brown, C.V. Thromboelastography Does Not Detect Preinjury Antiplatelet Therapy in Acute Trauma Patients. Am. Surg. 2016, 82, 175–180. [Google Scholar] [CrossRef]
- Greve, F.; Mair, O.; Aulbach, I.; Biberthaler, P.; Hanschen, M. Correlation between Platelet Count and Lung Dysfunction in Multiple Trauma Patients-A Retrospective Cohort Analysis. J. Clin. Med. 2022, 11, 1400. [Google Scholar] [CrossRef]
- Verni, C.C.; Davila, A., Jr.; Balian, S.; Sims, C.A.; Diamond, S.L. Platelet dysfunction during trauma involves diverse signaling pathways and an inhibitory activity in patient-derived plasma. J. Trauma. Acute Care Surg. 2019, 86, 250–259. [Google Scholar] [CrossRef] [PubMed]
- Vulliamy, P.; Montague, S.J.; Gillespie, S.; Chan, M.V.; Coupland, L.A.; Andrews, R.K.; Warner, T.D.; Gardiner, E.E.; Brohi, K.; Armstrong, P.C. Loss of GPVI and GPIbα contributes to trauma-induced platelet dysfunction in severely injured patients. Blood Adv. 2020, 4, 2623–2630. [Google Scholar] [CrossRef]
- Thomas, M.R.; Storey, R.F. The role of platelets in inflammation. Thromb. Haemost. 2015, 114, 449–458. [Google Scholar] [CrossRef]
- Kutcher, M.E.; Redick, B.J.; McCreery, R.C.; Crane, I.M.; Greenberg, M.D.; Cachola, L.M.; Nelson, M.F.; Cohen, M.J. Characterization of platelet dysfunction after trauma. J. Trauma. Acute Care Surg. 2012, 73, 13–19. [Google Scholar] [CrossRef]
- Thompson, K.B.; Krispinsky, L.T.; Stark, R.J. Late immune consequences of combat trauma: A review of trauma-related immune dysfunction and potential therapies. Mil. Med. Res. 2019, 6, 11. [Google Scholar] [CrossRef]
Variables | NDN n = 11,602 | DN n = 1750 | SIH n = 716 | DH n = 1412 | DN vs. NDN | SIH vs. NDN | DH vs. NDN |
---|---|---|---|---|---|---|---|
p | p | p | |||||
Sex | <0.001 | 0.630 | <0.001 | ||||
Male, n (%) | 6553 (56.5) | 816 (46.6) | 411 (57.4) | 644 (45.6) | |||
Female, n (%) | 5049 (43.5) | 934 (53.4) | 305 (42.6) | 768 (54.4) | |||
Age, years | 54.0 ± 19.5 | 69.2 ± 11.9 | 56.7 ± 18.3 | 67.0 ± 12.5 | <0.001 | <0.001 | <0.001 |
Co-morbidities | |||||||
CVA, n (%) | 377 (3.2) | 190 (10.9) | 21 (2.9) | 130 (9.2) | <0.001 | 0.642 | <0.001 |
HTN, n (%) | 2897 (25.0) | 1259 (71.9) | 191 (26.7) | 890 (63.0) | <0.001 | 0.307 | <0.001 |
CAD, n (%) | 382 (3.3) | 215 (12.3) | 24 (3.4) | 150 (10.6) | <0.001 | 0.931 | <0.001 |
CHF, n (%) | 66 (0.6) | 29 (1.7) | 2 (0.3) | 31 (2.2) | <0.001 | 0.310 | <0.001 |
ESRD, n (%) | 158 (1.4) | 107 (6.1) | 8 (1.1) | 91 (6.4) | <0.001 | 0.582 | <0.001 |
GCS, median (IQR) | 15 (15–15) | 15 (15–15) | 15 (7–15) | 15 (15–15) | 0.001 | <0.001 | <0.001 |
ISS, median (IQR) | 9 (4–13) | 9 (4–14) | 15 (7–15) | 9 (8–16) | 0.004 | <0.001 | <0.001 |
<16, n (%) | 9049 (78.0) | 1320 (75.4) | 356 (49.7) | 979 (69.3) | 0.016 | <0.001 | <0.001 |
16–24, n (%) | 1830 (15.8) | 344 (19.7) | 135 (18.9) | 294 (20.8) | <0.001 | 0.029 | <0.001 |
≥25, n (%) | 723 (6.2) | 86 (4.9) | 225 (31.4) | 139 (9.8) | 0.031 | <0.001 | <0.001 |
Monocytes (count/μL) | 547 ± 314 | 535 ± 302 | 598 ± 411 | 547 ± 338 | 0.143 | <0.001 | 0.975 |
