Urinary Extracellular Vesicles in Chronic Kidney Disease: From Bench to Bedside?
Abstract
:1. Introduction
2. Chronic Kidney Disease
2.1. Diabetic Nephropathy
2.1.1. Animal Studies
2.1.2. Human Studies
Study Design | Study Population | Technique | Major Findings | Reference |
---|---|---|---|---|
Cross-sectional study Cross-sectional study Cross-sectional study | 7 ZBF rats and 7 HC rats STZ-induced diabetic rats 4DM patients with CKD vs. 3 HCs Humans: 12 NA DN patients vs. 12 MIA DN patients vs. 10 HCs Animals: 5 male C57BL6/J STZ-induced diabetic mice vs. 5 male C57BL6/J mice | LC-MS/MS Western blot Western blot qRT-PCR qRT-PCR | 286 proteins with functions involving transport, signaling and cellular adhesions were identified and quantified. STZ- induced rats: calnexin and regucalcin: not detected Humans: calnexin and regucalcin not detected Humans: miR-155 and miR-424 were significantly lower in MIA compared to NA DN patients, whereas miR-130a, miR-145 and miR-145 MIA were significantly higher (p < 0.05) Animals: urinary exosomes were significantly more present in DM patients compared to healthy control rats (p < 0.05). | [32] [33] [41] |
Cross-sectional study | 4 DM patients vs. 4 biopsy-proven DN patients vs. 4 HCs | Western blot | Significant different levels of AQP1, AQP2 and CCL21 mRNA were found in DN patients compared to HCs (p < 0.05). Significant correlations were discovered between CCL21 mRNA and 24h proteinuria and eGFR (r = 0.8009, p < 0.0001; r = −0.5186, p = 0.0160, respectively). ROC-AUC analysis revealed an excellent diagnostic accuracy of CCL21 mRNA in distinction of both DN from DM patients and incipient DN patients from overt DN patients (AUC = 0.888, 95% CI 0.752–1; AUC: 1.0, 95% CI 1.0–1.0, both p < 0.0001). | [46] |
Cross-sectional study Cross-sectional study | 127 DM2 patients (MIA: n = 50, MAA: n = 34, NA: n = 43) and 34 age- and sex-matched HCs 48 DM1 patients (with uACR > 30 mg/g creatinine: n = 18; with uACR < 30 mg/g creatinine: n = 30) vs. 25 HCs | ELISA and Western blot Western blot | Ue-DPPIV were significantly different in NA and MIA patients compared to HC and MAA patients (p < 0.01). Significant correlations were discovered between WT1 and uACR, sCR and eGFR (r = 0.89, p < 0.001; r = 0.71, p < 0.001 and r = −0.62, p < 0.001, respectively). The best diagnostic accuracy was found for cut-off values of 1.9 for WT1 for distinction between patients with eGFR < 60 and ≥60 mL/min−1/1.73 m2 (AUC = 0.92, 95% CI: 0.89–1.01, p < 0.0001, sensitivity = 88.6%, specificity = 100%). | [47] [48] |
Cross-sectional study | 56 DM2 patients and 19 HCs | Western blot | C-megalin levels were significantly different in MIA patients compared to NA and MAA diabetics (p < 0.05). Significant correlations were discovered between c-megalin and uACR and eGFR (r = 0.805, p < 0.001; r = 0.731, p < 0.001, respectively). | [49] |
Cross-sectional study | 25 DN patients and 25 MCN vs. 5 HCs | Western blot | Cultured podocytes: WT1, glomerular RII expression and Smad3 levels differed significantly in DN patients compared to MCN patients (p < 0.05). Elf induction caused a significant alteration in WT1, glomerular RII expression and Smad3 levels (p < 0.05). | [50] |
Cross-sectional study | 10 stable CKD patients vs. 4 HCs | Western blot | OPG in urinary exosomes differed significantly in CKD patients compared to HCs (p < 0.05) | [51] |
Interventional follow-up study | 62 MIA DN patients: 2 groups: group 1: routine treatment (n = 29) and group 2: treatment with 600 mg/d α-lipoic acid IV (n = 33) | Electron microscopy and flow cytometry | CD63 levels in urinary exosomes differed significantly in NA patients compared to MIA patients (p < 0.05). | [52] |
Cross- sectional study | Discovery phase: 5 DN patients CKD III-V and 5 HCs Confirmation phase: 3 DN patients CKD III-V and 3 HCs | nLC–MS/MS SRM | Discovery phase: AMBP, VDAC1 and MLL3 differed significantly in DN compared to HCs (p < 0.05). Confirmation phase: results of the discovery phase were confirmed by SRM. | [53] |
Cross-sectional study | 57 DM (uncomplicated DM: n =34, DN: n = 23) vs. other types of nephropathy (MN, IgA nephropathy and FSGS): n = 21) and 11 HCs | Western blot | TSG 101 was present in DN, MN, IgA nephropathy and FSGS patients, whereas PCX was only present in DN patients. PCX levels were significantly different in DN patients compared to HCs, DM, other nephropathy groups (p < 0.05). | [56] |
Cross-sectional study | 10 DM2 patients (NA: n = 5; MAA: n = 5) | NanoDrop ND-1000 Spectrophotometer qRT-PCR | miR-877-3p, miR-362-3p, miR-150-5p and miR-15a-5p were significantly different in NA patients compared to MAA patients (p < 0.001). | [58] |
Cross-sectional study | Validation cohort: 8 DN patients vs. 8 DM2 patients vs. 8 HCs Confirmation cohort: 5 DN patients, 6 DM2 patients and 6 HCs | Microarray analysis qRT-PCR | Validation cohort: miR-320c, miR-6068, miR-6133, miR-638, and miR-572 levels were strongly significantly different in DN patients compared with HCs and DM2 patients (p < 0.01). For miR-320c, significant correlations were found with eGFR and uACR in DN patients (r = 0.08, p = 0.55, r = 0.69, p = 0.02). Confirmation cohort: findings for miR-320c were verified. | [59] |
Cross-sectional study | 28 DN DM2 patients vs. 20 DM2 patients vs. 15 HCs | Western blot | Let-7c-5p levels were significantly higher in DN patients compared to HCs, whereas miR-29c-5p and miR-15b-5p were significantly lower (p < 0.05). ROC-AUC analysis revealed good diagnostic accuracies of Let-7c, miR-29c-5p and miR-15b-5p for diagnosing DN (AUC = 0.818, AUC = 0.774 and AUC = 0.818, respectively). | [60] |
Cross-sectional study | 15 DM2 patients vs. 28 DN DM2 patients | qRT-PCR | MiR-19b-3p levels were significantly different in DN patients compared to type 2 diabetics as in patients with and without tubulointerstitial inflammation (p < 0.001). | [61] |
Cross-sectional study | 166 DM2 patients (NA: n = 56, MIA: n = 66; MAA: n = 44) and 54 HCs | RT-PCR | miR-133b, miR-342 and miR-30a HCs vs. MIA, NA vs. MIA, MIA vs. MAA: p < 0.01. The best diagnostic accuracy was found for miR-342 with a cut-off value of 0.879 (sensitivity = 81.8%, specificity = 80.9%, PPV = 81.1%, NPV = 81.7% and accuracy = 85.2%) | [62] |
Cross-sectional study | Screening group: 40 DM2 patients (MIA: n = 17, MAA: n = 9, NA: n = 14) vs. 12 HCs Confirmation group: 136 DM2 patients (MIA: n = 56, MAA: n = 34, NA: n = 46) and 44 HCs | PCR array RT-PCR | Screening group: miR-15, miR-34a, miR-636, miR-133, miR-342 and miR-30a MIA and MAA vs. NA and HCs: p < 0.05 Confirmation group: confirmation of results in screening group and investigation of diagnostic accuracy of miR-15b, miR-34a and miR-636 (AUC = 0.883-0.984) | [63] |
2.2. IgA Nephropathy
Study Design | Study Population | Technique | Major Findings | Reference |
---|---|---|---|---|
Cross-sectional study | Screening cohort: 6 IgA patients and 6 HCs Validation cohort: 55 IgA patients vs. 4 HCs vs. 16 MN patients vs. 9 MCNS | Western blot Western blot | Screening cohort: CCL2 gene: 10-fold induction in IgA patients compared to controls Validation cohort: significant correlations were discovered between level of urinary CCL2 mRNA and eGFRs (r = −0.624, p < 0.05) | [68] |
Cross-sectional study | Screening cohort: 12 IgA patients vs. 12 HCs Validation cohort: 6 IgA patients vs. 6 HCs | Western Blot RT-qPCR | Screening cohort: miR-215-5p, miR-378i, miR-29c and miR205-5p levels were significantly higher in IgA patients compared to HCs (p < 0.01). Validation cohort verified the results of the screening cohort. | [69] |
Follow-up study | 30 IgA patients vs. 10 MN patients vs. 7 MCN vs 7 DN patients vs. 30 HCs | Western Blot qRT-PCR | Urinary miR-4639 and miR-210 differed significantly in IgA patients compared to MN, DN, MCN and HCs, and miR-4639 and miR-210 were even significantly different between patients with progressive IgAN vs. non-progressive IgAN (p < 0.05). Exosomal miR-4639 and miR-210 were linked to eGFR and proteinuria, respectively, in plasma (r = −0.5424, p < 0.0001 and r = −0.4801, p = 0.0001) and urine (r = 0.7725 and r = 0.6010, both p < 0.0001) Plasma exosomal miR-4639 and miR-210 performed better than proteinuria (g/24 h) to predict kidney outcomes (AUC = 0.77 and AUC = 0.79–0.83, respectively). | [71] |
