A Novel Nomogram Based on Imaging Biomarkers of Shear Wave Elastography, Angio Planewave Ultrasensitive Imaging, and Conventional Ultrasound for Preoperative Prediction of Malignancy in Patients with Breast Lesions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Selection
2.2. Ultrasound Image Acquisition
2.3. Ultrasound Image Evaluation
2.4. Histopathological Evaluation
2.5. Development of the Nomogram
2.6. Validation of the Nomogram
2.7. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Pathological Findings
3.3. Feature Selection and Nomogram Construction
3.4. Validation of the Nomogram
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Appendix A. Detailed Descriptions of Shear Wave Elastography Parameters
Appendix B. Details of the R Software Package Used in Our Study
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Joko-Fru, W.Y.; Miranda-Filho, A.; Soerjomataram, I.; Egue, M.; Akele-Akpo, M.T.; N’da, G.; Assefa, M.; Buziba, N.; Korir, A.; Kamate, B.; et al. Breast cancer survival in sub-Saharan Africa by age, stage at diagnosis and human development index: A population-based registry study. Int. J. Cancer 2020, 146, 1208–1218. [Google Scholar] [CrossRef] [PubMed]
- Barba, D.; León-Sosa, A.; Lugo, P.; Suquillo, D.; Torres, F.; Surre, F.; Trojman, L.; Caicedo, A. Breast cancer, screening and diagnostic tools: All you need to know. Crit. Rev. Oncol. Hematol. 2021, 157, 103174. [Google Scholar] [CrossRef]
- Berg, W.A.; Blume, J.D.; Cormack, J.B.; Mendelson, E.B.; Lehrer, D.; Böhm-Vélez, M.; Pisano, E.D.; Jong, R.A.; Evans, W.P.; Morton, M.J.; et al. Combined screening with ultrasound and mammography vs. mammography alone in women at elevated risk of breast cancer. JAMA 2008, 299, 2151–2163. [Google Scholar] [CrossRef] [PubMed]
- Elverici, E.; Barça, A.N.; Aktaş, H.; Özsoy, A.; Zengin, B.; Çavuşoğlu, M.; Araz, L. Nonpalpable BI-RADS 4 breast lesions: Sonographic findings and pathology correlation. Diagn. Interv. Radiol. 2015, 21, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Elezaby, M.; Li, G.; Bhargavan-Chatfield, M.; Burnside, E.S.; DeMartini, W.B. ACR BI-RADS Assessment Category 4 Subdivisions in Diagnostic Mammography: Utilization and Outcomes in the National Mammography Database. Radiology 2018, 287, 416–422. [Google Scholar] [CrossRef]
- Gu, J.; Polley, E.C.; Ternifi, R.; Nayak, R.; Boughey, J.C.; Fazzio, R.T.; Fatemi, M.; Alizad, A. Individualized-thresholding Shear Wave Elastography combined with clinical factors improves specificity in discriminating breast masses. Breast 2020, 54, 248–255. [Google Scholar] [CrossRef]
- Berg, W.A.; Cosgrove, D.O.; Doré, C.J.; Schäfer, F.K.; Svensson, W.E.; Hooley, R.J.; Ohlinger, R.; Mendelson, E.B.; Balu-Maestro, C.; Locatelli, M.; et al. Shear-wave elastography improves the specificity of breast US: The BE1 multinational study of 939 masses. Radiology 2012, 262, 435–449. [Google Scholar] [CrossRef]
