Analysis of Periprocedural X-ray Exposure in Transarterial Radioembolization with Glass or Resin Microspheres
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Technical Details
2.3. Experience of the Radiologist
2.4. Procedures
2.5. Statistical Analysis
3. Results
3.1. Patient Characteristics
Differences in DAP, FT, and CA between Weight Groups
3.2. TARE-EVA
Impact of the Experience of the Radiologist
3.3. TARE
3.3.1. Impact of the Experience of the Radiologist
3.3.2. Resin Spheres vs. Glass Spheres
3.3.3. Impact of TARE-EVA and TARE Performed by the Same Radiologist
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Padovani, R.; Le Heron, J.; Cruz-Suarez, R.; Duran, A.; Lefaure, C.; Miller, D.L.; Sim, H.K.; Vano, E.; Rehani, M.; Czarwinski, R. International Project on Individual Monitoring and Radiation Exposure Levels in Interventional Cardiology. Radiat. Prot. Dosimetry 2011, 144, 437–441. [Google Scholar] [CrossRef] [PubMed]
- Kaatsch, H.L.; Schneider, J.; Brockmann, C.; Brockmann, M.A.; Overhoff, D.; Becker, B.V.; Waldeck, S. Radiation Exposure during Angiographic Interventions in Interventional Radiology—Risk and Fate of Advanced Procedures. Int. J. Radiat. Biol. 2022, 98, 865–872. [Google Scholar] [CrossRef]
- Miller, D.L.; Balter, S.; Cole, P.E.; Lu, H.T.; Schueler, B.A.; Geisinger, M.; Berenstein, A.; Albert, R.; Georgia, J.D.; Noonan, P.T.; et al. Radiation Doses in Interventional Radiology Procedures: The RAD-radiologist Study Part I: Overall Measures of Dose. J. Vasc. Interv. Radiol. 2003, 14, 711–727. [Google Scholar] [CrossRef] [PubMed]
- Jacob, S.; Boveda, S.; Bar, O.; Brézin, A.; Maccia, C.; Laurier, D.; Bernier, M.-O. Interventional Cardiologists and Risk of Radiation-Induced Cataract: Results of a French Multicenter Observational Study. Int. J. Cardiol. 2013, 167, 1843–1847. [Google Scholar] [CrossRef] [PubMed]
- Rajaraman, P.; Doody, M.M.; Yu, C.L.; Preston, D.L.; Miller, J.S.; Sigurdson, A.J.; Freedman, D.M.; Alexander, B.H.; Little, M.P.; Miller, D.L.; et al. Journal club: Cancer Risks in U.S. Radiologic Technologists Working With Fluoroscopically Guided Interventional Procedures, 1994–2008. Am. J. Roentgenol. 2016, 206, 1101–1109. [Google Scholar] [CrossRef]
- Lee, W.J.; Bang, Y.J.; Cha, E.S.; Kim, Y.M.; Cho, S.B. Lifetime Cancer Risks from Occupational Radiation Exposure among Workers at Interventional Radiology Departments. Int. Arch. Occup. Environ. Health 2021, 94, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Mahnken, A.H.; Boullosa Seoane, E.; Cannavale, A.; De Haan, M.W.; Dezman, R.; Kloeckner, R.; O’Sullivan, G.; Ryan, A.; Tsoumakidou, G. CIRSE Clinical Practice Manual. Cardiovasc. Intervent. Radiol. 2021, 44, 1323–1353. [Google Scholar] [CrossRef]
- Vano, E.; Sanchez Casanueva, R.; Fernandez Soto, J.M.; Bartal, G. Challenges in Occupational Dosimetry for Interventional Radiologists. Cardiovasc. Intervent. Radiol. 2021, 44, 866–870. [Google Scholar] [CrossRef]