Cross-sectional study | 20 IgA patients vs. 20 HCs | RT-qPCR | The IgAN group had considerably higher levels of hsa-miR-451a and hsa-let-7d-3p than the HC group (p < 0.05). Both the levels of hsa-miR-451a and hsa-let-7d-3p were associated with the severity of the disease. High AUCs for an IgAN diagnosis were present in the exosomes hsamiR-451a and hsa-let-7d-3p (0.805 and 0.76, respectively). | [72] |
Cross-sectional study | Screening cohort: 15 IgA patients vs. 8 CKD patients vs. 6 HCs Confirmation cohort: 6 IgANnp vs. 6 IgANp vs. 6 TMN vs. 6 MN | RT-qPCR NGS and RT-qPCR | Screening cohort: comparing IgAN to healthy participants, urinary exosomal miR-204 expression was considerably lower in IgAN (p < 0.05). Confirmation cohort: an AUC of 0.82 was found by ROC-analysis comparing the two IgAN cohorts. Moreover, miR-204 expression was significantly correlated with eGFR and proteinuria. | [73] |
2.3. Lupus Nephritis
Pathology | Study Design | Study Population | Technique | Major Findings | Reference |
---|---|---|---|---|---|
LN | Cross-sectional study | 45 LN patients and 20 HCs | RT-qPCR | Urinary exosomal miR-21, miR-150, and miR-29c were linked with LN CIn (r = 0.565, 0.840, and 0.559, respectively). In LN patients, this miRNA profile discriminated low CIn from moderate-high CIn with a high degree of specificity (94.4%) and sensitivity (99.8%). | [78] |
Cross-sectional study | Animals: female B6.MRLc1 (GN) and C57BL/6 mice (HCs) Humans: 13 LN vs. 8 HCs | RT-qPCR RT-qPCR | Mice: in mice glomeruli and podocyte cell lines, miR-26a is selectively expressed at high levels. Humans: MiR-26a levels in urine exosomes were significantly higher in LN patients than in healthy controls (p < 0.05), and were positively linked with proteinuria (r = 0.696, p < 0.01). | [79] | |
Cross-sectional study | 4 LN-IV vs. 10 SLE without LN (LNN group) and 7 patients without AI disease (control) | Illumina sequencing | First-time associations between 14 novel microRNAs and LN have been made (hsa-miR-589-3p, hsa-miR-1260b, hsa-miR-4511, hsa-miR-485-5p, hsa-miR-584-5p, hsa-miR-543, hsa-miR-153-3p, hsa-miR-6087, hsa-miR-3942-5p, hsa-miR-7977, hsa-miR-323b-3p, hsa-miR-4732-3p and hsa-miR-6741-3p, all p < 0.05). MiR-107-3p was also discovered to be 5.9 more numerous in LN-IV patients than in healthy individuals. | [80] | |
Cross-sectional study | 44 LN patients (active LN-IV: n = 15; LV-IV CC: n =14 and inactive LN-IV: n = 14) | Identification technique: Western blot Validation technique: RT-qPCR | Identification phase: between the LN-IV CC and LN-IV (active and inactive) groups, 66 changed exosomal miRNAs with statistical significance were found (p < 0.05). Validation phase: LN-IV-CC differed from other groups in the urine exosome miRNA expression pattern, and miR-3135b and miR-654-5p were validated as possible LN-IV-CC biomarkers. The specificity of their forecast ranged from 83.33 to 96.67%. | [81] | |
Cross-sectional study | 38 SLE patients (6 active LN, 10 inactive LN and 12 SLE without L) vs. 12 HCs | RT-qPCR | Active and inactive LN might be distinguishable by miR-146a with an ideal threshold value of 47.2-fold change resulting in an AUC of 0.867 (p < 0.05, sensitivity = 80% and specificity = 89%). | [82] | |
Cross-sectional study | 43 proliferative LN patients (clinical response: n = 22; no clinical response: n = 21) | qRT-PCR | In urine and kidney tissue, responders had significantly higher levels of miR-31, miR-107, and miR-135b-5p than non-responders (p < 0.05), with miR-135b having the strongest predictive value for differentiating responders (AUC = 0.783, sensitivity = 77.8% and specificity = 71.4%). In vitro analysis revealed that tubular cells treated with inflammatory cytokines (such as IL-1, TNF-α, IFN, and IL-6) are the main source of exosome-derived miR-31, miR-107, and miR-135b-5p production. Mesangial cells from responders were better at absorbing urinary exosomes (90% vs. 50%, p < 0.0001) than mesangial cells from non-responders. Finally, HIF-1α suppression decreased endothelial cell production of IL-6/VCAM-1, mesangial cell production of IL-8, CCL2, CCL3, as well as mesangial cell proliferation. | [83] | |
Cross-sectional study | 47 SLE patients (SLE with LN: n = 26, SLE without LN: n = 21) vs. 20 HCs | RT-qPCR | LN patients’ urine exosomal miR-195-5p, miR-25-3p, and miR-429 levels were significantly decreased (p < 0.05), and miR-195-5p had a good discriminatory power in differentiating LN from SLE patients with an AUC of 0.89. | [87] | |
Cross-sectional study | 13 active LN patients vs. 18 inactive LN patients | qPCR | Let-7a and miR-21 levels were considerably lower in patients with active disease (p < 0.05). | [88] | |
Cross-sectional study | 41 SLE patients (with LN: n = 27, without LN: n = 14) vs. 20 HCs | RT-qPCR | Exosomal miR-146a was found to be strongly associated with changes in proteinuria and lupus activity. Exosomal miR-146a was able to identify LN patients with an AUC of 0.81 (sensitivity = 67%, specificity = 88%, p < 0.001) and detected flares in LN patients with an AUC of 0.88 ± 0.055 (p < 0.0001). An in vitro examination revealed that LPS stimulation caused a significant increase of miR-146a levels, TRAF6 and IRAK1 mRNA expression (p < 0.05). | [89] | |
ANCA-associated vasculitis | Cross-sectional study | 24 AAV patients vs. 16 HCs | qRT-PCR | In the uEVs of AAV patients, 5 miRNAs (miR-30a-5p, miR-31-3p, miR-99a-5p, miR-106b-5p, and miR-182-5p) were significantly increased (p < 0.05). | [91] |
Cross-sectional study | Test cohort: 10 AAV patients vs. 10 HCs Validation cohort: 10 AAV patients vs. 10 IgA patients vs. 10 HCs | LC-MS/MS Microarray analysis | Test cohort: 475 statistically significant differentially altered proteins between healthy donors and AAV patients in uEV samples were identified (p = 0.05). Validation cohort: the antibody microarray assay confirmed significant changes in protein levels of MAN1A1, haptoglobin, nidogen-1 and MCP-1. | [92] |
2.4. ANCA-Associated Vasculitis
2.5. Idiopathic Membranous Nephropathy
2.6. Podocytopathies—Focal Segmental Glomerulosclerosis and Minimal Change Disease
2.7. Autosomal Dominant Polycystic Kidney Disease
2.8. Medullary Sponge Kidney Disease
Pathology | Study Design | Study Population | Technique | Major Findings | Reference |
---|---|---|---|---|---|
IMN | Cross-sectional study | Test cohort: 6 IMN patients vs. 6 HCs Validation cohort: 30 IMN patients vs. 30 HCs | High-throughput sequencing RT-qPCR | Test cohort: 25 miRNAs were significantly downregulated in IMN patients (p < 0.05). Validation cohort: significant correlations between miR-9-5p and triglyceride levels and eGFR, whereas miR-30b-5p revealed a significant relationship with the levels of anti-PLA2R, serum albumin, B2M, and the ratio of GS/GN. According to ROC analysis, exosomal miR-30b-5p and miR-9-5p also seemed to have a good diagnostic value in IMN patients (p < 0.05, AUC = 0.867 and 0.724, respectively). | [13] |
Cross-sectional study | 6 IMN patients and 5 HCs | Agilent 2200 Bioanalyzer | In the IMN and HC groups, there were 108 differentially co-expressed miRNAs, of which 95 showed an upregulation and 13 showed a downregulation. | [95] | |
FSGS | Cross-sectional study | 16 primary FSGS patients vs. 5 MCD patients vs. 5 HCs | qRT-PCR | FSGS and MCD comparison analyses identified 126 and 155 miRNAs that were differently expressed in plasma and urine. Compared to FSGS patients and healthy individuals, urinary miR-1225-5p levels were considerably higher in MCD patients. While FSGS patients’ urinary levels of miR-1915, miR-663, and miR-155 were significantly different from those of MCD patients and healthy controls (p < 0.05). | [107] |
