Adult Male Hypogonadism: A Laboratory Medicine Perspective on Its Diagnosis and Management
Abstract
:1. Introduction
2. Causes of Male Hypogonadism
COVID-19 Infection and Testosterone
3. Factors Affecting the Measurement of Total Testosterone Levels
3.1. Biological Variation of T Levels
3.2. Analytical Variation
3.2.1. Total Testosterone Assays
3.2.2. Sex Hormone-Binding Globulin (SHBG) Assays and Calculated Free Testosterone (cFT)
4. Laboratory Evaluation/Diagnosis of Male Hypogonadism
5. Therapeutic Intervention and Thresholds for Monitoring TRT in Male Hypogonadism
6. Conclusions
7. Key Take-Home Points in the Interpretation of Serum Total Testosterone Levels (Based on the Recent SfE/ACB Joint Statement [56,86])
- Patients are likely to have hypogonadism if they have suggestive clinical findings, two consecutive (>2 weeks apart) morning (<11:00 a.m.) levels of <8 nmol/L (albeit cross-referenced with local assay bias). T levels > 12 nmol/L makes a diagnosis of hypogonadism unlikely (including one level > 12 nmol/L even if the other results are lower). Morning fasting levels in the 8–12 nmol/L range may occur in eugonadal or hypogonadal subjects and thus require further clinical assessment/investigation.
- T measurements during an acute illness after 11 a.m. are not reliable to diagnose male hypogonadism. Note that laboratory method bias can affect T results, as can those with an altered circadian rhythm (e.g., night workers).
- The estimation of free testosterone (http://www.issam.ch/freetesto.htm; accessed on 10 November 2023) is helpful in those with SHBG levels above and below the reference range, as it may help identify or exclude hypogonadism even when testosterone levels are ‘normal’ or low, respectively.
- A low T level measured in a morning sample (<11 a.m.) requires a serum prolactin, LH, and FSH measurement to rule out secondary hypogonadism and SHBG measurement (to aid in the interpretation of the T levels, including the estimation of free testosterone). These additional tests, if measured, help to inform decisions concerning management of potential hypogonadism.
- The prescription and monitoring of TRT in hypogonadal men, in line with the prevailing clinical guidelines, is the responsibility of the clinicians caring for the patient. When appropriately prescribed, TRT can be associated with great benefits in terms of both quality of life and longer-term health outcomes.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Livingston, M.; Kalansooriya, A.; Hartland, A.J.; Ramachandran, S.; Heald, A. Serum testosterone levels in male hypogonadism: Why and when to check—A review. Int. J. Clin. Pr. 2017, 71, e12995. [Google Scholar] [CrossRef]
- Dohle, G.R.; Arver, S.; Bettocchi, C.; Jones, T.H.; Kliesch, S.; Punab, M. EAU guidelines on male hypogonadism. Eur. Assoc. Urol. 2016, 13, 33. [Google Scholar]
- Wu, F.C.; Tajar, A.; Beynon, J.M.; Pye, S.R.; Silman, A.J.; Finn, J.D.; O’Neill, T.W.; Bartfai, G.; Casanueva, F.F.; Forti, G.; et al. Identification of Late-Onset Hypogonadism in Middle-Aged and Elderly Men. N. Engl. J. Med. 2010, 363, 123–135. [Google Scholar] [CrossRef]
- Araujo, A.B.; Esche, G.R.; Kupelian, V.; O’Donnell, A.B.; Travison, T.G.; Williams, R.E.; Clark, R.V.; McKinlay, J.B. Prevalence of symptomatic androgen deficiency in men. J. Clin. Endocrinol. Metab. 2007, 92, 4241–4247. [Google Scholar] [CrossRef]
- Hackett, G.; Kirby, M.; Rees, R.W.; Jones, T.H.; Muneer, A.; Livingston, M.; Ossei-Gerning, N.; David, J.; Foster, J.; Kalra, P.A.; et al. The British Society for Sexual Medicine Guidelines on Male Adult Testosterone Deficiency, with Statements for Practice. World J. Men’s Health 2023, 41, 508–537. [Google Scholar] [CrossRef]
