Diagnostic Value of DECT-Based Collagen Mapping for Assessing the Distal Tibiofibular Syndesmosis in Patients with Acute Trauma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Selection
2.2. CT Protocol
2.3. CT Post-Processing
2.4. MRI Protocol
2.5. Image Analysis
2.6. Surgical Inspection
2.7. Statistical Analysis
3. Results
3.1. Diagnostic Accuracy of DTFS Injury
3.2. Diagnostic Confidence, Image Quality, and Image Noise
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ATIFL | Anterior Tibiofibular Ligament |
AUC | Are Under the Curve |
DECT | Dual-Energy Computed Tomography |
DTFS | Distal Tibiofibular Syndesmosis |
FOV | Field of View |
MDCT | Multi-Detector Computed Tomography |
NPV | Negative Predictive Value |
PPV | Positive Predictive Value |
PTIFL | Posterior Tibiofibular Ligament |
ROC | Receiver Operator Characteristic |
SD | Standard Deviation |
References
- Hermans, J.J.; Beumer, A.; de Jong, T.A.W.; Kleinrensink, G.J. Anatomy of the distal tibiofibular syndesmosis in adults: A pictorial essay with a multimodality approach. J Anat. 2010, 217, 633–645. [Google Scholar] [CrossRef] [PubMed]
- Wake, J.; Martin, K.D. Syndesmosis Injury From Diagnosis to Repair: Physical Examination, Diagnosis, and Arthroscopic-assisted Reduction. J. Am. Acad. Orthop. Surg. 2020, 28, 517–527. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.F.; Gross, M.T.; Weinhold, P. Ankle syndesmosis injuries: Anatomy, biomechanics, mechanism of injury, and clinical guidelines for diagnosis and intervention. J. Orthop. Sport. Phys. Ther. Mov. Sci. Media 2006, 36, 372–384. [Google Scholar] [CrossRef] [PubMed]
- Sman, A.D.; Hiller, C.E.; Rae, K.; Linklater, J.; Black, D.A.; Nicholson, L.L.; Burns, J.; Refshauge, K.M. Diagnostic accuracy of clinical tests for ankle syndesmosis injury. Br. J. Sports Med. 2015, 49, 323–329. [Google Scholar] [CrossRef] [PubMed]
- Uys, H.D.; Rijke, A.M. Clinical Association of Acute Lateral Ankle Sprain with Syndesmotic Involvement. Am. J. Sports Med. 2002, 30, 816–822. [Google Scholar] [CrossRef] [PubMed]
- Takao, M.; Ochi, M.; Oae, K.; Naito, K.; Uchio, Y. Diagnosis of a tear of the tibiofibular syndesmosis. J. Bone Joint Surg. Br. 2003, 85, 324–329. [Google Scholar] [CrossRef] [PubMed]
- Cornu, O.; Manon, J.; Tribak, K.; Putineanu, D. Traumatic injuries of the distal tibiofibular syndesmosis. In Orthopaedics and Traumatology: Surgery and Research; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar] [CrossRef]
- Vetter, J.R.; Perman, W.H.; Kalender, W.A.; Mazess, R.B.; Holden, J.E. Evaluation of a prototype dual-energy computed tomographic apparatus. II. Determination of vertebral bone mineral content. Med. Phys. 1986, 13, 340–343. [Google Scholar] [CrossRef] [PubMed]