Neutrophils (count/μL) | 8801 ± 4452 | 8293 ± 4475 | 9704 ± 5484 | 8784 ± 4296 | <0.001 | <0.001 | 0.892 |
Lymphocytes (count/μL) | 1757 ± 1043 | 1626 ± 950 | 2017 ± 1483 | 1666 ± 1053 | <0.001 | <0.001 | 0.002 |
Platelets (count/μL) | 2,251,163 ± 72,944 | 216,457 ± 70,588 | 2,231,905 ± 105,612 | 216,205 ± 66,483 | <0.001 | 0.664 | <0.001 |
MLR | 0.4 ± 0.5 | 0.4 ± 0.4 | 0.4 ± 0.4 | 0.4 ± 0.4 | 0.343 | 0.841 | 0.155 |
NLR | 7.1 ± 7.3 | 7.1 ± 9.1 | 7.6 ± 8.9 | 7.5 ± 7.0 | 0.949 | 0.095 | 0.059 |
PLR | 165.3 ± 123.4 | 169.9 ± 157.4 | 165.5 ± 290.3 | 167.8 ± 108.6 | 0.165 | 0.978 | 0.477 |
Hospital stay (days) | 9.2 ± 9.7 | 9.9 ± 10.9 | 14.9 ± 16.5 | 12.1 ± 12.7 | 0.756 | <0.001 | <0.001 |
Mortality, n (%) | 244 (2.1) | 54 (3.1) | 133 (18.6) | 68(4.8) | 0.009 | <0.001 | <0.001 |
Mortality, OR (95%CI) | 1.48 (1.10–2.00) | 10.62 (8.46–13.33) | 2.36 (1.79–3.10) |
Propensity Score Matched—Patient Cohort | ||||||||
---|---|---|---|---|---|---|---|---|
Adjusted Variables | DN n = 1700 | NDN n = 1700 | OR (95%CI) | p | Standardized Difference | |||
Male, n (%) | 787 | (46.3) | 787 | (46.3) | 1.00 | (0.87–1.14) | 1.000 | 0.00% |
Age, years | 69.3 | ±12.0 | 69.3 | ±12.0 | - | 0.974 | 0.11% | |
CVA, n (%) | 160 | (9.4) | 160 | (9.4) | 1.00 | (0.79–1.26) | 1.000 | 0.00% |
HTN, n (%) | 1216 | (71.5) | 1216 | (71.5) | 1.00 | (0.86–1.16) | 1.000 | 0.00% |
CAD, n (%) | 188 | (11.1) | 188 | (11.1) | 1.00 | (0.81–1.24) | 1.000 | 0.00% |
CHF, n (%) | 18 | (1.1) | 18 | (1.1) | 1.00 | (0.52–1.93) | 1.000 | 0.00% |
ESRD, n (%) | 78 | (4.6) | 78 | (4.6) | 1.00 | (0.73–1.38) | 1.000 | 0.00% |
Outcome variables | ||||||||
Monocytes (count/μL) | 536 | ±304 | 527 | ±286 | - | 0.367 | - | |
Neutrophils (count/μL) | 8296 | ±4501 | 8464 | ±4106 | - | 0.253 | - | |
Lymphocytes (count/μL) | 1633 | ±955 | 1671 | ±1001 | - | 0.253 | - | |
Platelets (count/μL) | 216,683 | ±70,888 | 218,397 | ±71,777 | - | 0.484 | - |
Propensity Score Matched—Patient Cohort | ||||||||
---|---|---|---|---|---|---|---|---|
Adjusted Variables | SIH n = 716 | NDN n = 716 | OR (95%CI) | p | Standardized Difference | |||
Male, n (%) | 411 | (57.4) | 411 | (57.4) | 1.00 | (0.81–1.23) | 1.000 | 0.00% |
Age, years | 56.7 | ±18.3 | 56.7 | ±18.3 | - | 0.990 | 0.07% | |
CVA, n (%) | 21 | (2.9) | 21 | (2.9) | 1.00 | (0.54–1.85) | 1.000 | 0.00% |
HTN, n (%) | 191 | (26.7) | 197 | (26.7) | 1.00 | (0.79–1.26) | 1.000 | 0.00% |
CAD, n (%) | 24 | (3.4) | 24 | (3.4) | 1.00 | (0.56–1.78) | 1.000 | 0.00% |
CHF, n (%) | 2 | (0.3) | 2 | (0.3) | 1.00 | (0.14–7.12) | 1.000 | 0.00% |
ESRD, n (%) | 8 | (1.1) | 8 | (1.1) | 1.00 | (0.37–2.68) | 1.000 | 0.00% |
Outcome variables | ||||||||
Monocytes (count/μL) | 594 | ±411 | 543 | ±338 | - | 0.011 | - | |
Neutrophils (count/μL) | 9704 | ±5484 | 8846 | ±4506 | - | 0.001 | - | |
Lymphocytes (count/μL) | 2017 | ±1483 | 1756 | ±1081 | - | <0.001 | - | |
Platelets (count/μL) | 223,905 | ±105,612 | 220,062 | ±70,281 | - | 0.418 | - |
Propensity Score Matched—Patient Cohort | ||||||||
---|---|---|---|---|---|---|---|---|