- Anderson, S.G.; Heald, A.; Younger, N.; Bujawansa, S.; Narayanan, R.P.; McCulloch, A.; Jones, H. Screening for hypogonadism in diabetes 2008/9: Results from the cheshire primary care cohort. Prim. Care Diabetes 2012, 6, 143–148. [Google Scholar] [CrossRef]
- Gianatti, E.J.; Grossmann, M. Testosterone deficiency in men with Type 2 diabetes: Pathophysiology and treatment. Diabet. Med. 2020, 37, 174–186. [Google Scholar] [CrossRef]
- Dandona, P.; Dhindsa, S. Update: Hypogonadotropic hypogonadism in type 2 diabetes and obesity. J. Clin. Endocrinol. Metab. 2011, 96, 2643–2651. [Google Scholar] [CrossRef]
- Delli Muti, N.; Tirabassi, G.; Lamonica, G.R.; Lenzi, A.; Balercia, G. Diabetes mellitus and late-onset hypogonadism: The role of Glu298Asp endothelial nitric oxide synthase polymorphism. Andrologia 2015, 47, 867–871. [Google Scholar] [CrossRef]
- Stanworth, R.D.; Akhtar, S.; Channer, K.S.; Jones, T.H. The role of androgen receptor CAG repeat polymorphism and other factors which affect the clinical response to testosterone replacement in metabolic syndrome and type 2 diabetes: TIMES2 sub-study. Eur. J. Endocrinol. 2013, 170, 193–200. [Google Scholar] [CrossRef]
- Livingston, M.; Jones, R.; Hackett, G.; Donnahey, G.; Moreno, G.Y.; Duff, C.J.; Heald, A.H. Screening for Hypogonadism in Primary Healthcare: How to do this Effectively. Exp. Clin. Endocrinol. Diabetes 2018, 126, 176–181. [Google Scholar] [CrossRef]
- Pye, S.R.; Huhtaniemi, I.T.; Finn, J.D.; Lee, D.M.; O’Neill, T.W.; Tajar, A.; Bártfai, G.; Boonen, S.; Casanueva, F.F.; Forti, G.; et al. Late-onset hypogonadism and mortality in aging men. J. Clin. Endocrinol. Metab. 2014, 99, 1357–1366. [Google Scholar] [CrossRef]
- Dong, J.-Y.; Zhang, Y.-H.; Qin, L.-Q. Erectile dysfunction and risk of cardiovascular disease: Meta-analysis of prospective cohort studies. J. Am. Coll. Cardiol. 2011, 58, 1378–1385. [Google Scholar] [CrossRef]
- Malipatil, N.S.; Yadegarfar, G.; Lunt, M.; Keevil, B.; Siddals, K.; Livingston, M.; Roberts, S.; Narayanan, P.; Rutter, M.; Gibson, J.M.; et al. Male hypogonadism: 14-year prospective outcome in 550 men with type 2 diabetes. Endocrinol. Diabetes Metab. 2019, 2, e00064. [Google Scholar] [CrossRef]
- Heald, A.; Cook, M.J.; Antonio, L.; Tournoy, J.; Ghaffari, P.; Mannan, F.; Fachim, H.; Vanderschueren, D.; Laing, I.; Hackett, G.; et al. Number of CAG repeats and mortality in middle aged and older men. Clin. Endocrinol. 2023, 99, 559–565. [Google Scholar] [CrossRef]
- Heald, A.H.; Yadegar Far, G.; Livingston, M.; Fachim, H.; Lunt, M.; Narayanan, R.P.; Siddals, K.; Moreno, G.; Jones, R.; Malipatil, N.; et al. Androgen receptor-reduced sensitivity is associated with increased mortality and poorer glycaemia in men with type 2 diabetes mellitus: A prospective cohort study. Cardiovasc. Endocrinol. Metab. 2020, 10, 37–44. [Google Scholar] [CrossRef]
- Zitzmann, M.; Gromoll, J.; von Eckardstein, A.; Nieschlag, E. The CAG repeat polymorphism in the androgen receptor gene modulates body fat mass and serum concentrations of leptin and insulin in men. Diabetologia 2003, 46, 31–39. [Google Scholar] [CrossRef]
- Haring, R.; Ernst, F.; Schurmann, C.; Homuth, G.; Völker, U.; Völzke, H.; Nauck, M.; Wallaschofski, H. The androgen receptor CAG repeat polymorphism as a risk factor of low serum testosterone and its cardiometabolic effects in men. Int. J. Androl. 2012, 35, 511–520. [Google Scholar] [CrossRef]
- Tirabassi, G.; Cutini, M.; Beltrami, B.; Delli Muti, N.; Lenzi, A.; Balercia, G. Androgen receptor GGC repeat might be more involved than CAG repeat in the regulation of the metabolic profile in men. Intern. Emerg. Med. 2016, 11, 1067–1075. [Google Scholar] [CrossRef]
- National Institute for Health and Care Excellence. NG28: Type 2 Diabetes in Adults: Management; National Institute for Health and Care Excellence: London, UK, 2015.