- Denecke, T.; Rühl, R.; Hildebrandt, B.; Stelter, L.; Grieser, C.; Stiepani, H.; Werk, M.; Podrabsky, P.; Plotkin, M.; Amthauer, H.; et al. Planning Transarterial Radioembolization of Colorectal Liver Metastases with Yttrium 90 Microspheres: Evaluation of a Sequential Diagnostic Approach Using Radiologic and Nuclear Medicine Imaging Techniques. Eur. Radiol. 2008, 18, 892–902. [Google Scholar] [CrossRef]
- Mulcahy, M.F.; Mahvash, A.; Pracht, M.; Montazeri, A.H.; Bandula, S.; Martin, R.C.G.; Herrmann, K.; Brown, E.; Zuckerman, D.; Wilson, G.; et al. Radioembolization With Chemotherapy for Colorectal Liver Metastases: A Randomized, Open-Label, International, Multicenter, Phase III Trial. J. Clin. Oncol. 2021, 39, 3897–3907. [Google Scholar] [CrossRef]
- Helmberger, T.; Golfieri, R.; Pech, M.; Pfammatter, T.; Arnold, D.; Cianni, R.; Maleux, G.; Munneke, G.; Pellerin, O.; Peynircioglu, B.; et al. Clinical Application of Trans-Arterial Radioembolization in Hepatic Malignancies in Europe: First Results from the Prospective Multicentre Observational Study CIRSE Registry for SIR-Spheres Therapy (CIRT). Cardiovasc. Intervent. Radiol. 2021, 44, 21–35. [Google Scholar] [CrossRef]
- Sirtex Medical Pty Ltd. User Manual SIRTEX Y90 2019. Available online: https://www.sirtex.com/media/55rprxv2/ssl-us-14-sir-spheres-microspheres-ifu-us.pdf (accessed on 13 November 2023).
- User Manual Therasphere Y90 2021. Available online: https://www.bostonscientific.com/content/dam/elabeling/pi/OTT-00221_Rev1_TheraSphere_en_s.pdf (accessed on 13 November 2023).
- Kallini, J.R.; Gabr, A.; Thorlund, K.; Balijepalli, C.; Ayres, D.; Kanters, S.; Ebrahim, S.; Mills, E.; Lewandowski, R.J.; Salem, R. Comparison of the Adverse Event Profile of TheraSphere® with SIR-Spheres® for the Treatment of Unresectable Hepatocellular Carcinoma: A Systematic Review. Cardiovasc. Intervent. Radiol. 2017, 40, 1033–1043. [Google Scholar] [CrossRef] [PubMed]
- Welsh, J.S.; Kennedy, A.S.; Thomadsen, B. Selective Internal Radiation Therapy (SIRT) for liver metastases secondary to colorectal adenocarcinoma. Int. J. Radiat. Oncol. Biol. Phys. 2006, 66 (Suppl. S2), S62–S73. [Google Scholar] [CrossRef] [PubMed]
- Pieper, C.C.; Willinek, W.A.; Thomas, D.; Ahmadzadehfar, H.; Essler, M.; Nadal, J.; Wilhelm, K.E.; Schild, H.H.; Meyer, C. Incidence and Risk Factors of Early Arterial Blood Flow Stasis during First Radioembolization of Primary and Secondary Liver Malignancy Using Resin Microspheres: An Initial Single-Center Analysis. Eur. Radiol. 2016, 26, 2779–2789. [Google Scholar] [CrossRef] [PubMed]
- Madsack, B.; Walz, M.; Westhof, J. Aktuelle Informationen zu Normen (inkl. BWG) und Richtlinien. 2017. Available online: https://www.tuvsud.com/de-de/-/media/de/aerztliche-stelle-hessen/pdf/newsletter/tuev-sued-informationen-normen-richtlinien.pdf (accessed on 13 November 2023).