ADPKD | Cross-sectional study | Identification cohort: 6 ADPKD (CKD 2-3) patients vs. 6 HCs Confirmation cohort 1: 6 CKD 3 stage patients vs. 6 ADPKD (CKD 2-3) patients vs. 6 HCs Confirmation cohort 2: 4 CKD stage 3 patients vs. 5 ADPKD patients (CKD 2-3) Confirmation cohort 3: 6 ADPKD (CKD 1) patients vs. 11 ADPKD (CKD 2-4) vs. 4 HCs | LC-MS/MS | Identification cohort: several plakins, complement-related proteins, and glycoproteins were more abundant in uEVs of ADPKD patients whereas annexin A2, contactin-1, syndecan-4, and granulins were less abundant in ADPKD patients. Confirmation cohort 1-3: the abundance of villin-1, envoplakin, periplakin, complement 3, and complement 9 was higher in uEVs of ADPKD patients. However, while complement was already increased in uEVs from ADPKD patients with intact kidney function, villin-1, periplakin, and envoplakin were only elevated in progressing CKD. | [110] |
Cross-sectional study | Discovery cohort: 7 ADPKD with early disease (eGFR > 60 mL/ min/1.73 m²) vs. 9 with late disease (eGFR < 60 mL/min/ 1.73 m²) vs. 6 age-and sex-matched HCs Validation cohort: 20 ADPKD patients with early disease vs. 20 ADPKD patients with late disease vs. 20 HCs CKD cohort: 20 CKD patients with DM2 vs. 10 HCs | RNA sequencing qPCR qPCR | Discovery cohort: By comparing the three groups’ differentially expressed miRNAs, a total of 23 miRNAs were found to be significantly different (p < 0.05). Validation cohort: when compared to HCs, expression of all 5 miRNAs (miR-192-5p, miR-194-5p, miR-30a-5p, miR-30d-5p and miR-30e-5p) was markedly decreased in ADPKD patients who had advanced illness. Only miR-192- 5p showed a substantial reduction in early disease patients as compared to HCs (fold change 0.54) CKD cohort: although they did not approach statistical significance, alterations for these 5 miRNAs demonstrated a different pattern from ADPKD patients. | [119] | |
Medullary sponge kidney disease | Cross-sectional study | 15 ADPKD patients vs. 15 MSKD patients vs. 17 HCs | MS | 2950 proteins in total were isolated from microvesicles and exosomes, of which 1579 (54%) were found to be present in all samples, but only 178 (6%) and 88 (3%) were found to be unique to medullary sponge kidney microvesicles and exosomes, and 183 (6%) and 98 (3%) were found to be unique to ADPKD microvesicles and exosomes, respectively. | [121] |
3. Kidney Transplantation
4. The Use of Urinary Extracellular Vesicles in Children with Kidney Disease
4.1. Kidney Hypoplasia
4.2. Focal Segmental Glomerulosclerosis
4.3. Glomerulonephritis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Borges, F.T.; Reis, L.A.; Schor, N. Extracellular Vesicles: Structure, Function, and Potential Clinical Uses in Renal Diseases. Braz. J. Med. Biol. Res. 2013, 46, 824–830. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Sun, W. Urinary Extracellular Microvesicles: Isolation Methods and Prospects for Urinary Proteome. Proteomics 2014, 14, 1922–1932. [Google Scholar] [CrossRef] [PubMed]
- Lässer, C.; Alikhani, V.S.; Ekström, K.; Eldh, M.; Paredes, P.T.; Bossios, A.; Sjöstrand, M.; Gabrielsson, S.; Lötvall, J.; Valadi, H. Human Saliva, Plasma and Breast Milk Exosomes Contain RNA: Uptake by Macrophages. J. Transl. Med. 2011, 9, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Witwer, K.W.; Buzás, E.I.; Bemis, L.T.; Bora, A.; Lässer, C.; Lötvall, J.; Nolte-’t Hoen, E.N.; Piper, M.G.; Sivaraman, S.; Skog, J.; et al. Standardization of Sample Collection, Isolation and Analysis Methods in Extracellular Vesicle Research. J. Extracell. Vesicles 2013, 2, 20360. [Google Scholar] [CrossRef]
- Cocucci, E.; Racchetti, G.; Meldolesi, J. Shedding Microvesicles: Artefacts No More. Trends Cell Biol. 2009, 19, 43–51. [Google Scholar] [CrossRef]
- Mathivanan, S.; Lim, J.W.E.; Tauro, B.J.; Ji, H.; Moritz, R.L.; Simpson, R.J. Proteomics Analysis of A33 Immunoaffinity-Purified Exosomes Released from the Human Colon Tumor Cell Line LIM1215 Reveals a Tissue-Specific Protein Signature. Mol. Cell. Proteomics 2010, 9, 197–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kowal, J.; Tkach, M.; Théry, C. Biogenesis and Secretion of Exosomes. Curr. Opin. Cell. Biol. 2014, 29, 116–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohno, S.; Ishikawa, A.; Kuroda, M. Roles of Exosomes and Microvesicles in Disease Pathogenesis. Adv. Drug Deliv. Rev. 2013, 65, 398–401. [Google Scholar] [CrossRef] [PubMed]
- Raposo, G.; Stoorvogel, W. Extracellular Vesicles: Exosomes, Microvesicles, and Friends. J. Cell. Biol. 2013, 200, 373–383. [Google Scholar] [CrossRef] [Green Version]
- Pekkucuksen, N.T.; Liu, L.P.; Aly, R.; Shoemaker, L.R.; Alli, A.A. Extracellular Vesicles from Focal Segmental Glomerulosclerosis Pediatric Patients Induce STAT3 Activation and Mesangial Cell Proliferation. PLoS ONE 2022, 17, e0274598. [Google Scholar] [CrossRef]
- Helmke, A.; von Vietinghoff, S. Extracellular Vesicles as Mediators of Vascular Inflammation in Kidney Disease. World J. Nephrol. 2016, 5, 125–138. [Google Scholar] [CrossRef] [Green Version]
- Ranghino, A.; Bruno, S.; Bussolati, B.; Moggio, A.; Dimuccio, V.; Tapparo, M.; Biancone, L.; Gontero, P.; Frea, B.; Camussi, G. The Effects of Glomerular and Tubular Renal Progenitors and Derived Extracellular Vesicles on Recovery from Acute Kidney Injury. Stem Cell Res. Ther. 2017, 8, 24. [Google Scholar] [CrossRef] [Green Version]
- Guo, S.; Hao, H.; Li, S.; Zhang, L.; Li, R. Differential Expression of Urinary Exosomal MiRNA in Idiopathic Membranous Nephropathy and Evaluation of Its Diagnostic Value. Tohoku J. Exp. Med. 2022, 256, 327–336. [Google Scholar] [CrossRef]
- Adachi, J.; Kumar, C.; Zhang, Y.; Olsen, J.V.; Mann, M. The Human Urinary Proteome Contains More than 1500 Proteins, Including a Large Proportion of Membrane Proteins. Genome Biol. 2006, 7, R80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pisitkun, T.; Johnstone, R.; Knepper, M.A. Discovery of Urinary Biomarkers. Mol. Cell. Proteomics 2006, 5, 1760–1771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takizawa, K.; Ueda, K.; Sekiguchi, M.; Nakano, E.; Nishimura, T.; Kajiho, Y.; Kanda, S.; Miura, K.; Hattori, M.; Hashimoto, J.; et al. Urinary Extracellular Vesicles Signature for Diagnosis of Kidney Disease. iScience 2022, 25, 105416. [Google Scholar] [CrossRef] [PubMed]
- Erdbrügger, U.; Blijdorp, C.J.; Bijnsdorp, I.V.; Borràs, F.E.; Burger, D.; Bussolati, B.; Byrd, J.B.; Clayton, A.; Dear, J.W.; Falcón-Pérez, J.M.; et al. Urinary Extracellular Vesicles: A Position Paper by the Urine Task Force of the International Society for Extracellular Vesicles. J. Extracell Vesicles 2021, 10, e12093. [Google Scholar] [CrossRef]
- van Heugten, M.H.; Hoorn, E.J.; Fenton, R.A. Urinary Extracellular Vesicles: Does Cargo Reflect Tissue? Curr. Opin. Nephrol. Hypertens 2022, 31, 464–470. [Google Scholar] [CrossRef]
- Rudolphi, C.F.; Blijdorp, C.J.; van Willigenburg, H.; Salih, M.; Hoorn, E.J. Urinary Extracellular Vesicles and Tubular Transport. Nephrol. Dial. Transplant. 2022, gfac235. [Google Scholar] [CrossRef] [PubMed]
- Krause, M.; Rak-Raszewska, A.; Naillat, F.; Saarela, U.; Schmidt, C.; Ronkainen, V.-P.; Bart, G.; Ylä-Herttuala, S.; Vainio, S.J. Exosomes as Secondary Inductive Signals Involved in Kidney Organogenesis. J. Extracell. Vesicles 2018, 7, 1422675. [Google Scholar] [CrossRef] [Green Version]
- Kispert, A.; Vainio, S.; McMahon, A.P. Wnt-4 Is a Mesenchymal Signal for Epithelial Transformation of Metanephric Mesenchyme in the Developing Kidney. Development 1998, 125, 4225–4234. [Google Scholar] [CrossRef]