- Seftel, A.D.; Kathrins, M.; Niederberger, C. Critical update of the 2010 endocrine society clinical practice guidelines for male hypogonadism: A systematic analysis. In Mayo Clinic Proceedings; Elsevier: Amsterdam, The Netherlands, 2015; pp. 1104–1115. [Google Scholar]
- Handelsman, Y.; Bloomgarden, Z.T.; Grunberger, G.; Umpierrez, G.; Zimmerman, R.S.; Bailey, T.S.; Blonde, L.; Bray, G.A.; Cohen, A.J.; Dagogo-Jack, S.; et al. American Association of Clinical Endocrinologists and American College of Endocrinology—Clinical Practice Guidelines for Developing a Diabetes Mellitus Comprehensive Care Plan—2015—Executive Summary. Endocr. Pr. 2015, 21, 413–437. [Google Scholar] [CrossRef]
- Mulhall, J.P.; Trost, L.W.; Brannigan, R.E.; Kurtz, E.G.; Redmon, J.B.; Chiles, K.A.; Lightner, D.J.; Miner, M.M.; Murad, M.H.; Nelson, C.J.; et al. Evaluation and Management of Testosterone Deficiency: AUA Guideline. J. Urol. 2018, 200, 423–432. [Google Scholar] [CrossRef]
- Dandona, P.; Rosenberg, M.T. A practical guide to male hypogonadism in the primary care setting. Int. J. Clin. Pract. 2010, 64, 682–696. [Google Scholar] [CrossRef]
- Livingston, M.; Ramachandran, S.; Hartland, A.; Plant, A.; Kirby, M.; Hackett, G. Low Testosterone on Hospital Admission with COVID-19 Infection Is Associated with Increased Mortality. Androg. Clin. Res. Ther. 2022, 3, 14–21. [Google Scholar] [CrossRef]
- Karlberg, J.; Chong, D.S.Y.; Lai, W.Y.Y. Do men have a higher case fatality rate of severe acute respiratory syndrome than women do? Am. J. Epidemiol. 2004, 159, 229–231. [Google Scholar] [CrossRef]
- Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.H.; Nitsche, A.; et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020, 181, 271–280. [Google Scholar] [CrossRef]
- Montopoli, M.; Zumerle, S.; Rugge, M.; Alimonti, A. Androgen-deprivation therapies for prostate cancer and risk of infection by SARS-CoV-2: A populationbased study (N = 4532). Ann. Oncol. 2020, 31, 1040–1045. [Google Scholar] [CrossRef]
- Goren, A.V.G.S.; Vano-Galvan, S.; Wambier, C.G.; McCoy, J.; Gomez-Zubiaur, A.; Moreno-Arrones, O.M.; Shapiro, J.; Sinclair, R.D.; Gold, M.H.; Kovacevic, M.; et al. A preliminary observation: Male pattern hair loss among hospitalized COVID-19 patients in Spain—A potential clue to the role of androgens in COVID-19 severity. J. Cosmet. Dermatol. 2020, 19, 1545–1547. [Google Scholar] [CrossRef]
- Wenham, C.; Smith, J.; Morgan, R. Gender and COVID-19 Working Group. COVID-19: The gendered impacts of the outbreak. Lancet 2020, 395, 846–848. [Google Scholar] [CrossRef]
- Hackett, G.; Kirby, M. COVID-19, Type 2 Diabetes, and Hypogonadism: Lessons for Acute Management and Long-Term Prevention. Androg. Clin. Res. Ther. 2020, 1, 22–31. [Google Scholar] [CrossRef]
- Selvaraj, K.; Ravichandran, S.; Krishnan, S.; Radhakrishnan, R.K.; Manickam, N.; Kandasamy, M. Testicular atrophy and hypothalamic pathology in COVID19: Possibility of the incidence of male infertility and HPG axis abnormalities. Reprod Sci. 2021, 28, 2735–2742. [Google Scholar] [CrossRef]
- Ma, L.; Xie, W.; Li, D.; Shi, L.; Mao, Y.; Xiong, Y.; Zhang, Y.; Zhang, M. Effect of SARS-CoV-2 infection upon male gonadal function: A single center-based study. medRxiv 2020. [Google Scholar] [CrossRef]
- Schroeder, M.; Tuku, B.; Jarczak, D. The majority of male patients with COVID-19 present low testosterone levels on admission to Intensive Care in Hamburg, Germany: A retrospective cohort study. medRxiv 2020. [Google Scholar]
- Rastrelli, G.; Di Stasi, V.; Inglese, F.; Beccaria, M.; Garuti, M.; Di Costanzo, D.; Spreafico, F.; Greco, G.F.; Cervi, G.; Pecoriello, A.; et al. Low testosterone levels predict clinical adverse outcomes in SARS-CoV-2 pneumonia patients. Andrology 2020, 9, 88–98. [Google Scholar] [CrossRef]
- Çayan, S.; Uguz, M.; Saylam, B.; Akbay, E. Effect of serum total testosterone and its relationship with other laboratory parameters on the prognosis of coronavirus disease 2019 (COVID-19) in SARS-CoV-2 infected male patients: A cohort study. Aging Male 2020, 23, 1493–1503. [Google Scholar] [CrossRef]