- Behr-Meenen, C.; Von Boetticher, H.; Kersten, J.F.; Nienhaus, A. Radiation Protection in Interventional Radiology/Cardiology—Is State-of-the-Art Equipment Used? Int. J. Environ. Res. Public. Health 2021, 18, 13131. [Google Scholar] [CrossRef] [PubMed]
- Budošová, D.; Horváthová, M.; Bárdyová, Z.; Balázs, T. Current Trends of Radiation Protection Equipment in Interventional radiology. Radiat. Prot. Dosimetry 2022, 198, 554–559. [Google Scholar] [CrossRef] [PubMed]
- Lynskey, G.E.; Powell, D.K.; Dixon, R.G.; Silberzweig, J.E. Radiation Protection in Interventional Radiology: Survey Results of Attitudes and Use. J. Vasc. Interv. Radiol. 2013, 24, 1547–1551.e3. [Google Scholar] [CrossRef]
- Bacchim Neto, F.A.; Alves, A.F.F.; Mascarenhas, Y.M.; Giacomini, G.; Maués, N.H.P.B.; Nicolucci, P.; De Freitas, C.C.M.; Alvarez, M.; Pina, D.R.D. Efficiency of Personal Dosimetry Methods in Vascular Interventional Radiology. Phys. Med. 2017, 37, 58–67. [Google Scholar] [CrossRef]
- Stecker, M.S.; Balter, S.; Towbin, R.B.; Miller, D.L.; Vañó, E.; Bartal, G.; Angle, J.F.; Chao, C.P.; Cohen, A.M.; Dixon, R.G.; et al. Guidelines for Patient Radiation Dose Management. J. Vasc. Interv. Radiol. 2009, 20, S263–S273. [Google Scholar] [CrossRef]
- Else_ICRP_2006_catalogue_final.PDF. 2006. Available online: https://www.cirse.org/publications/standards-of-practice/cirse-documents// (accessed on 13 November 2023).
- Jonczyk, M.; Gebauer, B.; Rotzinger, R.; Schnapauff, D.; Hamm, B.; Collettini, F. Totally Implantable Central Venous Port Catheters: Radiation Exposure as a Function of Puncture Site and Operator Experience. Vivo 2018, 32, 179–184. [Google Scholar] [CrossRef]
- Xu, B.J.; Duszak, R.; McGinnis, R.S.; Stanfill, J.G.; O’Rear, J.; An, A.Q. Increased Fluoroscopy Time for Central Venous Catheter Placement by Radiology Residents versus Staff Radiologists. J. Am. Coll. Radiol. 2013, 10, 518–522. [Google Scholar] [CrossRef] [PubMed]
- Ebel, S.; Reinhardt, M.; Beeskow, A.B.; Teske, F.; Struck, M.F.; Veelken, R.; van Boemmel, F.; Berg, T.; Moche, M.; Gutberlet, M.; et al. Analysis of Patient’s X-Ray Exposure in Hepatic Chemosaturation Procedures: A Single Center Experience. BMC Med. Imaging 2022, 22, 165. [Google Scholar] [CrossRef] [PubMed]
- Zurcher, K.S.; Naidu, S.G.; Money, S.R.; Stone, W.M.; Fowl, R.J.; Knuttinen, G.; Oklu, R.; Rotellini Coltvet, L.A.; Crawford, D.; Buras, M.R.; et al. Dose Reduction Using Digital Fluoroscopy versus Digital Subtraction Angiography in Endovascular Aneurysm Repair: A Prospective Randomized Trial. J. Vasc. Surg. 2020, 72, 1938–1945. [Google Scholar] [CrossRef]
- Tsetis, D.; Uberoi, R.; Fanelli, F.; Roberston, I.; Krokidis, M.; Van Delden, O.; Radeleff, B.; Müller-Hülsbeck, S.; Szerbo-Trojanowska, M.; Lee, M.; et al. The Provision of Interventional Radiology Services in Europe: CIRSE Recommendations. Cardiovasc. Intervent. Radiol. 2016, 39, 500–506. [Google Scholar] [CrossRef]
- Curriculum-Degir-Dgnr.Pdf. 2023. Available online: https://degir.de/zertifizierung/spezialisierung-stufe-2/ (accessed on 13 November 2023).
