No Association between SARS-CoV-2 Infection and the Polymorphism of the Toll-like Receptor 7 (TLR7) Gene in Female Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection of Participants
2.2. Inclusion Criteria
2.3. Exclusion Criteria
2.4. Calculation of Sample Size
2.5. DNA Isolation and Genotyping
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lai, C.C.; Shih, T.P.; Ko, W.C.; Tang, H.J.; Hsueh, P.R. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int. J. Antimicrob. Agents 2020, 55, 105924. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.G.; Javed, A.; Akter, S.; Saha, S. SARS-CoV-2 host diversity: An update of natural infections and experimental evidence. J. Microbiol. Immunol. Infect. 2021, 54, 175–181. [Google Scholar] [CrossRef]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Hu, B.; Hu, C.; Zhu, F.; Liu, X.; Zhang, J.; Wang, B.; Xiang, H.; Cheng, Z.; Xiong, Y.; et al. Clinical Characteristics of 138 Hospitalized Patients with 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA 2020, 323, 1061–1069. [Google Scholar] [CrossRef]
- Tiecco, G.; Storti, S.; Arsuffi, S.; Antoni, M.D.; Focà, E.; Castelli, F.; Quiros-Roldan, E. Omicron BA.2 Lineage, the “Stealth” Variant: Is It Truly a Silent Epidemic? A Literature Review. Int. J. Mol. Sci. 2022, 23, 7315. [Google Scholar] [CrossRef]
- Hu, B.; Huang, S.; Yin, L. The cytokine storm and COVID-19. J. Med. Virol. 2021, 93, 250–256. [Google Scholar] [CrossRef]
- Ragab, D.; Eldin, H.S.; Taeimah, M.; Khattab, R.; Salem, R. The COVID-19 Cytokine Storm; What We Know So Far. Front. Immunol. 2020, 11, 1446. [Google Scholar] [CrossRef] [PubMed]
- Akira, S.; Uematsu, S.; Takeuchi, O. Pathogen recognition and innate immunity. Cell 2006, 124, 783–801. [Google Scholar] [CrossRef]
- Kawasaki, T.; Kawai, T. Toll-Like Receptor Signaling Pathways. Front. Immunol. 2014, 5, 461. [Google Scholar] [CrossRef]
- Misch, E.A.; Hawn, T.R. Toll-like receptor polymorphisms and susceptibility to human disease. Clin. Sci. 2008, 114, 347–360. [Google Scholar] [CrossRef]
- Dai, J.; Wang, Y.; Wang, H.; Gao, Z.; Wang, Y.; Fang, M.; Shi, S.; Zhang, P.; Wang, H.; Su, Y.; et al. Toll-Like Receptor Signaling in Severe Acute Respiratory Syndrome Coronavirus 2-Induced Innate Immune Responses and the Potential Application Value of Toll-Like Receptor Immunomodulators in Patients with Coronavirus Disease 2019. Front. Microbiol. 2022, 13, 948770. [Google Scholar] [CrossRef]
- Zheng, M.; Karki, R.; Williams, E.P.; Yang, D.; Fitzpatrick, E.; Vogel, P.; Jonsson, C.B.; Kanneganti, T.-D. TLR2 senses the SARS-CoV-2 envelope protein to produce inflammatory cytokines. Nat. Immunol. 2021, 22, 829–838. [Google Scholar] [CrossRef]
- Liu, Z.-M.; Yang, M.-H.; Yu, K.; Lian, Z.-X.; Deng, S.-L. Toll-like receptor (TLRs) agonists and antagonists for COVID-19 treatments. Front. Pharmacol. 2022, 13, 989664. [Google Scholar] [CrossRef]
- Mantovani, S.; Daga, S.; Fallerini, C.; Baldassarri, M.; Benetti, E.; Picchiotti, N.; Fava, F.; Gallì, A.; Zibellini, S.; Bruttini, M.; et al. Rare variants in Toll-like receptor 7 results in functional impairment and downregulation of cytokine-mediated signaling in COVID-19 patients. Genes Immun. 2022, 23, 51–56. [Google Scholar] [CrossRef] [PubMed]
- van der Made, C.I.; Netea, M.G.; van der Veerdonk, F.L.; Hoischen, A. Clinical implications of host genetic variation and susceptibility to severe or critical COVID-19. Genome Med. 2022, 14, 96. [Google Scholar] [CrossRef] [PubMed]
- Khanmohammadi, S.; Rezaei, N. Role of Toll-like receptors in the pathogenesis of COVID-19. J. Med. Virol. 2021, 93, 2735–2739. [Google Scholar] [CrossRef] [PubMed]