- Salonia, A.; Pontillo, M.; Capogrosso, P.; Gregori, S.; Tassara, M.; Boeri, L.; Carenzi, C.; Abbate, C.; Cignoli, D.; Ferrara, A.M.; et al. Severely low testosterone in males with COVID-19: A case-control study. Andrology 2021, 9, 1043–1052. [Google Scholar] [CrossRef]
- Dhindsa, S.; Zhang, N.; McPhaul, M.J.; Wu, Z.; Ghoshal, A.K.; Erlich, E.C.; Mani, K.; Randolph, G.J.; Edwards, J.R.; Mudd, P.A.; et al. Association of Circulating Sex Hormones with Inflammation and Disease Severity in Patients With COVID-19. JAMA Netw. Open 2021, 4, e2111398. [Google Scholar] [CrossRef]
- Diver, M. Analytical and physiological factors affecting the interpretation of serum testosterone concentration in men. Ann. Clin. Biochem. 2006, 43, 3–12. [Google Scholar] [CrossRef]
- Trost, L.W.; Mulhall, J.P. Challenges in testosterone measurement, data interpretation, and methodological appraisal of interventional trials. J. Sex. Med. 2016, 13, 1029–1046. [Google Scholar] [CrossRef]
- Livingston, M.; Downie, P.; Hackett, G.; Marrington, R.; Heald, A.; Ramachandran, S. An audit of the measurement and reporting of male testosterone levels in UK clinical biochemistry laboratories. Int. J. Clin. Pr. 2020, 74, e13607. [Google Scholar] [CrossRef]
- Ramachandran, S.; Strange, R.C.; Fryer, A.A.; Saad, F.; Hackett, G.I. The association of sex hormone-binding globulin with mortality is mediated by age and testosterone in men with type 2 diabetes. Andrology 2018, 6, 846–853. [Google Scholar] [CrossRef]
- Keevil, B.G.; Adaway, J. Assessment of free testosterone concentration. J. Steroid Biochem. Mol. Biol. 2019, 190, 207–211. [Google Scholar] [CrossRef]
- Vermeulen, A.; Verdonck, L.; Kaufman, J.M. A critical evaluation of simple methods for the estimation of free testosterone in serum. J. Clin. Endocrinol. Metab. 1999, 84, 3666–3672. [Google Scholar] [CrossRef]
- Khera, M.; Adaikan, G.; Buvat, J.; Carrier, S.; El-Meliegy, A.; Hatzimouratidis, K.; McCullough, A.; Morgentaler, A.; Torres, L.O.; Salonia, A. Diagnosis and Treatment of Testosterone Deficiency: Recommendations from the Fourth International Consultation for Sexual Medicine (ICSM 2015). J. Sex. Med. 2016, 13, 1787–1804. [Google Scholar] [CrossRef]
- Brambilla, D.J.; Matsumoto, A.M.; Araujo, A.B.; McKinlay, J.B. The effect of diurnal variation on clinical measurement of serum testosterone and other sex hormone levels in men. J. Clin. Endocrinol. Metab. 2009, 94, 907–913. [Google Scholar] [CrossRef]
- Caronia, L.M.; Dwyer, A.A.; Hayden, D.; Amati, F.; Pitteloud, N.; Hayes, F.J. decrease in serum testosterone levels after an oral glucose load in men: Implications for screening for hypogonadism. Clin. Endocrinol. 2013, 78, 291–296. [Google Scholar] [CrossRef]
- Lehtihet, M.; Arver, S.; Bartuseviciene, I.; Pousette, Å. S-testosterone decrease after a mixed meal in healthy men independent of SHBG and gonadotrophin levels. Andrologia 2012, 44, 405–410. [Google Scholar] [CrossRef]
- Livingston, M.; Hackett, G.; Ramachandran, S.; Heald, A. Is a fasting testosterone level really necessary for the determination of androgen status in men? Clin. Chim. Acta 2021, 521, 64–69. [Google Scholar] [CrossRef]
- Morales, A.; Bebb, R.A.; Manjoo, P.; Assimakopoulos, P.; Axler, J.; Collier, C.; Elliott, S.; Goldenberg, L.; Gottesman, I.; Grober, E.D.; et al. Diagnosis and management of testosterone deficiency syndrome in men: Clinical practice guideline. Cmaj 2015, 187, 1369–1377. [Google Scholar] [CrossRef]
- Bhasin, S.; Brito, J.P.; Cunningham, G.R.; Hayes, F.J.; Hodis, H.N.; Matsumoto, A.M.; Snyder, P.J.; Swerdloff, R.S.; Wu, F.C.; Yialamas, M.A. Testosterone Therapy in Men with Hypogonadism: An Endocrine Society* Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2018, 103, 1715–1744. [Google Scholar] [CrossRef]