- Jung, H.K.; Park, A.Y.; Ko, K.H.; Koh, J. Comparison of the Diagnostic Performance of Power Doppler Ultrasound and a New Microvascular Doppler Ultrasound Technique (AngioPLUS) for Differentiating Benign and Malignant Breast Masses. J. Ultrasound Med. 2018, 37, 2689–2698. [Google Scholar] [CrossRef]
- Cosgrove, D.; Piscaglia, F.; Bamber, J.; Bojunga, J.; Correas, J.M.; Gilja, O.H.; Klauser, A.S.; Sporea, I.; Calliada, F.; Cantisani, V.; et al. EFSUMB guidelines and recommendations on the clinical use of ultrasound elastography. Part 2: Clinical applications. Ultraschall Med. 2013, 34, 238–253. [Google Scholar] [CrossRef] [Green Version]
- Skerl, K.; Vinnicombe, S.; Giannotti, E.; Thomson, K.; Evans, A. Influence of region of interest size and ultrasound lesion size on the performance of 2D shear wave elastography (SWE) in solid breast masses. Clin. Radiol. 2015, 70, 1421–1427. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Huang, Y.; Liu, Y.; Wang, Y.; Mao, R.; Li, F.; Cao, L.; Zhou, J. Shear-Wave Elastography of the Breast: Added Value of a Quality Map in Diagnosis and Prediction of the Biological Characteristics of Breast Cancer. Korean J. Radiol. 2020, 21, 172–180. [Google Scholar] [CrossRef] [PubMed]
- Sravani, N.; Ramesh, A.; Sureshkumar, S.; Vijayakumar, C.; Abdulbasith, K.M.; Balasubramanian, G.; Ch Toi, P. Diagnostic role of shear wave elastography for differentiating benign and malignant breast masses. SA J. Radiol. 2020, 24, 1999. [Google Scholar] [CrossRef] [PubMed]
- Gweon, H.M.; Youk, J.H.; Son, E.J.; Kim, J.A. Clinical application of qualitative assessment for breast masses in shear-wave elastography. Eur. J. Radiol. 2013, 82, e680–e685. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.C.; Zu, D.M.; Zhang, Y.; Shan, J.; Shi, X.R.; Deng, S.H.; Jiang, Q. A comparative study on superb microvascular imaging and conventional ultrasonography in differentiating BI-RADS 4 breast lesions. Oncol. Lett. 2019, 18, 3202–3210. [Google Scholar] [CrossRef] [PubMed]
- Forsberg, F.; Kuruvilla, B.; Pascua, M.B.; Chaudhari, M.H.; Merton, D.A.; Palazzo, J.P.; Goldberg, B.B. Comparing contrast-enhanced color flow imaging and pathological measures of breast lesion vascularity. Ultrasound Med. Biol. 2008, 34, 1365–1372. [Google Scholar] [CrossRef]
- Kim, S.; Lee, H.J.; Ko, K.H.; Park, A.Y.; Koh, J.; Jung, H.K. New Doppler imaging technique for assessing angiogenesis in breast tumors: Correlation with immunohistochemically analyzed microvessels density. Acta Radiol. 2018, 59, 1414–1421. [Google Scholar] [CrossRef]
- Watanabe, T.; Yamaguchi, T.; Tohno, E.; Tsunoda, H.; Kaoku, S.; Ban, K.; Watanabe, R.; Umemoto, T.; Hirokaga, K.; Ito, T. B-mode ultrasound diagnostic flowchart for solid breast masses: JABTS BC-01 study. J. Med. Ultrason. 2021, 48, 71–81. [Google Scholar] [CrossRef]
- Cleverley, J.R.; Jackson, A.R.; Bateman, A.C. Pre-operative localization of breast microcalcification using high-frequency ultrasound. Clin. Radiol. 1997, 52, 924–926. [Google Scholar] [CrossRef]