- Novelli, G.; Biancolella, M.; Mehrian-Shai, R.; Colona, V.L.; Brito, A.F.; Grubaugh, N.D.; Vasiliou, V.; Luzzatto, L.; Reichardt, J.K.V. COVID-19 one year into the pandemic: From genetics and genomics to therapy, vaccination, and policy. Hum. Genom. 2021, 15, 27. [Google Scholar] [CrossRef]
- Petes, C.; Odoardi, N.; Gee, K. The Toll for Trafficking: Toll-Like Receptor 7 Delivery to the Endosome. Front. Immunol. 2017, 8, 1075. [Google Scholar] [CrossRef]
- van der Made, C.I.; Simons, A.; Schuurs-Hoeijmakers, J.; van den Heuvel, G.; Mantere, T.; Kersten, S.; van Deuren, R.C.; Steehouwer, M.; van Reijmersdal, S.V.; Jaeger, M.; et al. Presence of Genetic Variants among Young Men with Severe COVID-19. JAMA 2020, 324, 663–673. [Google Scholar] [CrossRef]
- Solanich, X.; Vargas-Parra, G.; van der Made, C.I.; Simons, A.; Schuurs-Hoeijmakers, J.; Antolí, A.; Del Valle, J.; Rocamora-Blanch, G.; Setién, F.; Esteller, M.; et al. Genetic Screening for TLR7 Variants in Young and Previously Healthy Men with Severe COVID-19. Front. Immunol. 2021, 12, 719115. [Google Scholar] [CrossRef]
- Peckham, H.; de Gruijter, N.M.; Raine, C.; Radziszewska, A.; Ciurtin, C.; Wedderburn, L.R.; Rosser, E.C.; Webb, K.; Deakin, C.T. Male sex identified by global COVID-19 meta-analysis as a risk factor for death and ITU admission. Nat. Commun. 2020, 11, 6317. [Google Scholar] [CrossRef] [PubMed]
- Zaher, K.; Basingab, F.; Alrahimi, J.; Basahel, K.; Aldahlawi, A. Gender Differences in Response to COVID-19 Infection and Vaccination. Biomedicines 2023, 11, 1677. [Google Scholar] [CrossRef] [PubMed]
- Peters, S.A.E.; MacMahon, S.; Woodward, M. Obesity as a risk factor for COVID-19 mortality in women and men in the UK biobank: Comparisons with influenza/pneumonia and coronary heart disease. Diabetes Obes. Metab. 2021, 23, 258–262. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Mei, H.; Zheng, T.; Fu, Q.; Zhang, Y.; Buka, S.; Yao, X.; Tang, Z.; Zhang, X.; Qiu, L.; et al. Pregnant women with COVID-19 and risk of adverse birth outcomes and maternal-fetal vertical transmission: A population-based cohort study in Wuhan, China. BMC Med. 2020, 18, 330. [Google Scholar] [CrossRef] [PubMed]
- Tsukahara, Y.; Hieda, Y.; Takayanagi, S.; Macznik, A. Risk Factors for Contracting COVID-19 and Changes in Menstrual and Sleep Cycles in Japanese Female Athletes during the COVID-19 Pandemic. Sports 2022, 10, 114. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.; Sohn, M. How to cope with emerging viral diseases: Lessons from South Korea’s strategy for COVID-19, and collateral damage to cardiometabolic health. Lancet Reg. Health West. Pac. 2023, 30, 100581. [Google Scholar] [CrossRef]
- van der Sluis, R.M.; Cham, L.B.; Gris-Oliver, A.; Gammelgaard, K.R.; Pedersen, J.G.; Idorn, M.; Ahmadov, U.; Hernandez, S.S.; Cémalovic, E.; Godsk, S.H.; et al. TLR2 and TLR7 mediate distinct immunopathological and antiviral plasmacytoid dendritic cell responses to SARS-CoV-2 infection. EMBO J. 2022, 41, e109622. [Google Scholar] [CrossRef]
- Dyavar, S.R.; Singh, R.; Emani, R.; Pawar, G.P.; Chaudhari, V.D.; Podany, A.T.; Avedissian, S.N.; Fletcher, C.V.; Salunke, D.B. Role of toll-like receptor 7/8 pathways in regulation of interferon response and inflammatory mediators during SARS-CoV2 infection and potential therapeutic options. Biomed. Pharmacother. 2021, 141, 111794. [Google Scholar] [CrossRef]
- Bomba, L.; Walter, K.; Soranzo, N. The impact of rare and low-frequency genetic variants in common disease. Genome Biol. 2017, 18, 77. [Google Scholar] [CrossRef]