- Geisel, D.; Powerski, M.-J.; Schnapauff, D.; Collettini, F.; Thiel, R.; Denecke, T.; Wieners, G.; Gebauer, B. No Infectious Hepatic Complications Following Radioembolization with 90Y Microspheres in Patients with Biliodigestive Anastomosis. Anticancer Res. 2014, 34, 4315–4321. [Google Scholar]
- Biederman, D.M.; Titano, J.J.; Tabori, N.E.; Pierobon, E.S.; Alshebeeb, K.; Schwartz, M.; Facciuto, M.E.; Gunasekaran, G.; Florman, S.; Fischman, A.M.; et al. Outcomes of Radioembolization in the Treatment of Hepatocellular Carcinoma with Portal Vein Invasion: Resin versus Glass Microspheres. J. Vasc. Interv. Radiol. 2016, 27, 812–821.e2. [Google Scholar] [CrossRef]
- Mohebi, R.; Karimi Galougahi, K.; Garcia, J.J.; Horst, J.; Ben-Yehuda, O.; Radhakrishnan, J.; Chertow, G.M.; Jeremias, A.; Cohen, D.J.; Cohen, D.J.; et al. Long-Term Clinical Impact of Contrast-Associated Acute Kidney Injury Following PCI. JACC Cardiovasc. Interv. 2022, 15, 753–766. [Google Scholar] [CrossRef]
- Madder, R.D.; VanOosterhout, S.; Mulder, A.; Ten Brock, T.; Clarey, A.T.; Parker, J.L.; Jacoby, M.E. Patient Body Mass Index and Physician Radiation Dose During Coronary Angiography. Circ. Cardiovasc. Interv. 2019, 12, e006823. [Google Scholar] [CrossRef]
Inexperienced IRs | Experienced IRs | p-Value | |
---|---|---|---|
FT in TARE-EVA (min) | 31.7 ± 6.4 | 14.9 ± 1.2 | <0.05 |
FT in TARE (min) | 20.3 ± 6.6 | 11.2 ± 0.7 | 0.117 |
DAP in TARE-EVA (µGy · m2) | 13,883 ± 2180 | 11,298 ± 2180 | <0.05 |
DAP in TARE (µGy · m2) | 6765 ± 1644 | 3462 ± 548 | <0.05 |
Contrast agent in TARE-EVA (mL) | 64.4 ± 6.4 | 58.3 ± 3 | 0.489 |
Contrast agent in TARE (mL) | 46.2 ± 6.2 | 36.9 ± 1.8 | 0.211 |
Resin Spheres | Glass Spheres | p-Value | |
---|---|---|---|
DAP (µGy · m2) | 3286 ± 479 | 4276 ± 911 | 0.133 |
FT (min) | 14.3 ± 1.6 | 10.6 ± 1.1 | <0.05 |
Contrast agent (mL) | 43 ± 2.2 | 36.3 ± 2.1 | <0.05 |
Different IRs | Same IR | p-Value | |
---|---|---|---|
DAP (µGy · m2) | 4700 ± 743 | 2693 ± 186 | <0.05 |
FT (min) | 14.5 ± 1.3 | 10.9 ± 1 | <0.05 |
Contrast agent (mL) | 41.6 ± 2.5 | 35.5 ± 1.9 | 0.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ehrengut, C.; Vogt, J.; Leonhardi, J.; Carabenciov, E.; Teske, F.; Boemmel, F.v.; Berg, T.; Seehofer, D.; Lincke, T.; Sabri, O.; et al. Analysis of Periprocedural X-ray Exposure in Transarterial Radioembolization with Glass or Resin Microspheres. Diagnostics 2023, 13, 3609. https://doi.org/10.3390/diagnostics13243609
Ehrengut C, Vogt J, Leonhardi J, Carabenciov E, Teske F, Boemmel Fv, Berg T, Seehofer D, Lincke T, Sabri O, et al. Analysis of Periprocedural X-ray Exposure in Transarterial Radioembolization with Glass or Resin Microspheres. Diagnostics. 2023; 13(24):3609. https://doi.org/10.3390/diagnostics13243609
Chicago/Turabian StyleEhrengut, Constantin, Johanna Vogt, Jakob Leonhardi, Emma Carabenciov, Felix Teske, Florian van Boemmel, Thomas Berg, Daniel Seehofer, Thomas Lincke, Osama Sabri, and et al. 2023. "Analysis of Periprocedural X-ray Exposure in Transarterial Radioembolization with Glass or Resin Microspheres" Diagnostics 13, no. 24: 3609. https://doi.org/10.3390/diagnostics13243609
APA StyleEhrengut, C., Vogt, J., Leonhardi, J., Carabenciov, E., Teske, F., Boemmel, F. v., Berg, T., Seehofer, D., Lincke, T., Sabri, O., Gößmann, H., Denecke, T., & Ebel, S. (2023). Analysis of Periprocedural X-ray Exposure in Transarterial Radioembolization with Glass or Resin Microspheres. Diagnostics, 13(24), 3609. https://doi.org/10.3390/diagnostics13243609