- Adler, D.D.; Carson, P.L.; Rubin, J.M.; Quinn-Reid, D. Doppler ultrasound color flow imaging in the study of breast cancer: Preliminary findings. Ultrasound Med. Biol. 1990, 16, 553–559. [Google Scholar] [CrossRef]
- Xiao, X.Y.; Chen, X.; Guan, X.F.; Wu, H.; Qin, W.; Luo, B.M. Superb microvascular imaging in diagnosis of breast lesions: A comparative study with contrast-enhanced ultrasonographic microvascular imaging. Br. J. Radiol. 2016, 89, 20160546. [Google Scholar] [CrossRef] [PubMed]
- Liang, M.; Ou, B.; Wu, J.; Xiao, X.; Ruan, J.; Tian, J.; Xu, X.; Wang, B.; Yang, H.; Luo, B. Combined use of strain elastography and superb microvascular imaging with grayscale ultrasound according to the BI-RADS classification for differentiating benign from malignant solid breast masses. Clin. Hemorheol. Microcirc. 2020, 74, 391–403. [Google Scholar] [CrossRef] [PubMed]
- Cai, S.; Wang, H.; Zhang, X.; Zhang, L.; Zhu, Q.; Sun, Q.; Li, J.; Jiang, Y. Superb Microvascular Imaging Technology Can Improve the Diagnostic Efficiency of the BI-RADS System. Front. Oncol. 2021, 11, 634752. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Chang, C.; Wu, C.; Chen, Q.; Peng, Y.; Luo, B.; Tang, L.; Li, J.; Zheng, J.; Zhou, R.; et al. Confirmed value of shear wave elastography for ultrasound characterization of breast masses using a conservative approach in Chinese women: A large-size prospective multicenter trial. Cancer Manag. Res. 2018, 10, 4447–4458. [Google Scholar] [CrossRef]
- Sauerbrei, W.; Royston, P.; Binder, H. Selection of important variables and determination of functional form for continuous predictors in multivariable model building. Stat. Med. 2007, 26, 5512–5528. [Google Scholar] [CrossRef]
- Coutant, C.; Olivier, C.; Lambaudie, E.; Fondrinier, E.; Marchal, F.; Guillemin, F.; Seince, N.; Thomas, V.; Levêque, J.; Barranger, E.; et al. Comparison of models to predict nonsentinel lymph node status in breast cancer patients with metastatic sentinel lymph nodes: A prospective multicenter study. J. Clin. Oncol. 2009, 27, 2800–2808. [Google Scholar] [CrossRef]
- Vickers, A.J.; Cronin, A.M.; Elkin, E.B.; Gonen, M. Extensions to decision curve analysis, a novel method for evaluating diagnostic tests, prediction models and molecular markers. BMC Med. Inform. Decis. Mak. 2008, 8, 53. [Google Scholar] [CrossRef]
- Spak, D.A.; Plaxco, J.S.; Santiago, L.; Dryden, M.J.; Dogan, B.E. BI-RADS® fifth edition: A summary of changes. Diagn. Interv. Imaging 2017, 98, 179–190. [Google Scholar] [CrossRef]
- Heywang-Köbrunner, S.H.; Schreer, I.; Heindel, W.; Katalinic, A. Imaging studies for the early detection of breast cancer. Dtsch. Arztebl. Int. 2008, 105, 541–547. [Google Scholar] [CrossRef]
- Schneider, B.P.; Miller, K.D. Angiogenesis of breast cancer. J. Clin. Oncol. 2005, 23, 1782–1790. [Google Scholar] [CrossRef]
- Li, D.D.; Xu, H.X.; Guo, L.H.; Bo, X.W.; Li, X.L.; Wu, R.; Xu, J.M.; Zhang, Y.F.; Zhang, K. Combination of two-dimensional shear wave elastography with ultrasound breast imaging reporting and data system in the diagnosis of breast lesions: A new method to increase the diagnostic performance. Eur. Radiol. 2016, 26, 3290–3300. [Google Scholar] [CrossRef]