- Gibney, J.; Smith, T.; McKenna, T. The impact on clinical practice of routine screening for macroprolactin. J. Clin. Endocrinol. Metab. 2005, 90, 3927–3932. [Google Scholar] [CrossRef]
- Heald, A.H.; Blantern, E.; Anderson, S.G.; Radford, D.; Qureshi, Z.; Nair, S.; Waldron, J.; Davies, M.; McCulloch, A.; Kane, J. Quantitative Adjustment for Macroprolactin is an Integral Part of Laboratory Assessment of Hyperprolactinaemia. Exp. Clin. Endocrinol. Diabetes 2012, 120, 376–380. [Google Scholar] [CrossRef]
- Grossmann, M. Towards optimising diagnosis and management of male hypogonadism: Commentary on CEN-2023-000285 “standardising the biochemical confirmation of adult male hypogonadism” a joint position statement by the society for endocrinology and association of clinical biochemistry and laboratory medicine. Clin. Endocrinol. 2023, 99, 396–397. [Google Scholar]
- Ramachandran, S.; König, C.S.; Hackett, G.; Livingston, M.; Strange, R.C. Managing clinical heterogeneity: An argument for benefit-based action limits. J. Eng. Sci. Med. Diagn. Ther. 2018, 1, 034701. [Google Scholar] [CrossRef]
- Jayasena, C.N.; de Silva, N.L.; O’Reilly, M.W.; MacKenzie, F.; Marrington, R.; Jones, H.; Livingston, M.; Downie, P.; Hackett, G.; Ramachandran, S.; et al. Standardising the biochemical confirmation of adult male hypogonadism: A joint position statement by the Society for Endocrinology and Association of Clinical Biochemistry and Laboratory Medicine. Ann. Clin. Biochem. 2023, 60, 223–227. [Google Scholar] [CrossRef]
- Stanworth, R.; Kapoor, D.; Channer, K.; Jones, T. Androgen receptor CAG repeat polymorphism is associated with serum testosterone levels, obesity and serum leptin in men with type 2 diabetes. Eur. J. Endocrinol. 2008, 159, 739–746. [Google Scholar] [CrossRef]
- Tirabassi, G.; Cignarelli, A.; Perrini, S.; Muti, N.D.; Furlani, G.; Gallo, M.; Pallotti, F.; Paoli, D.; Giorgino, F.; Lombardo, F.; et al. Influence of CAG Repeat Polymorphism on the Targets of Testosterone Action. Int. J. Endocrinol. 2015, 2015, 298107. [Google Scholar] [CrossRef]
- Heald, A.; Cook, M.; Antonio, L.; Vanderschueren, D.; Javed, A.; Fachim, H.; Hackett, G.; Wu, F.; O’Neill, T. The number of androgen receptor CAG repeats and mortality in men. Aging Male 2022, 25, 167–172. [Google Scholar] [CrossRef]
- Snyder, P.J.; Bhasin, S.; Cunningham, G.R.; Matsumoto, A.M.; Stephens-Shields, A.J.; Cauley, J.A.; Gill, T.M.; Barrett-Connor, E.; Swerdloff, R.S.; Wang, C.; et al. Effects of testosterone treatment in older men. N. Engl. J. Med. 2016, 374, 611–624. [Google Scholar] [CrossRef]
- Shores, M.M.; Smith, N.L.; Forsberg, C.W.; Anawalt, B.D.; Matsumoto, A.M. Testosterone treatment and mortality in men with low testosterone levels. J. Clin. Endocrinol. Metab. 2012, 97, 2050–2058. [Google Scholar] [CrossRef]
- Muraleedharan, V.; Marsh, H.; Kapoor, D.; Channer, K.S.; Jones, T.H. Testosterone deficiency is associated with increased risk of mortality and testosterone replacement improves survival in men with type 2 diabetes. Eur. J. Endocrinol. 2013, 169, 725–733. [Google Scholar] [CrossRef]
- Hackett, G.; Cole, N.; Mulay, A.; Strange, R.C.; Ramachandran, S. Long-term testosterone therapy in type 2 diabetes is associated with reduced mortality without improvement in conventional cardiovascular risk factors. BJU Int. 2019, 123, 519–529. [Google Scholar] [CrossRef]
- Hackett, G.; Heald, A.H.; Sinclair, A.; Jones, P.W.; Strange, R.C.; Ramachandran, S. Serum testosterone, testosterone replacement therapy and all-cause mortality in men with type 2 diabetes: Retrospective consideration of the impact of PDE5 inhibitors and statins. Int. J. Clin. Pract. 2016, 70, 244–253. [Google Scholar] [CrossRef]
- Greco, E.A.; Spera, G.; Aversa, A. Combining Testosterone and PDE5 Inhibitors in Erectile Dysfunction: Basic Rationale and Clinical Evidences. Eur. Urol. 2006, 50, 940–947. [Google Scholar] [CrossRef]