- Lv, L.-L.; Feng, Y.; Tang, T.-T.; Liu, B.-C. New Insight into the Role of Extracellular Vesicles in Kidney Disease. J. Cell. Mol. Med. 2019, 23, 731–739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lv, L.-L.; Feng, Y.; Wen, Y.; Wu, W.-J.; Ni, H.-F.; Li, Z.-L.; Zhou, L.-T.; Wang, B.; Zhang, J.-D.; Crowley, S.D.; et al. Exosomal CCL2 from Tubular Epithelial Cells Is Critical for Albumin-Induced Tubulointerstitial Inflammation. J. Am. Soc. Nephrol. 2018, 29, 919–935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gildea, J.J.; Seaton, J.E.; Victor, K.G.; Reyes, C.M.; Bigler Wang, D.; Pettigrew, A.C.; Courtner, C.E.; Shah, N.; Tran, H.T.; Van Sciver, R.E.; et al. Exosomal Transfer from Human Renal Proximal Tubule Cells to Distal Tubule and Collecting Duct Cells. Clin. Biochem. 2014, 47, 89–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blijdorp, C.J.; Hartjes, T.A.; Wei, K.-Y.; van Heugten, M.H.; Bovée, D.M.; Budde, R.P.J.; van de Wetering, J.; Hoenderop, J.G.J.; van Royen, M.E.; Zietse, R.; et al. Nephron Mass Determines the Excretion Rate of Urinary Extracellular Vesicles. J. Extracell. Vesicles 2022, 11, e12181. [Google Scholar] [CrossRef] [PubMed]
- Pisitkun, T.; Shen, R.-F.; Knepper, M.A. Identification and Proteomic Profiling of Exosomes in Human Urine. Proc. Natl. Acad. Sci. USA 2004, 101, 13368–13373. [Google Scholar] [CrossRef] [Green Version]
- Alicic, R.Z.; Rooney, M.T.; Tuttle, K.R. Diabetic Kidney Disease: Challenges, Progress, and Possibilities. Clin. J. Am. Soc. Nephrol. 2017, 12, 2032–2045. [Google Scholar] [CrossRef] [Green Version]
- Looker, H.C.; Mauer, M.; Nelson, R.G. Role of Kidney Biopsies for Biomarker Discovery in Diabetic Kidney Disease. Adv. Chronic Kidney Dis. 2018, 25, 192–201. [Google Scholar] [CrossRef]
- Colhoun, H.M.; Marcovecchio, M.L. Biomarkers of Diabetic Kidney Disease. Diabetologia 2018, 61, 996–1011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papadopoulou-Marketou, N.; Kanaka-Gantenbein, C.; Marketos, N.; Chrousos, G.P.; Papassotiriou, I. Biomarkers of Diabetic Nephropathy: A 2017 Update. Crit. Rev. Clin. Lab. Sci. 2017, 54, 326–342. [Google Scholar] [CrossRef]
- Jha, J.C.; Jandeleit-Dahm, K.A.M.; Cooper, M.E. New Insights into the Use of Biomarkers of Diabetic Nephropathy. Adv. Chronic Kidney Dis. 2014, 21, 318–326. [Google Scholar] [CrossRef]
- Raimondo, F.; Corbetta, S.; Morosi, L.; Chinello, C.; Gianazza, E.; Castoldi, G.; Di Gioia, C.; Bombardi, C.; Stella, A.; Battaglia, C.; et al. Urinary Exosomes and Diabetic Nephropathy: A Proteomic Approach. Mol. Biosyst. 2013, 9, 1139–1146. [Google Scholar] [CrossRef] [PubMed]
- Zubiri, I.; Posada-Ayala, M.; Benito-Martin, A.; Maroto, A.S.; Martin-Lorenzo, M.; Cannata-Ortiz, P.; de la Cuesta, F.; Gonzalez-Calero, L.; Barderas, M.G.; Fernandez-Fernandez, B.; et al. Kidney Tissue Proteomics Reveals Regucalcin Downregulation in Response to Diabetic Nephropathy with Reflection in Urinary Exosomes. Transl. Res. 2015, 166, 474–484. [Google Scholar] [CrossRef]
- Scott, S.H.; Bahnson, B.J. Senescence Marker Protein 30: Functional and Structural Insights to Its Unknown Physiological Function. Biomol. Concepts 2011, 2, 469–480. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, M. The Transcriptional Regulation of Regucalcin Gene Expression. Mol. Cell Biochem. 2011, 346, 147–171. [Google Scholar] [CrossRef]
- Senmaru, T.; Yamazaki, M.; Okada, H.; Asano, M.; Fukui, M.; Nakamura, N.; Obayashi, H.; Kondo, Y.; Maruyama, N.; Ishigami, A.; et al. Pancreatic Insulin Release in Vitamin C-Deficient Senescence Marker Protein-30/Gluconolactonase Knockout Mice. J. Clin. Biochem. Nutr. 2012, 50, 114–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasegawa, G.; Yamasaki, M.; Kadono, M.; Tanaka, M.; Asano, M.; Senmaru, T.; Kondo, Y.; Fukui, M.; Obayashi, H.; Maruyama, N.; et al. Senescence Marker Protein-30/Gluconolactonase Deletion Worsens Glucose Tolerance through Impairment of Acute Insulin Secretion. Endocrinology 2010, 151, 529–536. [Google Scholar] [CrossRef] [PubMed]
- Matsui-Hirai, H.; Hayashi, T.; Yamamoto, S.; Ina, K.; Maeda, M.; Kotani, H.; Iguchi, A.; Ignarro, L.J.; Hattori, Y. Dose-Dependent Modulatory Effects of Insulin on Glucose-Induced Endothelial Senescence in Vitro and in Vivo: A Relationship between Telomeres and Nitric Oxide. J. Pharmacol. Exp. Ther. 2011, 337, 591–599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakagawa, T.; Yamaguchi, M. Nuclear Localization of Regucalcin Is Enhanced in Culture with Protein Kinase C Activation in Cloned Normal Rat Kidney Proximal Tubular Epithelial NRK52E Cells. Int. J. Mol. Med. 2008, 21, 605–610. [Google Scholar] [CrossRef] [Green Version]
- Yumura, W.; Imasawa, T.; Suganuma, S.; Ishigami, A.; Handa, S.; Kubo, S.; Joh, K.; Maruyama, N. Accelerated Tubular Cell Senescence in SMP30 Knockout Mice. Histol. Histopathol. 2006, 21, 1151–1156. [Google Scholar] [CrossRef] [PubMed]
- Barutta, F.; Tricarico, M.; Corbelli, A.; Annaratone, L.; Pinach, S.; Grimaldi, S.; Bruno, G.; Cimino, D.; Taverna, D.; Deregibus, M.C.; et al. Urinary Exosomal MicroRNAs in Incipient Diabetic Nephropathy. PLoS ONE 2013, 8, e73798. [Google Scholar] [CrossRef] [Green Version]
- Denby, L.; Ramdas, V.; McBride, M.W.; Wang, J.; Robinson, H.; McClure, J.; Crawford, W.; Lu, R.; Hillyard, D.Z.; Khanin, R.; et al. MiR-21 and MiR-214 Are Consistently Modulated during Renal Injury in Rodent Models. Am. J. Pathol. 2011, 179, 661–672. [Google Scholar] [CrossRef]
- Harvey, S.J.; Jarad, G.; Cunningham, J.; Goldberg, S.; Schermer, B.; Harfe, B.D.; McManus, M.T.; Benzing, T.; Miner, J.H. Podocyte-Specific Deletion of Dicer Alters Cytoskeletal Dynamics and Causes Glomerular Disease. JASN 2008, 19, 2150–2158. [Google Scholar] [CrossRef] [Green Version]
- Cordes, K.R.; Sheehy, N.T.; White, M.P.; Berry, E.C.; Morton, S.U.; Muth, A.N.; Lee, T.-H.; Miano, J.M.; Ivey, K.N.; Srivastava, D. MiR-145 and MiR-143 Regulate Smooth Muscle Cell Fate and Plasticity. Nature 2009, 460, 705–710. [Google Scholar] [CrossRef] [Green Version]
- Tervaert, T.W.C.; Mooyaart, A.L.; Amann, K.; Cohen, A.H.; Cook, H.T.; Drachenberg, C.B.; Ferrario, F.; Fogo, A.B.; Haas, M.; de Heer, E.; et al. Pathologic Classification of Diabetic Nephropathy. J. Am. Soc. Nephrol. 2010, 21, 556–563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, Y.; Zhong, X.; Ni, H.-F.; Wang, C.; Tang, T.-T.; Wang, L.-T.; Song, K.-Y.; Tang, R.-N.; Liu, H.; Liu, B.-C.; et al. Urinary Small Extracellular Vesicles Derived CCL21 MRNA as Biomarker Linked with Pathogenesis for Diabetic Nephropathy. J. Transl. Med. 2021, 19, 355. [Google Scholar] [CrossRef] [PubMed]
- Sun, A.; Deng, J.; Guan, G.; Chen, S.; Liu, Y.; Cheng, J.; Li, Z.; Zhuang, X.; Sun, F.; Deng, H. Dipeptidyl Peptidase-IV Is a Potential Molecular Biomarker in Diabetic Kidney Disease. Diab. Vasc. Dis. Res. 2012, 9, 301–308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalani, A.; Mohan, A.; Godbole, M.M.; Bhatia, E.; Gupta, A.; Sharma, R.K.; Tiwari, S. Wilm’s Tumor-1 Protein Levels in Urinary Exosomes from Diabetic Patients with or without Proteinuria. PLoS ONE 2013, 8, e60177. [Google Scholar] [CrossRef]
- De, S.; Kuwahara, S.; Hosojima, M.; Ishikawa, T.; Kaseda, R.; Sarkar, P.; Yoshioka, Y.; Kabasawa, H.; Iida, T.; Goto, S.; et al. Exocytosis-Mediated Urinary Full-Length Megalin Excretion Is Linked With the Pathogenesis of Diabetic Nephropathy. Diabetes 2017, 66, 1391–1404. [Google Scholar] [CrossRef] [Green Version]
- Sakurai, A.; Ono, H.; Ochi, A.; Matsuura, M.; Yoshimoto, S.; Kishi, S.; Murakami, T.; Tominaga, T.; Nagai, K.; Abe, H.; et al. Involvement of Elf3 on Smad3 Activation-Dependent Injuries in Podocytes and Excretion of Urinary Exosome in Diabetic Nephropathy. PLoS ONE 2019, 14, e0216788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benito-Martin, A.; Ucero, A.C.; Zubiri, I.; Posada-Ayala, M.; Fernandez-Fernandez, B.; Cannata-Ortiz, P.; Sanchez-Nino, M.D.; Ruiz-Ortega, M.; Egido, J.; Alvarez-Llamas, G.; et al. Osteoprotegerin in Exosome-like Vesicles from Human Cultured Tubular Cells and Urine. PLoS ONE 2013, 8, e72387. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Yao, W.; Tang, Y.; Zhuang, W.; Wu, D.; Huang, S.; Sheng, H. Urinary Exosomes as a Novel Biomarker for Evaluation of α-Lipoic Acid’s Protective Effect in Early Diabetic Nephropathy. J. Clin. Lab. Anal. 2017, 31, e22129. [Google Scholar] [CrossRef] [Green Version]