- Debnath, M.; Banerjee, M.; Berk, M. Genetic gateways to COVID-19 infection: Implications for risk, severity, and outcomes. FASEB J. 2020, 34, 8787–8795. [Google Scholar] [CrossRef]
- Kim, Y.C.; Jeong, B.H. Ethnic variation in risk genotypes based on single nucleotide polymorphisms (SNPs) of the interferon-inducible transmembrane 3 (IFITM3) gene, a susceptibility factor for pandemic 2009 H1N1 influenza A virus. Immunogenetics 2020, 72, 447–453. [Google Scholar] [CrossRef]
- Kim, Y.C.; Jeong, B.H. Strong Correlation between the Case Fatality Rate of COVID-19 and the rs6598045 Single Nucleotide Polymorphism (SNP) of the Interferon-Induced Transmembrane Protein 3 (IFITM3) Gene at the Population-Level. Genes 2020, 12, 42. [Google Scholar] [CrossRef]
- Kim, Y.C.; Jeong, M.J.; Jeong, B.H. Strong association of regulatory single nucleotide polymorphisms (SNPs) of the IFITM3 gene with influenza H1N1 2009 pandemic virus infection. Cell. Mol. Immunol. 2020, 17, 662–664. [Google Scholar] [CrossRef]
- Kim, Y.C.; Jeong, M.J.; Jeong, B.H. Genetic association between the rs12252 SNP of the interferon-induced transmembrane protein gene and influenza A virus infection in the Korean population. Mol. Cell. Toxicol. 2021, 17, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.C.; Won, S.Y.; Jeong, B.H. The first association study of single-nucleotide polymorphisms (SNPs) of the IFITM1 gene with influenza H1N1 2009 pandemic virus infection. Mol. Cell. Toxicol. 2021, 17, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Wei, W.; Yun, Y. Upregulation of TLR7 and TLR3 gene expression in the lung of respiratory syncytial virus infected mice. Wei Sheng Wu Xue Bao 2009, 49, 239–245. [Google Scholar]
- Alseoudy, M.M.; Elgamal, M.; Abdelghany, D.A.; Borg, A.M.; El-Mesery, A.; Elzeiny, D.; Hammad, M.O. Prognostic impact of toll-like receptors gene polymorphism on outcome of COVID-19 pneumonia: A case-control study. Clin. Immunol. 2022, 235, 108929. [Google Scholar] [CrossRef] [PubMed]
- El-Hefnawy, S.M.; Eid, H.A.; Mostafa, R.G.; Soliman, S.S.; Omar, T.A.; Azmy, R.M. COVID-19 susceptibility, severity, clinical outcome and Toll-like receptor (7) mRNA expression driven by TLR7 gene polymorphism (rs3853839) in middle-aged individuals without previous comorbidities. Gene Rep. 2022, 27, 101612. [Google Scholar] [CrossRef]
- Patel, V.K.; Paudel, K.R.; Shukla, S.D.; Liu, G.; Oliver, B.G.; Hansbro, P.M.; Dua, K. Toll-like receptors, innate immune system, and lung diseases: A vital trilateral association. EXCLI J. 2022, 21, 519–523. [Google Scholar] [CrossRef]
- Møller-Larsen, S.; Nyegaard, M.; Haagerup, A.; Vestbo, J.; Kruse, T.A.; Børglum, A.D. Association analysis identifies TLR7 and TLR8 as novel risk genes in asthma and related disorders. Thorax 2008, 63, 1064–1069. [Google Scholar] [CrossRef] [PubMed]
- Roponen, M.; Yerkovich, S.T.; Hollams, E.; Sly, P.D.; Holt, P.G.; Upham, J.W. Toll-like receptor 7 function is reduced in adolescents with asthma. Eur. Respir. J. 2010, 35, 64–71. [Google Scholar] [CrossRef]
- Zhang, Q.; Qian, F.; Zhou, L.; Wei, G.; Wang, Y.; Hu, Z.; Jin, G.; Bai, J.; Yin, K. Polymorphisms of TLR7 and TLR8 associated with risk of asthma and asthma-related phenotypes in a southeastern Chinese Han population. J. Nanjing Med. Univ. 2009, 23, 25–32. [Google Scholar] [CrossRef]
- Nilsson, D.; Andiappan, A.K.; Halldén, C.; De Yun, W.; Säll, T.; Tim, C.F.; Cardell, L.-O. Toll-like receptor gene polymorphisms are associated with allergic rhinitis: A case control study. BMC Med. Genet. 2012, 13, 66. [Google Scholar] [CrossRef]