- Wesarg, S.; Kirschner, M.; Becker, M.; Erdt, M.; Kafchitsas, K.; Khan, M.F. Dual-energy CT-based Assessment of the Trabecular Bone in Vertebrae. Methods Inf. Med. 2012, 51, 398–405. [Google Scholar] [CrossRef] [PubMed]
- Booz, C.; Nöske, J.; Martin, S.S.; Albrecht, M.H.; Yel, I.; Lenga, L.; Gruber-Rouh, T.; Eichler, K.; D’Angelo, T.; Vogl, T.J.; et al. Virtual Noncalcium Dual-Energy CT: Detection of Lumbar Disk Herniation in Comparison with Standard Gray-scale CT. Radiology 2019, 290, 446–455. [Google Scholar] [CrossRef] [PubMed]
- Gruenewald, L.D.; Koch, V.; Martin, S.S.; Yel, I.; Eichler, K.; Gruber-Rouh, T.; Lenga, L.; Wichmann, J.L.; Alizadeh, L.S.; Albrecht, M.H.; et al. Diagnostic accuracy of quantitative dual-energy CT-based volumetric bone mineral density assessment for the prediction of osteoporosis-associated fractures. Eur. Radiol. 2021, 32, 3076–3084. [Google Scholar] [CrossRef] [PubMed]
- Booz, C.; Nöske, J.; Albrecht, M.H.; Lenga, L.; Martin, S.S.; Bucher, A.M.; Huizinga, N.A.; Wichmann, J.L.; Vogl, T.J.; Yel, I. Diagnostic accuracy of color-coded virtual noncalcium dual-energy CT for the assessment of bone marrow edema in sacral insufficiency fracture in comparison to MRI. Eur. J Radiol. 2020, 129, 109046. [Google Scholar] [CrossRef] [PubMed]
- Gruenewald, L.D.; Koch, V.; Yel, I.; Eichler, K.; Gruber-Rouh, T.; Alizadeh, L.S.; Mahmoudi, S.; D’Angelo, T.; Wichmann, J.L.; Wesarg, S.; et al. Association of Phantomless Dual-Energy CT-based Volumetric Bone Mineral Density with the Prevalence of Acute Insufficiency Fractures of the Spine. Acad. Radiol. 2022, 22, S1076-6332. [Google Scholar] [CrossRef] [PubMed]
- Booz, C.; Yel, I.; Martin, S.S.; Lenga, L.; Eichler, K.; Wichmann, J.L.; Vogl, T.J.; Albrecht, M.H. Incremental Diagnostic Value of Virtual Noncalcium Dual-Energy Computed Tomography for the Depiction of Cervical Disk Herniation Compared With Standard Gray-Scale Computed Tomography. Invest. Radiol. 2021, 56, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Koch, V.; Müller, F.C.; Gosvig, K.; Albrecht, M.H.; Yel, I.; Lenga, L.; Martin, S.S.; Cavallaro, M.; Wichmann, J.L.; Mader, C.; et al. Incremental diagnostic value of color-coded virtual non-calcium dual-energy CT for the assessment of traumatic bone marrow edema of the scaphoid. Eur. Radiol. 2021, 31, 4428–4437. [Google Scholar] [CrossRef] [PubMed]
- Mustonen, A.O.T.; Koivikko, M.P.; Haapamaki, V.V.; Kiuru, M.J.; Lamminen, A.E.; Koskinen, S.K. Multidetector computed tomography in acute knee injuries: Assessment of cruciate ligaments with magnetic resonance imaging correlation. Acta Radiol. 2007, 48, 104–111. [Google Scholar] [CrossRef] [PubMed]