- Zubiri, I.; Posada-Ayala, M.; Sanz-Maroto, A.; Calvo, E.; Martin-Lorenzo, M.; Gonzalez-Calero, L.; de la Cuesta, F.; Lopez, J.A.; Fernandez-Fernandez, B.; Ortiz, A.; et al. Diabetic Nephropathy Induces Changes in the Proteome of Human Urinary Exosomes as Revealed by Label-Free Comparative Analysis. J. Proteomics 2014, 96, 92–102. [Google Scholar] [CrossRef]
- Grewal, J.S.; Tsai, J.Y.; Khan, S.R. Oxalate-Inducible AMBP Gene and Its Regulatory Mechanism in Renal Tubular Epithelial Cells. Biochem. J. 2005, 387, 609–616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.; Saha, P.K.; Yang, Q.-H.; Lee, S.; Park, J.Y.; Suh, Y.; Lee, S.-K.; Chan, L.; Roeder, R.G.; Lee, J.W. Targeted Inactivation of MLL3 Histone H3-Lys-4 Methyltransferase Activity in the Mouse Reveals Vital Roles for MLL3 in Adipogenesis. Proc. Natl. Acad. Sci. USA 2008, 105, 19229–19234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, F.; Chen, Y.; Xiao, H.; Zou, Z.; Ning, J.; Chen, H.; Zou, H. Value of podocalyxin levels in urinary extracellular vesicles for diagnosis of diabetic nephropathy. Nan Fang Yi Ke Da Xue Xue Bao 2018, 38, 1126–1130. [Google Scholar] [CrossRef]
- Sinha, N.; Kumar, V.; Puri, V.; Nada, R.; Rastogi, A.; Jha, V.; Puri, S. Urinary Exosomes: Potential Biomarkers for Diabetic Nephropathy. Nephrology 2020, 25, 881–887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, Y.; Jia, Y.; Cuihua, X.; Hu, F.; Xue, M.; Xue, Y. Urinary Exosomal MicroRNA Profiling in Incipient Type 2 Diabetic Kidney Disease. J. Diabetes Res. 2017, 2017, 6978984. [Google Scholar] [CrossRef] [Green Version]
- Delić, D.; Eisele, C.; Schmid, R.; Baum, P.; Wiech, F.; Gerl, M.; Zimdahl, H.; Pullen, S.S.; Urquhart, R. Urinary Exosomal MiRNA Signature in Type II Diabetic Nephropathy Patients. PLoS ONE 2016, 11, e0150154. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Yang, S.; Qiao, R.; Zhang, J. Potential Value of Urinary Exosome-Derived Let-7c-5p in the Diagnosis and Progression of Type II Diabetic Nephropathy. Clin. Lab. 2018, 64, 709–718. [Google Scholar] [CrossRef]
- Lv, L.-L.; Feng, Y.; Wu, M.; Wang, B.; Li, Z.-L.; Zhong, X.; Wu, W.-J.; Chen, J.; Ni, H.-F.; Tang, T.-T.; et al. Exosomal MiRNA-19b-3p of Tubular Epithelial Cells Promotes M1 Macrophage Activation in Kidney Injury. Cell Death Differ. 2020, 27, 210–226. [Google Scholar] [CrossRef] [PubMed]
- Eissa, S.; Matboli, M.; Bekhet, M.M. Clinical Verification of a Novel Urinary MicroRNA Panal: 133b, -342 and -30 as Biomarkers for Diabetic Nephropathy Identified by Bioinformatics Analysis. Biomed. Pharmacother. 2016, 83, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Eissa, S.; Matboli, M.; Aboushahba, R.; Bekhet, M.M.; Soliman, Y. Urinary Exosomal MicroRNA Panel Unravels Novel Biomarkers for Diagnosis of Type 2 Diabetic Kidney Disease. J. Diabetes Complicat. 2016, 30, 1585–1592. [Google Scholar] [CrossRef] [PubMed]
- Berthelot, L.; Robert, T.; Vuiblet, V.; Tabary, T.; Braconnier, A.; Dramé, M.; Toupance, O.; Rieu, P.; Monteiro, R.C.; Touré, F. Recurrent IgA Nephropathy Is Predicted by Altered Glycosylated IgA, Autoantibodies and Soluble CD89 Complexes. Kidney Int. 2015, 88, 815–822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Myllymäki, J.; Honkanen, T.; Syrjänen, J.; Helin, H.; Rantala, I.; Pasternack, A.; Mustonen, J. Uric Acid Correlates with the Severity of Histopathological Parameters in IgA Nephropathy. Nephrol. Dial. Transplant. 2005, 20, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Coppo, R.; Fervenza, F.C. Persistent Microscopic Hematuria as a Risk Factor for Progression of IgA Nephropathy: New Floodlight on a Nearly Forgotten Biomarker. J. Am. Soc. Nephrol. 2017, 28, 2831–2834. [Google Scholar] [CrossRef] [Green Version]
- Yokoyama, H.; Wada, T.; Furuichi, K.; Segawa, C.; Shimizu, M.; Kobayashi, K.; Su, S.; Mukaida, N.; Matsushima, K. Urinary Levels of Chemokines (MCAF/MCP-1, IL-8) Reflect Distinct Disease Activities and Phases of Human IgA Nephropathy. J. Leukoc. Biol. 1998, 63, 493–499. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Lv, L.-L.; Wu, W.-J.; Li, Z.-L.; Chen, J.; Ni, H.-F.; Zhou, L.-T.; Tang, T.-T.; Wang, F.-M.; Wang, B.; et al. Urinary Exosomes and Exosomal CCL2 MRNA as Biomarkers of Active Histologic Injury in IgA Nephropathy. Am. J. Pathol. 2018, 188, 2542–2552. [Google Scholar] [CrossRef] [Green Version]
- Min, Q.-H.; Chen, X.-M.; Zou, Y.-Q.; Zhang, J.; Li, J.; Wang, Y.; Li, S.-Q.; Gao, Q.-F.; Sun, F.; Liu, J.; et al. Differential Expression of Urinary Exosomal MicroRNAs in IgA Nephropathy. J. Clin. Lab. Anal. 2018, 32, e22226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szeto, C.-C.; Li, P.K.-T. MicroRNAs in IgA Nephropathy. Nat. Rev. Nephrol. 2014, 10, 249–256. [Google Scholar] [CrossRef]
- Zhao, S.; Sun, Y.; Mao, Q.; Zhou, C.; Chen, Y.; Xue, D. Exosomal MiR-4639 and MiR-210 in Plasma and Urine as Biomarkers in IgA Nephropathy. Nephron 2022, 146, 539–552. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Hao, H.; Li, R.; Guo, S. Urinary Exosomal MicroRNAs as New Noninvasive Biomarkers of IgA Nephropathy. Tohoku J. Exp. Med. 2022, 256, 215–223. [Google Scholar] [CrossRef]
- Pawluczyk, I.; Nicholson, M.; Barbour, S.; Er, L.; Selvaskandan, H.; Bhachu, J.S.; Barratt, J. A Pilot Study to Predict Risk of IgA Nephropathy Progression Based on MiR-204 Expression. Kidney Int. Rep. 2021, 6, 2179–2188. [Google Scholar] [CrossRef]
- Tsokos, G.C.; Lo, M.S.; Costa Reis, P.; Sullivan, K.E. New Insights into the Immunopathogenesis of Systemic Lupus Erythematosus. Nat. Rev. Rheumatol. 2016, 12, 716–730. [Google Scholar] [CrossRef]
- Adler, M.; Chambers, S.; Edwards, C.; Neild, G.; Isenberg, D. An Assessment of Renal Failure in an SLE Cohort with Special Reference to Ethnicity, over a 25-Year Period. Rheumatology 2006, 45, 1144–1147. [Google Scholar] [CrossRef] [Green Version]
- Korbet, S.M.; Lewis, E.J.; Schwartz, M.M.; Reichlin, M.; Evans, J.; Rohde, R.D. Factors Predictive of Outcome in Severe Lupus Nephritis. Lupus Nephritis Collaborative Study Group. Am. J. Kidney Dis. 2000, 35, 904–914. [Google Scholar] [CrossRef] [PubMed]
- Solé, C.; Cortés-Hernández, J.; Felip, M.L.; Vidal, M.; Ordi-Ros, J. MiR-29c in Urinary Exosomes as Predictor of Early Renal Fibrosis in Lupus Nephritis. Nephrol. Dial. Transplant. 2015, 30, 1488–1496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solé, C.; Moliné, T.; Vidal, M.; Ordi-Ros, J.; Cortés-Hernández, J. An Exosomal Urinary MiRNA Signature for Early Diagnosis of Renal Fibrosis in Lupus Nephritis. Cells 2019, 8, 773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ichii, O.; Otsuka-Kanazawa, S.; Horino, T.; Kimura, J.; Nakamura, T.; Matsumoto, M.; Toi, M.; Kon, Y. Decreased MiR-26a Expression Correlates with the Progression of Podocyte Injury in Autoimmune Glomerulonephritis. PLoS ONE 2014, 9, e110383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Navarro-Quiroz, E.; Pacheco-Lugo, L.; Navarro-Quiroz, R.; Lorenzi, H.; España-Puccini, P.; Díaz-Olmos, Y.; Almendrales, L.; Olave, V.; Gonzalez-Torres, H.; Diaz-Perez, A.; et al. Profiling Analysis of Circulating MicroRNA in Peripheral Blood of Patients with Class IV Lupus Nephritis. PLoS ONE 2017, 12, e0187973. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Xu, X.; Tang, X.; Bian, X.; Shen, B.; Zhao, H.; Luo, S.; Chen, Z.; Zhang, K. MicroRNA Expression Profile of Urinary Exosomes in Type IV Lupus Nephritis Complicated by Cellular Crescent. J. Biol. Res. 2018, 25, 16. [Google Scholar] [CrossRef] [Green Version]
- Perez-Hernandez, J.; Forner, M.J.; Pinto, C.; Chaves, F.J.; Cortes, R.; Redon, J. Increased Urinary Exosomal MicroRNAs in Patients with Systemic Lupus Erythematosus. PLoS ONE 2015, 10, e0138618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia-Vives, E.; Solé, C.; Moliné, T.; Vidal, M.; Agraz, I.; Ordi-Ros, J.; Cortés-Hernández, J. The Urinary Exosomal MiRNA Expression Profile Is Predictive of Clinical Response in Lupus Nephritis. Int. J. Mol. Sci. 2020, 21, 1372. [Google Scholar] [CrossRef] [Green Version]