- Kapoor, D.; Goodwin, E.; Channer, K.; Jones, T. Testosterone replacement therapy improves insulin resistance, glycaemic control, visceral adiposity and hypercholesterolaemia in hypogonadal men with type 2 diabetes. Eur. J. Endocrinol. 2006, 154, 899–906. [Google Scholar] [CrossRef]
- Malkin, C.J.; Pugh, P.J.; West, J.N.; van Beek, E.J.; Jones, T.H.; Channer, K.S. Testosterone therapy in men with moderate severity heart failure: A double-blind randomized placebo controlled trial. Eur. Heart J. 2006, 27, 57–64. [Google Scholar] [CrossRef]
- Tajar, A.; McBeth, J.; Lee, D.M.; Macfarlane, G.J.; Huhtaniemi, I.T.; Finn, J.D.; Bartfai, G.; Boonen, S.; Casanueva, F.F.; Forti, G.; et al. Elevated levels of gonadotrophins but not sex steroids are associated with musculoskeletal pain in middle-aged and older European men. Pain 2011, 152, 1495–1501. [Google Scholar] [CrossRef]
- Lunenfeld, B.; Mskhalaya, G.; Zitzmann, M.; Arver, S.; Kalinchenko, S.; Tishova, Y.; Morgentaler, A. Recommendations on the diagnosis, treatment and monitoring of hypogonadism in men. Aging Male 2015, 18, 5–15. [Google Scholar] [CrossRef]
- Dean, J.D.; McMahon, C.G.; Guay, A.T.; Morgentaler, A.; Althof, S.E.; Becher, E.F.; Bivalacqua, T.J.; Burnett, A.L.; Buvat, J.; El Meliegy, A.; et al. The International Society for Sexual Medicine’s Process of Care for the Assessment and Management of Testosterone Deficiency in Adult Men. J. Sex Med. 2015, 12, 1660–1686. [Google Scholar] [CrossRef]
- Heald, A.H.; Stedman, M.; Whyte, M.; Livingston, M.; Albanese, M.; Ramachandran, S.; Hackett, G. Lessons learnt from the variation across 6741 family/general practices in england in the use of treatments for hypogonadism. Clin. Endocrinol. 2021, 94, 827–836. [Google Scholar] [CrossRef]
- Testa, M.A.; Simonson, D.C. Assessment of quality-of-life outcomes. N. Engl. J. Med. 1996, 334, 835–840. [Google Scholar] [CrossRef]
- Amanatkar, H.R.; Chibnall, J.T.; Seo, B.-W.; Manepalli, J.N.; Grossberg, G.T. Impact of exogenous testosterone on mood: A systematic review and meta-analysis of randomized placebo-controlled trials. Ann. Clin. Psychiatry 2014, 26, 19–32. [Google Scholar]
- Wu, F.; Zitzmann, M.; Heiselman, D.; Donatucci, C.; Knorr, J.; Patel, A.B.; Kinchen, K. Demographic and clinical correlates of patient-reported improvement in sex drive, erectile function, and energy with testosterone solution 2%. J. Sex. Med. 2016, 13, 1212–1219. [Google Scholar] [CrossRef]
- O’Connell, M.; Tajar, A.; Roberts, S.A.; Wu, F. Do androgens play any role in the physical frailty of ageing men? Int. J. Androl. 2011, 34, 195–211. [Google Scholar] [CrossRef]
- Saad, F. The relationship between testosterone deficiency and frailty in elderly men. Horm. Mol. Biol. Clin. Investig. 2010, 4, 529–538. [Google Scholar] [CrossRef]
- Snyder, P.J.; Kopperdahl, D.L.; Stephens-Shields, A.J.; Ellenberg, S.S.; Cauley, J.A.; Ensrud, K.E.; Lewis, C.E.; Barrett-Connor, E.; Schwartz, A.V.; Lee, D.C.; et al. Effect of testosterone treatment on volumetric bone density and strength in older men with low testosterone: A controlled clinical trial. JAMA Intern. Med. 2017, 177, 471–479. [Google Scholar] [CrossRef]
- Saad, F.; Aversa, A.; Isidori, A.M.; Zafalon, L.; Zitzmann, M.; Gooren, L. Onset of effects of testosterone treatment and time span until maximum effects are achieved. Eur. J. Endocrinol. 2011, 165, 675–685. [Google Scholar] [CrossRef]
- Barbonetti, A.; D’Andrea, S.; Francavilla, S. Testosterone replacement therapy. Andrology 2020, 8, 1551–1566. [Google Scholar] [CrossRef]
- Jayasena, C.N.; Anderson, R.A.; Llahana, S.; Barth, J.H.; MacKenzie, F.; Wilkes, S.; Smith, N.; Sooriakumaran, P.; Minhas, S.; Wu, F.C.W.; et al. Society for Endocrinology guidelines for testosterone replacement therapy in male hypogonadism. Clin. Endocrinol. 2022, 96, 200–219. [Google Scholar] [CrossRef]
- Jones, T.H.; Arver, S.; Behre, H.M.; Buvat, J.; Meuleman, E.; Moncada, I.; Morales, A.M.; Volterrani, M.; Yellowlees, A.; Howell, J.D.; et al. Testosterone Replacement in Hypogonadal Men with Type 2 Diabetes and/or Metabolic Syndrome (the TIMES2 Study). Diabetes Care 2011, 34, 828–837. [Google Scholar] [CrossRef]