- Mallinson, P.I.; Coupal, T.M.; McLaughlin, P.D.; Nicolaou, S.; Munk, P.L.; Ouellette, H.A. Dual-energy CT for the musculoskeletal system. Radiology. Radiol. Soc. N. A. 2016, 281, 690–707. [Google Scholar] [CrossRef]
- Artzner, C.; Grozinger, G.; Kolb, M.; Walter, S.S.; Gatidis, S.; Bongers, M.N. Effect of acquisition techniques, latest kernels, and advanced monoenergetic post-processing for stent visualization with third-generation dual-source CT. Diagn. Interv. Radiol. 2022, 28, 364–369. [Google Scholar] [CrossRef] [PubMed]
- Booz, C.; Nöske, J.; Lenga, L.; Martin, S.S.; Yel, I.; Eichler, K.; Gruber-Rouh, T.; Huizinga, N.; Albrecht, M.H.; Vogl, T.J.; et al. Color-coded virtual non-calcium dual-energy CT for the depiction of bone marrow edema in patients with acute knee trauma: A multireader diagnostic accuracy study. Eur. Radiol. 2020, 30, 141–150. [Google Scholar] [CrossRef] [PubMed]
Variables, n (%) or Median (IQR) | Total (n = 49) | DTFS Injury (n = 10) | W/o DTFS Injury (n = 39) | p-Value |
---|---|---|---|---|
Age (years) | 49 (33–60) | 53 (43–61) | 48 (32–60) | 0.46 |
Sex (n) | 0.55 | |||
Male | 32 (65.3 %) | 7 (70 %) | 25 (64.1 %) | |
Female | 17 (34.7 %) | 3 (30 %) | 14 (35.9 %) |
Variables, n (%) [95% Confidence Interval] | Sensitivity | Specificity | PPV | NPV | Accuracy | AUC | p-Value |
---|---|---|---|---|---|---|---|
Total | |||||||
Protocol 1 | 20/30 (67%) [47–83%] | 70/118 (60%) [50–69%] | 20/67 (30%) [23–37%] | 70/80 (88%) [81–92%] | 90/147 (61%) [53–69%] | 0.63 [0.55–0.71] | <0.001 |
Protocol 2 | 25/30 (83%) [65–94%] | 110/118 (93%) [87–97%] | 25/33 (76%) [61–86%] | 110/115 (96%) [91–95%] | 134/147 (91%) [85–95%] | 0.88 [0.82–0.93] | <0.001 |
Ligamentous Tear | |||||||
Protocol 1 | 7/15 (47%) [21–73%] | 84/132 (64%) [55–72%] | 7/55 (13%) [8–21%] | 84/92 (91%) [87–95%] | 91/147 (62%) [54–70%] | 0.55 [0.47–0.63] | <0.001 |
Protocol 2 | 12/15 (80%) [52–96%] | 125/132 (95%) [89–98%] | 12/19 (63%) [44–78%] | 125/128 (98%) [94–99%] | 137/147 (93%) [88–97%] | 0.87 [0.81–0.92] | <0.001 |
Bony Avulsion | |||||||
Protocol 1 | 10/15 (67%) [39–88%] | 130/132 (99%) [95–100%] | 10/12 (83%) [55–95%] | 130/135 (96%) [93–98%] | 140/147 (95%) [90–98%] | 0.83 [0.76–0.88] | 0.15 |
Protocol 2 | 13/15 (87%) [60–98%] | 131/132 (99%) [96–100%] | 13/14 (93%) [65–99%] | 131/133 (99%) [95–100%] | 144/147 (98%) [94–100%] | 0.93 [0.88–0.97] | 0.15 |
Variables, n (%) [95% Confidence Interval] | Sensitivity | Specificity | PPV | NPV | Accuracy | AUC | p-Value |
---|---|---|---|---|---|---|---|
Reader 1 | |||||||
Protocol 1 | 6/10 (60%) [26–88%] | 22/39 (56%) [40–72%] | 6/23 (26%) [16–40%] | 22/26 (85%) [71–93%] | 28/49 (57%) [42–71%] | 0.58 [0.43–0.72] | <0.001 |
Protocol 2 | 9/10 (90%) [56–100%] | 36/39 (92%) [79–98%] | 9/12 (75%) [50–90%] | 36/37 (97%) [85–100%] | 45/49 (92 %) [80–98%] | 0.912 [0.80–0.98] | <0.001 |