- Xiao, X.; Jiang, Q.; Wu, H.; Guan, X.; Qin, W.; Luo, B. Diagnosis of sub-centimetre breast lesions: Combining BI-RADS-US with strain elastography and contrast-enhanced ultrasound-a preliminary study in China. Eur. Radiol. 2017, 27, 2443–2450. [Google Scholar] [CrossRef]
- Wang, B.; Chen, Y.Y.; Yang, S.; Chen, Z.W.; Luo, J.; Cui, X.W.; Dietrich, C.F.; Yi, A.J. Combined Use of Shear Wave Elastography, Microvascular Doppler Ultrasound Technique, and BI-RADS for the Differentiation of Benign and Malignant Breast Masses. Front. Oncol. 2022, 12, 906501. [Google Scholar] [CrossRef]
- Lee, E.J.; Chang, Y.W. Combination of Quantitative Parameters of Shear Wave Elastography and Superb Microvascular Imaging to Evaluate Breast Masses. Korean J. Radiol. 2020, 21, 1045–1054. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Lu, J.; Jin, C.; Chen, Y.; Chen, S.; Guo, G.; Gong, X. Diagnostic Value of Superb Microvascular Imaging in Differentiating Benign and Malignant Breast Tumors: A Systematic Review and Meta-Analysis. Diagnostics 2022, 12, 2648. [Google Scholar] [CrossRef] [PubMed]
- Park, A.Y.; Seo, B.K.; Han, M.R. Breast Ultrasound Microvascular Imaging and Radiogenomics. Korean J. Radiol. 2021, 22, 677–687. [Google Scholar] [CrossRef] [PubMed]
- Xiang, L.H.; Yao, M.H.; Xu, G.; Pu, H.; Liu, H.; Fang, Y.; Wu, R. Diagnostic value of contrast-enhanced ultrasound and shear-wave elastography for breast lesions of sub-centimeter. Clin. Hemorheol. Microcirc. 2017, 67, 69–80. [Google Scholar] [CrossRef] [PubMed]
- Berg, W.A. Can Optoacoustic Imaging Safely Reduce Benign Breast Biopsies? Radiology 2018, 287, 413–415. [Google Scholar] [CrossRef] [Green Version]
Benign Group | Malignant Group | p Value | ||
---|---|---|---|---|
72 | 45 | |||
Sex | ||||
Male | 0 | 0 | NA | |
Female | 72 | 45 | NA | |
Age (y) | 39.0 (32.0–46.0) | 43.0 (37.0–54.0) | 0.008 | |
Tumor Size (mm) | 11.4 (8.9–15.9) | 17.6 (12.1–23.2) | 0.001 | |
Shape | <0.001 | |||
Regular | 31 | 0 | ||
Irregular | 41 | 45 | ||
DWR > 0.7 | 0.005 | |||
Absent | 55 | 23 | ||
Present | 17 | 22 | ||
Margin | <0.001 | |||
Circumscribed | 36 | 5 | ||
Not circumscribed | 36 | 40 | ||
Echo pattern | 0.021 | |||
Hypoechoic | 46 | 29 | ||
Isoechoic or hyperechoic | 18 | 4 | ||
Heterogeneous | 8 | 12 | ||
Microcalcification | <0.001 | |||
Present | 18 | 26 | ||
Absent | 54 | 19 | ||
halo | ||||
Present | 4 | 17 | <0.001 | |
Absent | 68 | 28 | ||
Posterior features | 0.007 | |||
Enhancement | 22 | 16 | ||
Shadowing | 7 | 11 | ||
None | 42 | 14 | ||
Combined pattern | 1 | 4 | ||
AG | ||||
Grade 0 | 10 | 1 | <0.001 | |
Grade 1 | 32 | 5 | ||
Grade 2 | 14 | 14 | ||
Grade 3 | 16 | 25 | ||
MVDP | ||||
Non-vascular | 10 | 1 | <0.001 | |
Linear or curvilinear | 31 | 3 | ||
Tree-like | 25 | 0 | ||
Root hair-like | 5 | 12 | ||
Crab claw-like | 6 | 29 | ||
Stiff rim sign | ||||