Adjusted Variables | DH n = 1376 | NDN n = 1376 | OR (95%CI) | p | Standardized Difference | |||
Male, n (%) | 629 | (45.7) | 629 | (45.7) | 1.00 | (0.86–1.16) | 1.000 | 0.00% |
Age, years | 66.9 | ±12.6 | 66.9 | ±12.6 | - | 0.978 | −0.10% | |
CVA, n (%) | 119 | (8.6) | 119 | (8.6) | 1.00 | (0.77–1.31) | 1.000 | 0.00% |
HTN, n (%) | 858 | (62.4) | 858 | (62.4) | 1.00 | (0.86–1.17) | 1.000 | 0.00% |
CAD, n (%) | 125 | (9.1) | 125 | (9.1) | 1.00 | (0.77–1.30) | 1.000 | 0.00% |
CHF, n (%) | 18 | (1.3) | 18 | (1.3) | 1.00 | (0.52–1.93) | 1.000 | 0.00% |
ESRD, n (%) | 68 | (4.9) | 68 | (4.9) | 1.00 | (0.71–1.41) | 1.000 | 0.00% |
Outcome variables | ||||||||
Monocytes (count/μL) | 546 | ±338 | 532 | ±291 | - | 0.237 | - | |
Neutrophils (count/μL) | 8785 | ±4308 | 8672 | ±4382 | - | 0.494 | - | |
Lymphocytes (count/μL) | 1671 | ±1063 | 1686 | ±983 | - | 0.707 | - | |
Platelets (count/μL) | 215,866 | ±66,325 | 216,465 | ±70,705 | - | 0.819 | - |
Propensity Score Matched—Patient Cohort | ||||||||
---|---|---|---|---|---|---|---|---|
Adjusted Variables | SIH n = 119 | DH n = 119 | OR (95%CI) | p | Standardized Difference | |||
Male, n (%) | 74 | (62.2) | 74 | (62.2) | 1.00 | (0.59–1.69) | 1.000 | 0.00% |
Age, years | 60.8 | ±14.1 | 60.9 | ±14.1 | - | 0.967 | −0.54% | |
CVA, n (%) | 4 | (3.4) | 4 | (3.4) | 1.00 | (0.24–4.10) | 1.000 | 0.00% |
HTN, n (%) | 34 | (28.6) | 34 | (28.6) | 1.00 | (0.57–1.76) | 1.000 | 0.00% |
CAD, n (%) | 3 | (2.5) | 3 | (2.5) | 1.00 | (0.20–5.06) | 1.000 | 0.00% |
CHF, n (%) | 0 | (0.0) | 0 | (0.0) | - | - | 0.00% | |
ESRD, n (%) | 0 | (0.0) | 0 | (0.0) | - | - | 0.00% | |
Outcome variables | ||||||||
Monocytes (count/μL) | 583 | ±451 | 543 | ±403 | - | 0.468 | - | |
Neutrophils (count/μL) | 9658 | ±5188 | 9110 | ±4704 | - | 0.395 | - | |
Lymphocytes (count/μL) | 1870 | ±1178 | 1837 | ±1047 | - | 0.823 | - | |
Platelets (count/μL) | 244,479 | ±204,921 | 220,647 | ±74,245 | - | 0.234 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rau, C.-S.; Kuo, S.C.-H.; Tsai, C.-H.; Chou, S.-E.; Su, W.-T.; Hsu, S.-Y.; Hsieh, C.-H. Elevation of White Blood Cell Subtypes in Adult Trauma Patients with Stress-Induced Hyperglycemia. Diagnostics 2023, 13, 3451. https://doi.org/10.3390/diagnostics13223451
Rau C-S, Kuo SC-H, Tsai C-H, Chou S-E, Su W-T, Hsu S-Y, Hsieh C-H. Elevation of White Blood Cell Subtypes in Adult Trauma Patients with Stress-Induced Hyperglycemia. Diagnostics. 2023; 13(22):3451. https://doi.org/10.3390/diagnostics13223451
Chicago/Turabian StyleRau, Cheng-Shyuan, Spencer Chia-Hao Kuo, Ching-Hua Tsai, Sheng-En Chou, Wei-Ti Su, Shiun-Yuan Hsu, and Ching-Hua Hsieh. 2023. "Elevation of White Blood Cell Subtypes in Adult Trauma Patients with Stress-Induced Hyperglycemia" Diagnostics 13, no. 22: 3451. https://doi.org/10.3390/diagnostics13223451
APA StyleRau, C.-S., Kuo, S. C.-H., Tsai, C.-H., Chou, S.-E., Su, W.-T., Hsu, S.-Y., & Hsieh, C.-H. (2023). Elevation of White Blood Cell Subtypes in Adult Trauma Patients with Stress-Induced Hyperglycemia. Diagnostics, 13(22), 3451. https://doi.org/10.3390/diagnostics13223451