- Costa, V.; Carina, V.; Conigliaro, A.; Raimondi, L.; De Luca, A.; Bellavia, D.; Salamanna, F.; Setti, S.; Alessandro, R.; Fini, M.; et al. MiR-31-5p Is a LIPUS-Mechanosensitive MicroRNA That Targets HIF-1α Signaling and Cytoskeletal Proteins. Int. J. Mol. Sci. 2019, 20, 1569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, W.; Ren, Y.; Feng, X.; Yao, G.; Chen, W.; Sun, Y.; Wang, H.; Gao, X.; Sun, L. Hypoxia Inducible Factor-1 Alpha Promotes Mesangial Cell Proliferation in Lupus Nephritis. Am. J. Nephrol. 2014, 40, 507–515. [Google Scholar] [CrossRef]
- Yamakuchi, M.; Lotterman, C.D.; Bao, C.; Hruban, R.H.; Karim, B.; Mendell, J.T.; Huso, D.; Lowenstein, C.J. P53-Induced MicroRNA-107 Inhibits HIF-1 and Tumor Angiogenesis. Proc. Natl. Acad. Sci. USA 2010, 107, 6334–6339. [Google Scholar] [CrossRef] [Green Version]
- Cheng, C.; Guo, F.; Yang, H.; Ma, J.; Li, H.; Yin, L.; Li, M.; Liu, S. Identification and Analysis of the Predictive Urinary Exosomal MiR-195-5p in Lupus Nephritis Based on Renal MiRNA-MRNA Co-Expression Network. Lupus 2022, 31, 1786–1799. [Google Scholar] [CrossRef] [PubMed]
- Tangtanatakul, P.; Klinchanhom, S.; Sodsai, P.; Sutichet, T.; Promjeen, C.; Avihingsanon, Y.; Hirankarn, N. Down-Regulation of Let-7a and MiR-21 in Urine Exosomes from Lupus Nephritis Patients during Disease Flare. Asian Pac. J. Allergy Immunol. 2019, 37, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Perez-Hernandez, J.; Martinez-Arroyo, O.; Ortega, A.; Galera, M.; Solis-Salguero, M.A.; Chaves, F.J.; Redon, J.; Forner, M.J.; Cortes, R. Urinary Exosomal MiR-146a as a Marker of Albuminuria, Activity Changes and Disease Flares in Lupus Nephritis. J. Nephrol. 2021, 34, 1157–1167. [Google Scholar] [CrossRef] [PubMed]
- So, B.Y.F.; Yap, D.Y.H.; Chan, T.M. MicroRNAs in Lupus Nephritis-Role in Disease Pathogenesis and Clinical Applications. Int. J. Mol. Sci. 2021, 22, 10737. [Google Scholar] [CrossRef]
- Frydlova, J.; Zednikova, I.; Satrapova, V.; Pazourkova, E.; Santorova, S.; Hruskova, Z.; Tesar, V.; Vokurka, M.; Prikryl, P.; Korabecna, M. Analysis of MicroRNAs in Small Urinary Extracellular Vesicles and Their Potential Roles in Pathogenesis of Renal ANCA-Associated Vasculitis. Int. J. Mol. Sci. 2022, 23, 4344. [Google Scholar] [CrossRef] [PubMed]
- Prikryl, P.; Satrapova, V.; Frydlova, J.; Hruskova, Z.; Zima, T.; Tesar, V.; Vokurka, M. Mass Spectrometry-Based Proteomic Exploration of the Small Urinary Extracellular Vesicles in ANCA-Associated Vasculitis in Comparison with Total Urine. J. Proteomics 2021, 233, 104067. [Google Scholar] [CrossRef] [PubMed]
- Luo, W.; Olaru, F.; Miner, J.H.; Beck, L.H.; van der Vlag, J.; Thurman, J.M.; Borza, D.-B. Alternative Pathway Is Essential for Glomerular Complement Activation and Proteinuria in a Mouse Model of Membranous Nephropathy. Front. Immunol. 2018, 9, 1433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fierro-Fernández, M.; Miguel, V.; Márquez-Expósito, L.; Nuevo-Tapioles, C.; Herrero, J.I.; Blanco-Ruiz, E.; Tituaña, J.; Castillo, C.; Cannata, P.; Monsalve, M.; et al. MiR-9-5p Protects from Kidney Fibrosis by Metabolic Reprogramming. FASEB J. 2020, 34, 410–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Zhu, Y.; Cai, R.; Jin, J.; He, Q. Differential Expression of Urinary Exosomal Small RNAs in Idiopathic Membranous Nephropathy. Biomed Res. Int. 2020, 2020, 3170927. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.-P.; Geng, J.-N.; Sun, B.; Sun, C.-B.; Shi, Y.; Yu, X.-Y. MiR-92b-3p Is Induced by Advanced Glycation End Products and Involved in the Pathogenesis of Diabetic Nephropathy. Evid. Based Complement. Alternat. Med. 2020, 2020, 6050874. [Google Scholar] [CrossRef] [Green Version]
- Wei, B.; Liu, Y.-S.; Guan, H.-X. MicroRNA-145-5p Attenuates High Glucose-Induced Apoptosis by Targeting the Notch Signaling Pathway in Podocytes. Exp. Ther. Med. 2020, 19, 1915–1924. [Google Scholar] [CrossRef] [Green Version]
- Sun, F.; Bi, Q.; Wang, X.; Liu, J. Down-Regulation of Mir-27b Promotes Angiogenesis and Fibroblast Activation through Activating PI3K/AKT Signaling Pathway. Wound Repair Regen. 2020, 28, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Jiang, A.; Zhang, S.; Li, Z.; Liang, R.; Ren, S.; Li, J.; Pu, Y.; Yang, J. MiR-615-3p Promotes the Phagocytic Capacity of Splenic Macrophages by Targeting Ligand-Dependent Nuclear Receptor Corepressor in Cirrhosis-Related Portal Hypertension. Exp. Biol. Med. 2011, 236, 672–680. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Li, C.; Peng, Z.; Zhao, J.; Gong, G.; Tan, D. MiR-197 Expression in Peripheral Blood Mononuclear Cells from Hepatitis B Virus-Infected Patients. Gut Liver 2013, 7, 335–342. [Google Scholar] [CrossRef]
- van Rensburg, I.C.; du Toit, L.; Walzl, G.; du Plessis, N.; Loxton, A.G. Decreased Neutrophil-Associated MiRNA and Increased B-Cell Associated MiRNA Expression during Tuberculosis. Gene 2018, 655, 35–41. [Google Scholar] [CrossRef]
- Rood, I.M.; Merchant, M.L.; Wilkey, D.W.; Zhang, T.; Zabrouskov, V.; van der Vlag, J.; Dijkman, H.B.; Willemsen, B.K.; Wetzels, J.F.; Klein, J.B.; et al. Increased Expression of Lysosome Membrane Protein 2 in Glomeruli of Patients with Idiopathic Membranous Nephropathy. Proteomics 2015, 15, 3722–3730. [Google Scholar] [CrossRef] [PubMed]
- Eskelinen, E.-L.; Tanaka, Y.; Saftig, P. At the Acidic Edge: Emerging Functions for Lysosomal Membrane Proteins. Trends Cell Biol. 2003, 13, 137–145. [Google Scholar] [CrossRef]
- Shabaka, A.; Ribera, A.T.; Fernández-Juárez, G. Focal Segmental Glomerulosclerosis: State-of-the-Art and Clinical Perspective. NEF 2020, 144, 413–427. [Google Scholar] [CrossRef] [PubMed]
- Rydel, J.J.; Korbet, S.M.; Borok, R.Z.; Schwartz, M.M. Focal Segmental Glomerular Sclerosis in Adults: Presentation, Course, and Response to Treatment. Am. J. Kidney Dis. 1995, 25, 534–542. [Google Scholar] [CrossRef]
- Vivarelli, M.; Massella, L.; Ruggiero, B.; Emma, F. Minimal Change Disease. Clin. J. Am. Soc. Nephrol. 2017, 12, 332–345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramezani, A.; Devaney, J.M.; Cohen, S.; Wing, M.R.; Scott, R.; Knoblach, S.; Singhal, R.; Howard, L.; Kopp, J.B.; Raj, D.S. Circulating and Urinary MicroRNA Profile in Focal Segmental Glomerulosclerosis: A Pilot Study. Eur. J. Clin. Invest. 2015, 45, 394–404. [Google Scholar] [CrossRef] [Green Version]
- Igarashi, P.; Somlo, S. Genetics and Pathogenesis of Polycystic Kidney Disease. J. Am. Soc. Nephrol. 2002, 13, 2384–2398. [Google Scholar] [CrossRef] [Green Version]
- Ding, H.; Li, L.X.; Harris, P.C.; Yang, J.; Li, X. Extracellular Vesicles and Exosomes Generated from Cystic Renal Epithelial Cells Promote Cyst Growth in Autosomal Dominant Polycystic Kidney Disease. Nat. Commun. 2021, 12, 4548. [Google Scholar] [CrossRef] [PubMed]
- Salih, M.; Demmers, J.A.; Bezstarosti, K.; Leonhard, W.N.; Losekoot, M.; van Kooten, C.; Gansevoort, R.T.; Peters, D.J.M.; Zietse, R.; Hoorn, E.J.; et al. Proteomics of Urinary Vesicles Links Plakins and Complement to Polycystic Kidney Disease. J. Am. Soc. Nephrol. 2016, 27, 3079–3092. [Google Scholar] [CrossRef] [Green Version]
- Tomar, A.; George, S.; Kansal, P.; Wang, Y.; Khurana, S. Interaction of Phospholipase C-Gamma1 with Villin Regulates Epithelial Cell Migration. J. Biol. Chem. 2006, 281, 31972–31986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castelli, M.; De Pascalis, C.; Distefano, G.; Ducano, N.; Oldani, A.; Lanzetti, L.; Boletta, A. Regulation of the Microtubular Cytoskeleton by Polycystin-1 Favors Focal Adhesions Turnover to Modulate Cell Adhesion and Migration. BMC Cell Biol. 2015, 16, 15. [Google Scholar] [CrossRef] [Green Version]