Present | 6 | 34 | <0.001 | |
Absent | 66 | 11 | ||
E-max (kPa) | 38.2 (28.6–46.5) | 139.3 (92.3–205.1) | <0.001 | |
E-max > cut-off (76.2) | ||||
Yes | 7 | 36 | <0.001 | |
No | 65 | 9 | ||
E-mean (kPa) | 18.3 (13.7–22.8) | 40.8 (26.4–60.5) | <0.001 | |
E-mean > cut-off (25.4) | ||||
Yes | 10 | 35 | <0.001 | |
No | 62 | 10 | ||
E-min (kPa) | 3.6 (0.5–8.5) | 0.1 (0.1–0.9) | 0.944 | |
E-min > cut-off (12.9) | ||||
Yes | 3 | 4 | 0.295 | |
No | 69 | 41 | ||
E-sd (kPa) | 6.9 (5.2–8.3) | 27.2 (15.7–42.2) | <0.001 | |
E-sd > cut-off (14.6) | ||||
Yes | 7 | 34 | <0.001 | |
No | 65 | 11 | ||
E-ratio | 1.8 (1.4–3.3) | 7.2 (4.8–10.2) | <0.001 | |
E-ratio > cut-off (5.3) | ||||
Yes | 5 | 33 | <0.001 | |
No | 67 | 12 |
Pathology Result | Number of Lesions (%) |
---|---|
Benign | 72 (61.5%) |
Adenosis | 34 (29.1%) |
Fibroadenoma | 24 (20.5%) |
Intraductal papilloma | 7 (6.0%) |
Chronic mammary inflammation | 3 (2.6%) |
Ductal epithelial hyperplasia | 3 (2.6%) |
Adeno-myoepithelioma | 1 (0.8%) |
Malignant | 45 (38.5%) |
Ductal carcinoma in situ | 9 (7.7%) |
Invasive ductal carcinoma grade 1 | 6 (5.1%) |
Invasive ductal carcinoma grade 2 | 12 (10.3%) |
Invasive ductal carcinoma grade 3 | 8 (6.8%) |
Invasive lobular carcinoma grade 1 | 3 (2.6%) |
Invasive lobular carcinoma grade 2 | 3 (2.6%) |
Invasive lobular carcinoma grade 3 | 2 (1.7%) |
Neuroendocrine carcinoma | 2 (1.7%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, G.; Feng, J.; Jin, C.; Gong, X.; Chen, Y.; Chen, S.; Wei, Z.; Xiong, H.; Lu, J. A Novel Nomogram Based on Imaging Biomarkers of Shear Wave Elastography, Angio Planewave Ultrasensitive Imaging, and Conventional Ultrasound for Preoperative Prediction of Malignancy in Patients with Breast Lesions. Diagnostics 2023, 13, 540. https://doi.org/10.3390/diagnostics13030540
Guo G, Feng J, Jin C, Gong X, Chen Y, Chen S, Wei Z, Xiong H, Lu J. A Novel Nomogram Based on Imaging Biomarkers of Shear Wave Elastography, Angio Planewave Ultrasensitive Imaging, and Conventional Ultrasound for Preoperative Prediction of Malignancy in Patients with Breast Lesions. Diagnostics. 2023; 13(3):540. https://doi.org/10.3390/diagnostics13030540
Chicago/Turabian StyleGuo, Guoqiang, Jiaping Feng, Chunchun Jin, Xuehao Gong, Yihao Chen, Sihan Chen, Zhanghong Wei, Huahua Xiong, and Jianghao Lu. 2023. "A Novel Nomogram Based on Imaging Biomarkers of Shear Wave Elastography, Angio Planewave Ultrasensitive Imaging, and Conventional Ultrasound for Preoperative Prediction of Malignancy in Patients with Breast Lesions" Diagnostics 13, no. 3: 540. https://doi.org/10.3390/diagnostics13030540
APA StyleGuo, G., Feng, J., Jin, C., Gong, X., Chen, Y., Chen, S., Wei, Z., Xiong, H., & Lu, J. (2023). A Novel Nomogram Based on Imaging Biomarkers of Shear Wave Elastography, Angio Planewave Ultrasensitive Imaging, and Conventional Ultrasound for Preoperative Prediction of Malignancy in Patients with Breast Lesions. Diagnostics, 13(3), 540. https://doi.org/10.3390/diagnostics13030540