- Wittert, G.; Bracken, K.; Robledo, K.P.; Grossmann, M.; Yeap, B.B.; Handelsman, D.J.; Stuckey, B.; Conway, A.; Inder, W.; McLachlan, R.; et al. Testosterone treatment to prevent or revert type 2 diabetes in men enrolled in a lifestyle programme (T4DM): A randomised, double-blind, placebo-controlled, 2-year, phase 3b trial. Lancet Diabetes Endocrinol. 2021, 9, 32–45. [Google Scholar] [CrossRef]
- Vigen, R.; O’donnell, C.I.; Barón, A.E.; Grunwald, G.K.; Maddox, T.M.; Bradley, S.M.; Barqawi, A.; Woning, G.; Wierman, M.E.; Plomondon, M.E.; et al. Association of Testosterone Therapy with Mortality, Myocardial Infarction, and Stroke in Men With Low Testosterone Levels. JAMA 2013, 310, 1829–1836. [Google Scholar] [CrossRef]
- Finkle, W.D.; Greenland, S.; Ridgeway, G.K.; Adams, J.L.; Frasco, M.A.; Cook, M.B.; Fraumeni, J.F., Jr.; Hoover, R.N. Increased Risk of Non-Fatal Myocardial Infarction Following Testosterone Therapy Prescription in Men. PLoS ONE 2014, 9, e85805. [Google Scholar] [CrossRef]
- Lincoff, A.M.; Bhasin, S.; Flevaris, P.; Mitchell, L.M.; Basaria, S.; Boden, W.E.; Cunningham, G.R.; Granger, C.B.; Khera, M.; Thompson, I.M.; et al. Cardiovascular Safety of Testosterone-Replacement Therapy. N. Engl. J. Med. 2023, 389, 107–117. [Google Scholar] [CrossRef]
- Jayasena, C.N.; de Silva, N.L.; O’Reilly, M.W.; MacKenzie, F.; Marrington, R.; Jones, H.; Livingston, M.; Downie, P.; Hackett, G.; Ramachandran, S.; et al. Standardising the biochemical confirmation of adult male hypogonadism: A joint position statement by the Society for Endocrinology and Association of Clinical Biochemistry and Laboratory Medicine. Clin. Endocrinol. 2023. Epub ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.T.; Botelho, J.C.; Rej, R.; Vesper, H.; Astles, J.R. Impact of testosterone assay standardization efforts assessed via accuracy-based proficiency testing. Clin. Biochem. 2019, 68, 37–43. [Google Scholar] [CrossRef]
- Travison, T.G.; Vesper, H.W.; Orwoll, E.; Wu, F.; Kaufman, J.M.; Wang, Y.; Lapauw, B.; Fiers, T.; Matsumoto, A.M.; Bhasin, S. Harmonized reference ranges for circulating testosterone levels in men of four cohort studies in the United States and Europe. J. Clin. Endocrinol. Metab. 2017, 102, 1161–1173. [Google Scholar] [CrossRef]
Symptoms/Signs | Details |
---|---|
Low libido | Reduced interest in sex or sexual desires |
Erectile dysfunction | Difficulty in achieving/maintaining penile erections |
Fatigue | Persistent tiredness, lack of energy, and reduced stamina |
Reduced muscle mass | Reduced muscular strength and size |
Increased body fat | Weight gain, especially around the abdomen |
Hair loss | Loss or thinning of facial and body hair |
Gynecomastia | Enlargement of breast tissue in men |
Infertility | Due to reduced sperm production |
Osteoporosis | Decreased bone mineral density and increased risk of fractures |
Mood/mental changes | Mood swings, irritability, depression, and reduced cognition |
Hot flushes | Sudden intense feelings of heat akin to those experienced in female menopause |
Testicle size | May become smaller than usual |
Metabolic changes | Type 2 diabetes, metabolic syndrome, and dyslipidaemia |
Primary Hypogonadism |
Congenital anorchidism |
Cryptorchidism |
Mumps orchitis |
Genetic and developmental conditions: Klinefelter syndrome as well as androgen receptor and enzyme defects |
Sertoli cell-only syndrome |
Radiation treatment/chemotherapy |
Testicular trauma |
Autoimmune syndromes (anti-Leydig cell disorders) |
Secondary hypogonadism |
Genetic conditions: Kallmann’s syndrome, and Prader–Willi syndrome |
Pituitary tumour, granuloma, abscess, and infiltration (e.g., sarcoidosis) |
Hyperprolactinemia |
Cranial trauma |
Radiation treatment |
Various medications |
Mixed (primary and secondary) hypogonadism |
Alcohol abuse |
Ageing |
Chronic infections (HIV) |
Corticosteroid treatment |