- Castelli, M.; Boca, M.; Chiaravalli, M.; Ramalingam, H.; Rowe, I.; Distefano, G.; Carroll, T.; Boletta, A. Polycystin-1 Binds Par3/APKC and Controls Convergent Extension during Renal Tubular Morphogenesis. Nat. Commun. 2013, 4, 2658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, P.D. Aberrant Epithelial Cell Growth in Autosomal Dominant Polycystic Kidney Disease. Am. J. Kidney Dis. 1991, 17, 634–637. [Google Scholar] [CrossRef] [PubMed]
- Jefferson, J.J.; Leung, C.L.; Liem, R.K.H. Plakins: Goliaths That Link Cell Junctions and the Cytoskeleton. Nat. Rev. Mol. Cell Biol. 2004, 5, 542–553. [Google Scholar] [CrossRef]
- Silberberg, M.; Charron, A.J.; Bacallao, R.; Wandinger-Ness, A. Mispolarization of Desmosomal Proteins and Altered Intercellular Adhesion in Autosomal Dominant Polycystic Kidney Disease. Am. J. Physiol. Renal Physiol. 2005, 288, F1153–F1163. [Google Scholar] [CrossRef] [PubMed]
- Mrug, M.; Zhou, J.; Mrug, S.; Guay-Woodford, L.M.; Yoder, B.K.; Szalai, A.J. Complement C3 Activation in Cyst Fluid and Urine from Autosomal Dominant Polycystic Kidney Disease Patients. J. Intern. Med. 2014, 276, 539–540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mrug, M.; Zhou, J.; Woo, Y.; Cui, X.; Szalai, A.J.; Novak, J.; Churchill, G.A.; Guay-Woodford, L.M. Overexpression of Innate Immune Response Genes in a Model of Recessive Polycystic Kidney Disease. Kidney Int. 2008, 73, 63–76. [Google Scholar] [CrossRef] [Green Version]
- Magayr, T.A.; Song, X.; Streets, A.J.; Vergoz, L.; Chang, L.; Valluru, M.K.; Yap, H.L.; Lannoy, M.; Haghighi, A.; Simms, R.J.; et al. Global MicroRNA Profiling in Human Urinary Exosomes Reveals Novel Disease Biomarkers and Cellular Pathways for Autosomal Dominant Polycystic Kidney Disease. Kidney Int. 2020, 98, 420–435. [Google Scholar] [CrossRef]
- Fabris, A.; Anglani, F.; Lupo, A.; Gambaro, G. Medullary Sponge Kidney: State of the Art. Nephrol. Dial. Transplant. 2013, 28, 1111–1119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruschi, M.; Granata, S.; Santucci, L.; Candiano, G.; Fabris, A.; Antonucci, N.; Petretto, A.; Bartolucci, M.; Del Zotto, G.; Antonini, F.; et al. Proteomic Analysis of Urinary Microvesicles and Exosomes in Medullary Sponge Kidney Disease and Autosomal Dominant Polycystic Kidney Disease. Clin. J. Am. Soc. Nephrol. 2019, 14, 834–843. [Google Scholar] [CrossRef]
- Bruschi, M.; Granata, S.; Petretto, A.; Verlato, A.; Ghiggeri, G.M.; Stallone, G.; Candiano, G.; Zaza, G. A Comprehensive Proteomics Analysis of Urinary Extracellular Vesicles Identifies a Specific Kinase Protein Profile as a Novel Hallmark of Medullary Sponge Kidney Disease. Kidney Int. Rep. 2022, 7, 1420–1423. [Google Scholar] [CrossRef]
- Turco, A.E.; Lam, W.; Rule, A.D.; Denic, A.; Lieske, J.C.; Miller, V.M.; Larson, J.J.; Kremers, W.K.; Jayachandran, M. Specific Renal Parenchymal-Derived Urinary Extracellular Vesicles Identify Age-Associated Structural Changes in Living Donor Kidneys. J. Extracell Vesicles 2016, 5, 29642. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Boer, K.; Woud, W.W.; Udomkarnjananun, S.; Hesselink, D.A.; Baan, C.C. Urinary Extracellular Vesicles Are a Novel Tool to Monitor Allograft Function in Kidney Transplantation: A Systematic Review. Int. J. Mol. Sci. 2021, 22, 10499. [Google Scholar] [CrossRef] [PubMed]
- Lozano-Ramos, S.I.; Bancu, I.; Carreras-Planella, L.; Monguió-Tortajada, M.; Cañas, L.; Juega, J.; Bonet, J.; Armengol, M.P.; Lauzurica, R.; Borràs, F.E. Molecular Profile of Urine Extracellular Vesicles from Normo-Functional Kidneys Reveal Minimal Differences between Living and Deceased Donors. BMC Nephrol. 2018, 19, 189. [Google Scholar] [CrossRef] [Green Version]
- Braun, F.; Rinschen, M.; Buchner, D.; Bohl, K.; Plagmann, I.; Bachurski, D.; Richard Späth, M.; Antczak, P.; Göbel, H.; Klein, C.; et al. The Proteomic Landscape of Small Urinary Extracellular Vesicles during Kidney Transplantation. J. Extracell Vesicles 2020, 10, e12026. [Google Scholar] [CrossRef] [PubMed]
- Gonzales, P.A.; Pisitkun, T.; Hoffert, J.D.; Tchapyjnikov, D.; Star, R.A.; Kleta, R.; Wang, N.S.; Knepper, M.A. Large-Scale Proteomics and Phosphoproteomics of Urinary Exosomes. J. Am. Soc. Nephrol. 2009, 20, 363–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pienimaeki-Roemer, A.; Kuhlmann, K.; Böttcher, A.; Konovalova, T.; Black, A.; Orsó, E.; Liebisch, G.; Ahrens, M.; Eisenacher, M.; Meyer, H.E.; et al. Lipidomic and Proteomic Characterization of Platelet Extracellular Vesicle Subfractions from Senescent Platelets. Transfusion 2015, 55, 507–521. [Google Scholar] [CrossRef]
- Nauser, C.L.; Farrar, C.A.; Sacks, S.H. Complement Recognition Pathways in Renal Transplantation. J. Am. Soc. Nephrol. 2017, 28, 2571–2578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zuber, J.; Frimat, M.; Caillard, S.; Kamar, N.; Gatault, P.; Petitprez, F.; Couzi, L.; Jourde-Chiche, N.; Chatelet, V.; Gaisne, R.; et al. Use of Highly Individualized Complement Blockade Has Revolutionized Clinical Outcomes after Kidney Transplantation and Renal Epidemiology of Atypical Hemolytic Uremic Syndrome. J. Am. Soc. Nephrol. 2019, 30, 2449–2463. [Google Scholar] [CrossRef] [PubMed]
- Peake, P.W.; Pianta, T.J.; Succar, L.; Fernando, M.; Pugh, D.J.; McNamara, K.; Endre, Z.H. A Comparison of the Ability of Levels of Urinary Biomarker Proteins and Exosomal MRNA to Predict Outcomes after Renal Transplantation. PLoS ONE 2014, 9, e98644. [Google Scholar] [CrossRef] [Green Version]
- Alvarez, S.; Suazo, C.; Boltansky, A.; Ursu, M.; Carvajal, D.; Innocenti, G.; Vukusich, A.; Hurtado, M.; Villanueva, S.; Carreño, J.E.; et al. Urinary Exosomes as a Source of Kidney Dysfunction Biomarker in Renal Transplantation. Transplant. Proc. 2013, 45, 3719–3723. [Google Scholar] [CrossRef]
- Dimuccio, V.; Ranghino, A.; Praticò Barbato, L.; Fop, F.; Biancone, L.; Camussi, G.; Bussolati, B. Urinary CD133+ Extracellular Vesicles Are Decreased in Kidney Transplanted Patients with Slow Graft Function and Vascular Damage. PLoS ONE 2014, 9, e104490. [Google Scholar] [CrossRef] [Green Version]
- Asvapromtada, S.; Sonoda, H.; Kinouchi, M.; Oshikawa, S.; Takahashi, S.; Hoshino, Y.; Sinlapadeelerdkul, T.; Yokota-Ikeda, N.; Matsuzaki, T.; Ikeda, M. Characterization of Urinary Exosomal Release of Aquaporin-1 and -2 after Renal Ischemia-Reperfusion in Rats. Am. J. Physiol. Renal Physiol. 2018, 314, F584–F601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sonoda, H.; Yokota-Ikeda, N.; Oshikawa, S.; Kanno, Y.; Yoshinaga, K.; Uchida, K.; Ueda, Y.; Kimiya, K.; Uezono, S.; Ueda, A.; et al. Decreased Abundance of Urinary Exosomal Aquaporin-1 in Renal Ischemia-Reperfusion Injury. Am. J. Physiol. Renal Physiol. 2009, 297, F1006–F1016. [Google Scholar] [CrossRef] [Green Version]
- Oshikawa-Hori, S.; Yokota-Ikeda, N.; Sonoda, H.; Ikeda, M. Urinary Extracellular Vesicular Release of Aquaporins in Patients with Renal Transplantation. BMC Nephrol. 2019, 20, 216. [Google Scholar] [CrossRef] [PubMed]
- Freitas, R.C.C.; Bortolin, R.H.; Genvigir, F.D.V.; Bonezi, V.; Hirata, T.D.C.; Felipe, C.R.; Tedesco-Silva, H.; Medina-Pestana, J.O.; Cerda, A.; Doi, S.Q.; et al. Differentially Expressed Urinary Exo-MiRs and Clinical Outcomes in Kidney Recipients on Short-Term Tacrolimus Therapy: A Pilot Study. Epigenomics 2020, 12, 2019–2034. [Google Scholar] [CrossRef]
- Carreras-Planella, L.; Juega, J.; Taco, O.; Cañas, L.; Franquesa, M.; Lauzurica, R.; Borràs, F.E. Proteomic Characterization of Urinary Extracellular Vesicles from Kidney-Transplanted Patients Treated with Calcineurin Inhibitors. Int. J. Mol. Sci. 2020, 21, 7569. [Google Scholar] [CrossRef] [PubMed]
- Carreras-Planella, L.; Cucchiari, D.; Cañas, L.; Juega, J.; Franquesa, M.; Bonet, J.; Revuelta, I.; Diekmann, F.; Taco, O.; Lauzurica, R.; et al. Urinary Vitronectin Identifies Patients with High Levels of Fibrosis in Kidney Grafts. J. Nephrol. 2021, 34, 861–874. [Google Scholar] [CrossRef]
- Collins, A.J.; Foley, R.N.; Chavers, B.; Gilbertson, D.; Herzog, C.; Ishani, A.; Johansen, K.; Kasiske, B.L.; Kutner, N.; Liu, J.; et al. US Renal Data System 2013 Annual Data Report. Am. J. Kidney Dis. 2014, 63, A7. [Google Scholar] [CrossRef] [PubMed]