Reader 2 | |||||||
Protocol 1 | 8/10 (80%) [44–98%] | 24/39 (62%) [45–77%] | 8/23 (35%) [24–47%] | 24/26 (92%) [77–98%] | 32/49 (65%) [50–78%] | 0.71 [0.56–0.83] | 0.03 |
Protocol 2 | 9/10 (90%) [56–100%] | 37/39 (95%) [83–99%] | 9/11 (82%) [54–95%] | 37/38 (97%) [85–100%] | 46/49 (94%) [83–99%] | 0.92 [0.81–0.98] | 0.03 |
Reader 3 | |||||||
Protocol 1 | 6/10 (60%) [26–88%] | 23/39 (59%) [42–74%] | 6/22 (23%) [17–41%] | 23/27 (85%) [72–93%] | 29/49 (59%) [44–73%] | 0.60 [0.45–0.73] | 0.04 |
Protocol 2 | 8/10 (80%) [44–98%] | 36/39 (92%) [79–98%] | 8/11 (73%) [46–89%] | 36/38 (95%) [84–98%] | 44/49 (90%) [78–97%] | 0.86 [0.73–0.94] | 0.04 |
Variables, Mean ± SD [95% Confidence Interval] | Diagnostic Confidence | Image Quality | Image Noise |
---|---|---|---|
Grayscale Images | 2.3 ± 1.0 [2.1–2.4] | 2.4 ± 0.9 [2.2–2.5] | 2.3 ± 1.0 [2.1–2.5] |
Color-Coded Images | 4.1 ± 0.8 [4.0–4.3] | 3.9 ± 0.7 [3.8–4.0] | 3.6 ± 0.6 [3.5–3.7] |
p-Value | <0.001 | <0.001 | <0.001 |
κ Grayscale | 0.33 [−0.06–0.60] | 0.32 [−0.07–0.6] | 0.36 [−0.03–0.6] |
κ Color-Coding | 0.71 [0.53–0.83] | 0.70 [0.51–0.82] | 0.40 [0.03–0.64] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gruenewald, L.D.; Leitner, D.H.; Koch, V.; Martin, S.S.; Yel, I.; Mahmoudi, S.; Bernatz, S.; Eichler, K.; Gruber-Rouh, T.; Pinto Dos Santos, D.; et al. Diagnostic Value of DECT-Based Collagen Mapping for Assessing the Distal Tibiofibular Syndesmosis in Patients with Acute Trauma. Diagnostics 2023, 13, 533. https://doi.org/10.3390/diagnostics13030533
Gruenewald LD, Leitner DH, Koch V, Martin SS, Yel I, Mahmoudi S, Bernatz S, Eichler K, Gruber-Rouh T, Pinto Dos Santos D, et al. Diagnostic Value of DECT-Based Collagen Mapping for Assessing the Distal Tibiofibular Syndesmosis in Patients with Acute Trauma. Diagnostics. 2023; 13(3):533. https://doi.org/10.3390/diagnostics13030533
Chicago/Turabian StyleGruenewald, Leon David, Daniel H. Leitner, Vitali Koch, Simon S. Martin, Ibrahim Yel, Scherwin Mahmoudi, Simon Bernatz, Katrin Eichler, Tatjana Gruber-Rouh, Daniel Pinto Dos Santos, and et al. 2023. "Diagnostic Value of DECT-Based Collagen Mapping for Assessing the Distal Tibiofibular Syndesmosis in Patients with Acute Trauma" Diagnostics 13, no. 3: 533. https://doi.org/10.3390/diagnostics13030533
APA StyleGruenewald, L. D., Leitner, D. H., Koch, V., Martin, S. S., Yel, I., Mahmoudi, S., Bernatz, S., Eichler, K., Gruber-Rouh, T., Pinto Dos Santos, D., D’Angelo, T., Vogl, T. J., & Booz, C. (2023). Diagnostic Value of DECT-Based Collagen Mapping for Assessing the Distal Tibiofibular Syndesmosis in Patients with Acute Trauma. Diagnostics, 13(3), 533. https://doi.org/10.3390/diagnostics13030533