Haemochromatosis |
Systemic disorders: liver failure, uraemia, sickle-cell disease, and COVID-19 |
Factor | Details |
---|---|
Age | T levels decrease with age, gradually declining with each decade after age of 30–40 years |
Testicular dysfunction | Any condition or injury affecting the testes can lead to decreased T secretion |
Genetics | Genetic factors play a role in determining an individual’s baseline T levels and their sensitivity to hormonal changes |
Obesity | Serum total T levels were reported to be lower in obese men (body mass index > 30 kg/m2) |
Diurnal variation | Levels are highest in the morning (around 09:00 a.m.) and up to 60% lower in the evening |
Seasonal variations | T levels may fluctuate slightly throughout the year, with peaks in the summer–early autumn and troughs in the winter–early spring, but published studies are contradictory |
Acute illness/infection | Acute illnesses or infections can temporarily cause reductions in T concentrations (as T is a negative acute phase reactant) |
Chronic illness | Chronic conditions (e.g., diabetes, liver disease, and kidney disease) can influence T production |
Stress | Ongoing stress can affect hormone regulation, potentially causing lower T levels |
Sleep | Inadequate or disrupted sleep can affect T production |
Fasting status | Up to a 30% increase was reported in fasting subjects |
Physical activity | Regular exercise/physical activity can positively influence T levels |
Medication Alcohol/drug abuse Binding proteins | Some medications (e.g., corticosteroids and opioids) may interfere with T secretion/utilisation Excessive alcohol consumption/drug abuse can negatively affect T levels Concentration of relevant binding proteins (e.g., sex hormone-binding globulin) |
Increase | Decrease |
---|---|
Aging | Obesity |
Hyperthyroidism | Hypothyroidism |
Oestrogens | Androgens |
Hepatic diseases | Insulin resistance |
Cirrhosis | Hyperinsulinism |
Anti-epileptics | Hyperprolactinemia |
Tamoxifen | Growth hormone increases and acromegaly |
Steroids | Hypercortisolism |
Study | Year | Total T Threshold | Comment |
---|---|---|---|
Shores et al. [61] | 2012 | ≤8.7 nmol/L (≤251 ng/dL) | Males aged >40 years; TRT was found to improve symptoms and significantly reduce mortality in men with T2DM |
Muraleedharan [62] | 2013 | ≤10.4 nmol/L (300 ng/dL) | T2DM/underlying elevated cardiovascular risk |
ISSAM [69] | 2015 | <12.1 nmol/L (349 ng/dL) | ISSAM: International Society for the Study of the Ageing Male |
ISSM [70] | 2015 | ≤12 nmol/L (346 ng/dL) | ISSM: International Society for Sexual Medicine |
Bhasin et al. [51] | 2018 | ≤10.4 nmol/L (300 ng/dL) * | Endocrine Society Clinical Practice Guideline |
Mulhall et al. [23] | 2018 | ≤10.4 nmol/L (300 ng/dL) | American Urological Association |
Hackett et al. [63] | 2019 | ≤12 nmol/L (346 ng/dL) ** | T2DM/underlying elevated cardiovascular risk |
BSSM [5] | 2023 | ≤12 nmol/L (346 ng/dL) *** | Based on two separate morning (<11 a.m.) samples as usually required in TRT; 8–12 nmol/L may require a trial of TRT depending on symptoms |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Livingston, M.; Heald, A.H. Adult Male Hypogonadism: A Laboratory Medicine Perspective on Its Diagnosis and Management. Diagnostics 2023, 13, 3650. https://doi.org/10.3390/diagnostics13243650
Livingston M, Heald AH. Adult Male Hypogonadism: A Laboratory Medicine Perspective on Its Diagnosis and Management. Diagnostics. 2023; 13(24):3650. https://doi.org/10.3390/diagnostics13243650
Chicago/Turabian StyleLivingston, Mark, and Adrian H. Heald. 2023. "Adult Male Hypogonadism: A Laboratory Medicine Perspective on Its Diagnosis and Management" Diagnostics 13, no. 24: 3650. https://doi.org/10.3390/diagnostics13243650
APA StyleLivingston, M., & Heald, A. H. (2023). Adult Male Hypogonadism: A Laboratory Medicine Perspective on Its Diagnosis and Management. Diagnostics, 13(24), 3650. https://doi.org/10.3390/diagnostics13243650