- Matas, A.J.; Smith, J.M.; Skeans, M.A.; Thompson, B.; Gustafson, S.K.; Schnitzler, M.A.; Stewart, D.E.; Cherikh, W.S.; Wainright, J.L.; Snyder, J.J.; et al. OPTN/SRTR 2012 Annual Data Report: Kidney. Am. J. Transplant 2014, 14 (Suppl. 1), 11–44. [Google Scholar] [CrossRef] [Green Version]
- Sigdel, T.K.; Salomonis, N.; Nicora, C.D.; Ryu, S.; He, J.; Dinh, V.; Orton, D.J.; Moore, R.J.; Hsieh, S.-C.; Dai, H.; et al. The Identification of Novel Potential Injury Mechanisms and Candidate Biomarkers in Renal Allograft Rejection by Quantitative Proteomics. Mol. Cell. Proteomics 2014, 13, 621–631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, J.-H.; Lee, C.-H.; Kim, K.Y.; Jung, H.-Y.; Choi, J.-Y.; Cho, J.-H.; Park, S.-H.; Kim, Y.-L.; Baek, M.-C.; Park, J.B.; et al. Novel Urinary Exosomal Biomarkers of Acute T Cell-Mediated Rejection in Kidney Transplant Recipients: A Cross-Sectional Study. PLoS ONE 2018, 13, e0204204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scholz, C.-J.; Kurzeder, C.; Koretz, K.; Windisch, J.; Kreienberg, R.; Sauer, G.; Deissler, H. Tspan-1 Is a Tetraspanin Preferentially Expressed by Mucinous and Endometrioid Subtypes of Human Ovarian Carcinomas. Cancer Lett. 2009, 275, 198–203. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Lin, H.-Y.; Assaker, J.P.; Jeong, S.; Huang, C.-H.; Kurdi, A.; Lee, K.; Fraser, K.; Min, C.; Eskandari, S.; et al. Integrated Kidney Exosome Analysis for the Detection of Kidney Transplant Rejection. ACS Nano 2017, 11, 11041–11046. [Google Scholar] [CrossRef]
- Sedej, I.; Štalekar, M.; Tušek Žnidarič, M.; Goričar, K.; Kojc, N.; Kogovšek, P.; Dolžan, V.; Arnol, M.; Lenassi, M. Extracellular Vesicle-Bound DNA in Urine Is Indicative of Kidney Allograft Injury. J. Extracell. Vesicles 2022, 11, e12268. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.-Y.; Lee, C.-H.; Choi, J.-Y.; Cho, J.-H.; Park, S.-H.; Kim, Y.-L.; Moon, P.-G.; Baek, M.-C.; Berm Park, J.; Hoon Kim, Y.; et al. Potential Urinary Extracellular Vesicle Protein Biomarkers of Chronic Active Antibody-Mediated Rejection in Kidney Transplant Recipients. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2020, 1138, 121958. [Google Scholar] [CrossRef]
- Takada, Y.; Kamimura, D.; Jiang, J.-J.; Higuchi, H.; Iwami, D.; Hotta, K.; Tanaka, Y.; Ota, M.; Higuchi, M.; Nishio, S.; et al. Increased Urinary Exosomal SYT17 Levels in Chronic Active Antibody-Mediated Rejection after Kidney Transplantation via the IL-6 Amplifier. Int. Immunol. 2020, 32, 653–662. [Google Scholar] [CrossRef] [PubMed]
- Bruschi, M.; Granata, S.; Candiano, G.; Petretto, A.; Bartolucci, M.; Ghiggeri, G.M.; Stallone, G.; Zaza, G. Proteomic Analysis of Urinary Extracellular Vesicles of Kidney Transplant Recipients with BKV Viruria and Viremia: A Pilot Study. Front. Med. 2022, 9, 1028085. [Google Scholar] [CrossRef]
- Kim, M.H.; Lee, Y.H.; Seo, J.-W.; Moon, H.; Kim, J.S.; Kim, Y.G.; Jeong, K.-H.; Moon, J.-Y.; Lee, T.W.; Ihm, C.-G.; et al. Urinary Exosomal Viral MicroRNA as a Marker of BK Virus Nephropathy in Kidney Transplant Recipients. PLoS ONE 2017, 12, e0190068. [Google Scholar] [CrossRef]
- Dvela-Levitt, M.; Kost-Alimova, M.; Emani, M.; Kohnert, E.; Thompson, R.; Sidhom, E.-H.; Rivadeneira, A.; Sahakian, N.; Roignot, J.; Papagregoriou, G.; et al. Small Molecule Targets TMED9 and Promotes Lysosomal Degradation to Reverse Proteinopathy. Cell 2019, 178, 521–535.e23. [Google Scholar] [CrossRef]
- Al-Bataineh, M.M.; Sutton, T.A.; Hughey, R.P. Novel Roles for Mucin 1 in the Kidney. Curr. Opin. Nephrol. Hypertens 2017, 26, 384–391. [Google Scholar] [CrossRef] [PubMed]
- Nichols, B.L.; Avery, S.; Sen, P.; Swallow, D.M.; Hahn, D.; Sterchi, E. The Maltase-Glucoamylase Gene: Common Ancestry to Sucrase-Isomaltase with Complementary Starch Digestion Activities. Proc. Natl. Acad. Sci. USA 2003, 100, 1432–1437. [Google Scholar] [CrossRef] [Green Version]
- Rosenberg, A.Z.; Kopp, J.B. Focal Segmental Glomerulosclerosis. Clin. J. Am. Soc. Nephrol. 2017, 12, 502–517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grahammer, F.; Schell, C.; Huber, T.B. The Podocyte Slit Diaphragm--from a Thin Grey Line to a Complex Signalling Hub. Nat. Rev. Nephrol. 2013, 9, 587–598. [Google Scholar] [CrossRef]
- Watts, A.J.B.; Keller, K.H.; Lerner, G.; Rosales, I.; Collins, A.B.; Sekulic, M.; Waikar, S.S.; Chandraker, A.; Riella, L.V.; Alexander, M.P.; et al. Discovery of Autoantibodies Targeting Nephrin in Minimal Change Disease Supports a Novel Autoimmune Etiology. J. Am. Soc. Nephrol. 2022, 33, 238–252. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Zhang, Y.; Zhou, J.; Zhang, Y. Urinary Exosomal MiR-193a Can Be a Potential Biomarker for the Diagnosis of Primary Focal Segmental Glomerulosclerosis in Children. Biomed. Res. Int. 2017, 2017, 7298160. [Google Scholar] [CrossRef] [Green Version]
- Kwon, J.-E.; Kim, B.-Y.; Kwak, S.-Y.; Bae, I.-H.; Han, Y.-H. Ionizing Radiation-Inducible MicroRNA MiR-193a-3p Induces Apoptosis by Directly Targeting Mcl-1. Apoptosis 2013, 18, 896–909. [Google Scholar] [CrossRef] [PubMed]
- Kawakami, T.; Gomez, I.G.; Ren, S.; Hudkins, K.; Roach, A.; Alpers, C.E.; Shankland, S.J.; D’Agati, V.D.; Duffield, J.S. Deficient Autophagy Results in Mitochondrial Dysfunction and FSGS. J. Am. Soc. Nephrol. 2015, 26, 1040–1052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, H.; Kajiyama, H.; Tsuji, T.; Hu, X.; Leelahavanichkul, A.; Vento, S.; Frank, R.; Kopp, J.B.; Trachtman, H.; Star, R.A.; et al. Urinary Exosomal Wilms’ Tumor-1 as a Potential Biomarker for Podocyte Injury. Am. J. Physiol. Renal. Physiol. 2013, 305, F553–F559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.; Han, K.H.; Lee, S.E.; Kim, S.H.; Kang, H.G.; Cheong, H.I. Urinary Exosomal WT1 in Childhood Nephrotic Syndrome. Pediatr. Nephrol. 2012, 27, 317–320. [Google Scholar] [CrossRef] [PubMed]
- Dimuccio, V.; Peruzzi, L.; Brizzi, M.F.; Cocchi, E.; Fop, F.; Boido, A.; Gili, M.; Gallo, S.; Biancone, L.; Camussi, G.; et al. Acute and Chronic Glomerular Damage Is Associated with Reduced CD133 Expression in Urinary Extracellular Vesicles. Am. J. Physiol. Renal Physiol. 2020, 318, F486–F495. [Google Scholar] [CrossRef] [PubMed]
- Salih, M.; Zietse, R.; Hoorn, E.J. Urinary Extracellular Vesicles and the Kidney: Biomarkers and Beyond. Am. J. Physiol. Renal Physiol. 2014, 306, F1251–F1259. [Google Scholar] [CrossRef] [Green Version]
- Quaglia, M.; Dellepiane, S.; Guglielmetti, G.; Merlotti, G.; Castellano, G.; Cantaluppi, V. Extracellular Vesicles as Mediators of Cellular Crosstalk Between Immune System and Kidney Graft. Front. Immunol. 2020, 11, 74. [Google Scholar] [CrossRef] [PubMed]
- Blijdorp, C.J.; Burger, D.; Llorente, A.; Martens-Uzunova, E.S.; Erdbrügger, U. Extracellular Vesicles as Novel Players in Kidney Disease. JASN 2022, 33, 467–471. [Google Scholar] [CrossRef] [PubMed]
- Karpman, D.; Ståhl, A.-L.; Arvidsson, I. Extracellular Vesicles in Renal Disease. Nat. Rev. Nephrol. 2017, 13, 545–562. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delrue, C.; De Bruyne, S.; Speeckaert, R.; Speeckaert, M.M. Urinary Extracellular Vesicles in Chronic Kidney Disease: From Bench to Bedside? Diagnostics 2023, 13, 443. https://doi.org/10.3390/diagnostics13030443
Delrue C, De Bruyne S, Speeckaert R, Speeckaert MM. Urinary Extracellular Vesicles in Chronic Kidney Disease: From Bench to Bedside? Diagnostics. 2023; 13(3):443. https://doi.org/10.3390/diagnostics13030443
Chicago/Turabian StyleDelrue, Charlotte, Sander De Bruyne, Reinhart Speeckaert, and Marijn M. Speeckaert. 2023. "Urinary Extracellular Vesicles in Chronic Kidney Disease: From Bench to Bedside?" Diagnostics 13, no. 3: 443. https://doi.org/10.3390/diagnostics13030443
APA StyleDelrue, C., De Bruyne, S., Speeckaert, R., & Speeckaert, M. M. (2023). Urinary Extracellular Vesicles in Chronic Kidney Disease: From Bench to Bedside? Diagnostics, 13(3), 443. https://doi.org/10.3390/diagnostics13030443