- Kennedy, R.B.; Ovsyannikova, I.G.; Haralambieva, I.H.; O’Byrne, M.M.; Jacobson, R.M.; Pankratz, V.S.; Poland, G.A. Multigenic control of measles vaccine immunity mediated by polymorphisms in measles receptor, innate pathway, and cytokine genes. Vaccine 2012, 30, 2159–2167. [Google Scholar] [CrossRef] [PubMed]
- Stark, J.R.; Wiklund, F.; Grönberg, H.; Schumacher, F.; Sinnott, J.A.; Stampfer, M.J.; Mucci, L.A.; Kraft, P. Toll-like receptor signaling pathway variants and prostate cancer mortality. Cancer Epidemiol. Biomark. Prev. 2009, 18, 1859–1863. [Google Scholar] [CrossRef]
- Alhabibi, A.M.; Hassan, A.S.; Elbaky, N.M.A.; Eid, H.A.; Khalifa, M.; Wahab, M.A.; Althoqapy, A.A.; Abdou, A.E.; Zakaria, D.M.; Nassef, E.M.; et al. Impact of Toll-Like Receptor 2 and 9 Gene Polymorphisms on COVID-19: Susceptibility, Severity, and Thrombosis. J. Inflamm. Res. 2023, 16, 665–675. [Google Scholar] [CrossRef]
- Alaa, A.; Sarhan, N.; El-Ansary, M.G.L.; Bazan, N.S.; Farouk, K.; Ismail, R.S.; Schalaan, M.F.; Abd-Allah, A.R.A. Association between genetic polymorphism, severity, and treatment response among COVID-19 infected Egyptian patients. Front. Pharmacol. 2023, 14, 1209286. [Google Scholar] [CrossRef]
- Salamaikina, S.; Karnaushkina, M.; Korchagin, V.; Litvinova, M.; Mironov, K.; Akimkin, V. TLRs Gene Polymorphisms Associated with Pneumonia before and during COVID-19 Pandemic. Diagnostics 2022, 13, 121. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Healthy Controls | COVID-19 Patients | p-Value |
---|---|---|---|
Number, n | 90 | 87 | |
Age, median (IQR) | 61.0 (49.2–71.7) | 55.0 (45–68) | 0.11 |
Primer Name | Forward | Reverse | Amp. Size | Ann. Temp. |
---|---|---|---|---|
CDS 1 | GGTTGGGGATGCTGTTTAGA | GTAGGGACGGCTGTGACATT | 806 bp | 58 °C |
CDS 2 | TCTACCTGGGCCAAAACTGT | CAGGACCTGGGGTTCATAACT | 851 bp | 58 °C |
CDS 3 | TGAAGTTGGCTTCTGCTCAA | CAGTGGTCAGTTGGTTGTGG | 821 bp | 58 °C |
CDS 4 | CCTGGAAACTTTGGACCTCA | GCTGTATGCTCTGGGAAAGG | 746 bp | 58 °C |
CDS 5 | GGCCAAGATAAAGGGGTATCA | CAAAACACGCTTTTGGTGTG | 619 bp | 58 °C |
Variant | Genotype Frequency, n (%) | p-Value | Allele Frequency, n (%) | p-Value | HWE | ||||
---|---|---|---|---|---|---|---|---|---|
c.20330G>A rs864058 | GG | GA | AA | 1 | G | A | 1 | ||
Controls | 89 (98.88) | 1 (1.11) | 0 (0) | 179 (99.44) | 1 (0.55) | 0.9577 | |||
Patients | 86 (98.85) | 1 (1.14) | 0 (0) | 173 (99.42) | 1 (0.57) | 0.9570 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zayed, M.; Kim, Y.-C.; Lee, C.-S.; Jeong, B.-H. No Association between SARS-CoV-2 Infection and the Polymorphism of the Toll-like Receptor 7 (TLR7) Gene in Female Population. Diagnostics 2023, 13, 3510. https://doi.org/10.3390/diagnostics13233510
Zayed M, Kim Y-C, Lee C-S, Jeong B-H. No Association between SARS-CoV-2 Infection and the Polymorphism of the Toll-like Receptor 7 (TLR7) Gene in Female Population. Diagnostics. 2023; 13(23):3510. https://doi.org/10.3390/diagnostics13233510
Chicago/Turabian StyleZayed, Mohammed, Yong-Chan Kim, Chang-Seop Lee, and Byung-Hoon Jeong. 2023. "No Association between SARS-CoV-2 Infection and the Polymorphism of the Toll-like Receptor 7 (TLR7) Gene in Female Population" Diagnostics 13, no. 23: 3510. https://doi.org/10.3390/diagnostics13233510
APA StyleZayed, M., Kim, Y. -C., Lee, C. -S., & Jeong, B. -H. (2023). No Association between SARS-CoV-2 Infection and the Polymorphism of the Toll-like Receptor 7 (TLR7) Gene in Female Population. Diagnostics, 13(23), 3510. https://doi.org/10.3390/diagnostics13233510